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Abstract

In this paper, we discuss the stabilization control problem for a nonlinear mechanical system
called Furuta pendulum. A new stabilizing control method that only uses the measurements of angle
position is developed. This method has three successive steps. First, we present the dynamic equation
of Furuta pendulum and change it into an affine nonlinear system by appropriately choosing state
variables. Second, we linearize the nonlinear system around the origin and consider the nonlinear
higher order term to be system’s fictitious disturbance. After that, an idea of equivalent input
disturbance is used to design the stabilizing controller for the nonlinear system. The effectiveness of
our proposed control strategy is illustrated via a numerical example. c©2016 All rights reserved.
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1. Introduction

In the past few years, a great deal of study efforts have been carried out on underactuated
mechanical systems (UMSs), see [9, 16, 18, 20]. The control input numbers of a UMS are less than
the numbers of system’s degrees of freedom (DOF) [14]. This characteristic makes UMSs lightweight,
flexible and low energy consumption. It is meaningful to study the control design of this kind of
mechanical systems.
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The mechanical system that has one input and two DOFs is the simplest UMS. Recently, the
study on the control of 2-DOF UMS is a hot issue in the field of control engineering, [1, 2, 19]. Furuta
pendulum is a well-known example of 2-DOF UMS. The physical structure of Furuta pendulum is
shown in Fig. 1. It consists of a horizontal rotating arm and an inverted pendulum. The arm is
driven by an actuator and moves in a horizontal plane. The pendulum connects to the arm by a
passive joint and can freely move in vertical plane. The commonly discussed control task for Furuta
pendulum is to keep the pendulum stabilized in the upright position while the horizontal arm does
not rotate. But the control task is not easy to achieve because one DOF of Furuta pendulum lies in
an uncertain configuration and a second non-holonomic constraint is possessed by this system [12]. In
addition, this mechanical system is a complicated nonlinear system that is not feedback linearizable
[8]. All of these bring the stabilization control of Furuta pendulum to be a challenging task.
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Figure 1: Model of Furuta pendulum.

In order to solve the stabilization control problem for Furuta pendulum, many control strategies
have been presented in the past three decades. In [11], Olfati-Saber firstly changed Furuta pendulum
into a cascade nonlinear system, and then used a backstepping method to semiglobally stabilize the
nonlinear system. It enables the semiglobal stabilization of Furuta pendulum to be achieved. In [6],
the local stabilization of Furuta pendulum around the unstable vertical equilibrium was realized by
a Lyapunov-function-based control method. To achieve the stabilization of Furuta pendulum in the
whole motion space, a common used control strategy is firstly to divide the motion space into two
subspaces: swing-up area and balancing area, and then to design swing-up controller and balancing
controller for each subspace, respectively. The switch from swing-up controller to balancing controller
makes the stabilizing control objective of Furuta pendulum be achieved. Many control methods based
on this strategy have been presented, [3–5, 17]. Although the switch strategy is effective for stabilizing
Furuta pendulum sometimes, the stability of switching from swing-up area to balancing area is not
guaranteed. This may cause the controller frequently to switch. It is harmful for the running of
control system safely. To solve this problem, the attempts of using a single controller to achieve the
stabilization of Furuta pendulum have been made, for example an energy shaping method in [10], a
nonlinear sliding-mode method in [7], and a coupled sliding-mode method in [13].

As discussed above, many control methods of stabilizing Furuta pendulum have been presented.
However, all these methods require the measurements of both angle position and velocity information
to design the stabilizing controller. Since the velocity information generally contains noises that may
affect the performance of control system, and since the installation of tachometer to measure the
velocity information increases the cost of the control system, it is of great meaning to stabilize Furuta
pendulum using the angle position measurements only. This is the main motivation of this study.
In this paper, we present a new method of globally stabilizing Furuta pendulum. This method only
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uses the measurements of angle position to design the stabilizing controller. The design procedure
of this method has three successive steps:

(1) Give the state space equation of Furuta pendulum by appropriately choosing state variables,
which is an affine nonlinear system.

(2) Linearize the affine nonlinear system around the origin.

(3) Considering the nonlinear higher order term to be system’s fictitious disturbance enables us to
use an idea of equivalent input disturbance to design the stabilizing controller for the nonlinear
system.

The validity of the proposed theoretical results is demonstrated by a numerical example.

2. Mathematical model of Furuta pendulum

In the model of Furuta pendulum shown in Fig. 1, the meanings of physical parameters are:

m1 : mass of the inverted pendulum;
L1 : length of the inverted pendulum;
r1 : distance from the passive joint to the center of mass (COM) of the pendulum;
J1 : moment of inertia around the COM of the pendulum;
m2 : mass of the horizontal arm;
L2 : length of the horizontal arm;
F : torque applied to the horizontal arm;
r2 : distance from the active joint to the center of mass (COM) of the arm;
J2 : moment of inertia around the COM of the arm;
g : gravitational acceleration;
q1 : angle of the pendulum relative to the axis z;
q2 : angle of the arm relative to the axis x.

We assume that there are no friction on the joints in this paper. Let q = [q1, q2]
>, q̇ = dq/dt.

Then, it is not difficult to get the kinetic energy K(q, q̇) and the potential energy P (q) of Furuta
pendulum as

K(q, q̇) =
1

2
q̇>

[
α1 −α2 cos q1

−α2 cos q1 α3 + α1 sin2 q1

]
q̇, P (q) = α4 cos q1, (2.1)

where

α1 = J1 +m1r
2
1, α2 = m1r1L2, α3 = J2 +m2r

2
2 +m1L

2
2, α4 = m1gr1.

We take L(q, q̇) = K(q, q̇)−P (q) to be the Lagrangian of Furuta pendulum. The Euler-Lagrange
equations give the mathematical model of this mechanical system as

d

dt

[
∂L(q, q̇)

∂q̇1

]
− ∂L(q, q̇)

∂q1
= 0,

d

dt

[
∂L(q, q̇)

∂q̇2

]
− ∂L(q, q̇)

∂q2
= F.

(2.2)
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From (2.1), we easily get

∂L(q, q̇)

∂q̇1
= α1q̇1 − α2 cos q1q̇2,

∂L(q, q̇)

∂q̇2
= (α3 + α1 sin2 q1)q̇2 − α2 cos q1q̇1,

∂L(q, q̇)

∂q1
=

1

2
α1q̇

2
2 sin 2q1 + α2 sin q1q̇1q̇2 + α4 sin q1,

∂L(q, q̇)

∂q2
= 0.

(2.3)

Combining (2.2) and (2.3) gives the model of Furuta pendulum in the following standard form[
α1 −α2 cos q1

−α2 cos q1 α3 + α1 sin2 q1

][
q̈1

q̈2

]
+

[
H1(q, q̇)

H2(q, q̇)

]
+

[
G1(q1)

0

]
=

[
0

F

]
, (2.4)

where

H1(q, q̇) = −1

2
α1q̇

2
2 sin 2q1, H2(q, q̇) = α2q̇

2
1 sin q1 + α1q̇1q̇2 sin 2q1, G1(q1) = −α4 sin q1.

The following variables are chosen to be the state variables of (2.4)

x1 = q1, x2 = α1q̇1 − α2 cos q1q̇2, x3 = q2, x4 = q̇2. (2.5)

Since x2 = ∂L/∂q̇1, the equation (2.2) gives ẋ2 = ∂L/∂q1. Let x = [x1, x2, x3, x4]
>. From (2.5),

we get the state space equation of (2.4) in x−state as
ẋ1 =

x2 + α2x4 cosx1
α1

,

ẋ2 = α4 sinx1 + ϕ(x1, x2, x4),

ẋ3 = x4,

ẋ4 = τ,

(2.6)

where

ϕ(x1, x2, x4) =
α1x

2
4 sin 2x1

2
+
α2x4(x2 + α2x4 cosx1) sinx1

α1

,

and τ = q̈2 is considered to be the control input of the system (2.6). From (2.4), it is not difficult to
get the relationship between control inputs τ and F as

F =
α1(α3 + α1 sin2 q1)− α2

2 cos2 q1
α1

τ +H2(q, q̇) +
α2 cos q1
α1

[H1(q, q̇) +G1(q1)] . (2.7)

The main task of this paper is to design a controller F such that q → 0 and q̇ → 0. From (2.5),
we get

q1 = x1, q2 = x3, q̇1 =
x2 + α2x4 cosx1

α1

, q̇2 = x4. (2.8)

Combining (2.5) and (2.8) yields that q = q̇ = 0 is equivalent to x = 0. As a result, if we can
design a controller τ for (2.6) that makes x → 0, then the controller F obtained from τ and (2.7)
can make q → 0 and q̇ → 0. Thus, the stabilization control problem for Furuta pendulum changes
into the problem of designing a stabilizing controller τ for (2.6). We detailedly explain how to design
such controller τ below.
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3. Design of stabilizing controller

Note that x = 0 is an open-loop equilibrium point of the system (2.6). Linearizing (2.6) around
x = 0 gives

ẋ = Ax +Bτ + ω(t), (3.1)

where

A =


0

1

α1

0
α2

α1

α4 0 0 0

0 0 0 1

0 0 0 0

 , B =


0

0

0

1

 ,
and ω(t) is the high-order nonlinear term. This paper assumes that only the measurement of angle
position q is available. From (2.5), it is reasonable to take the following output for (3.1) as

y = Cx =

[
1 0 0 0

0 0 1 0

]
x1

x2

x3

x4

 =

[
x1

x3

]
. (3.2)

A simple calculation gives

ΛC =
[
B, AB, A2B, A3B

]
=


0

α2

α1

0
α2α4

α2
1

0 0
α2α4

α1

0

0 1 0 1

1 0 0 0

 ,

ΛO =


C

CA

CA2

CA3

 =



1 0 0 0

0 0 1 0

0
1

α1

0
α2

α1

0 0 0 1
α4

α1

0 0 0

0 0 0 0

0
α4

α2
1

0
α2α4

α2
1

0 0 0 0



.

Assume that α1 6= α4 is satisfied. So, it is easy to get

rank(ΛC) = rank(ΛO) = 4.

This means that (A,B) is controllable and (C,A) is observable.
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If ω(t) is considered to be a fictitious disturbance of (3.1), then there exists an equivalent input
disturbance, ωe(t), on the control input channel such that ω(t) and ωe(t) play a same influence on
the output of (3.1), [15]. Thus, the system (3.1) with (3.2) is equivalent to{

ẋ = Ax +B[τ + ωe(t)],

y = Cx,
(3.3)

if we just consider the response of system’s output. For the system (3.3), a state observer is designed
to be

˙̂x = Ax̂ +Bτf + L[y − Cx̂], (3.4)

where τf = τ +ωe(t) and L is the observer gain. Since (C,A) is observable, (A>, C>) is controllable.
So, the Riccati equation

PA> + AP − PC>R−1CP + ρQ = 0, (3.5)

has a positive definite solution P = P> > 0 for the weight matrices Q > 0, R > 0 and a positive scalar

ρ > 0. It is easy to verify that the matrix A> − C>R−1CP is stable. Then,
(
A> − C>R−1CP

)>
=

A− PC>R−1C is also a stable matrix. Therefore, if we design the observer gain L to be

L = PC>R−1,

then the matrix A− LC is stable. This guarantees the stability of the state observer (3.4).
On the other hand, we design the feedback controller to be

τf = −R−1f BTS x̂, (3.6)

where Rf > 0 is a given weight matrix and S is the solution of Riccati equation

SA+ A>S − SBR−1f B>S = −Qf , (3.7)

with the weight matrix Qf > 0. Since the observer (3.4) is stable and A − BR−1f BTS is a stable
matrix, the controller (3.6) asymptotically stabilizes the system (3.3) at the origin.

Note that τf = τ + ωe(t) and τf has been designed in (3.6). In order to get the expression of the
controller τ , it needs to obtain the expression of ωe(t). We use the observer (3.4) to get an estimation
for ωe(t) now. Let ∆x = x− x̂. Substituting x = ∆x + x̂ into (3.3) yields

˙̂x = Ax̂ +B [τ + ω̂e(t)] , (3.8)

where
ω̂e(t) = ωe(t)−∆ω, ∆ẋ = A∆x +B∆ω. (3.9)

Combining (3.4) and (3.8) gives

B [τ + ω̂e(t)] = Bτf + L[y − Cx̂]. (3.10)

From (3.10), we get
ω̂e(t) = B>L[y − Cx̂]− τ + τf .

Note that the expressions of (3.3) and (3.8) are analogous and x̂ is the observer state of x. It is
necessary to take ω̂e(t) as the estimation of ωe(t). In order to guarantee the accuracy of estimation,
we use the following low-pass filter to select the frequency band for estimation

F (s) =
1

Ts+ 1
, (3.11)
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where T > 0 is a constant. Let the filtered estimation be ω̃e(t). Since the state observer (3.4) is
stable, we obtain that ∆x = x − x̂ approaches to zero as t → ∞. It follows from (3.9) that ω̃e(t)
asymptotically converges to ωe(t).

Remark 3.1. Since the controller τf designed in (3.6) asymptotically stabilizes all state variables of
(3.3) at zero, the output of (3.3) converges to zero driven by this controller. From the definition of
equivalent input disturbance, we get that the controller τ = τf − ω̃e(t) makes y in (3.2) converge to
zero, i.e., x1 → 0 and x3 → 0. It follows from the first and the third equations of (2.6) that x2 → 0
and x4 → 0. Thus, the stabilization control objective of Furuta pendulum is realized.

Remark 3.2. From (2.7), we note that the measurement of the velocity q̇ is needed for the expression
of the controller F . But we do not measure q̇ in this paper. To solve this problem, the state variables
of observer (3.4) is used to construct a substitution variable for q̇ due to the fact that the observer
(3.4) is stable. Based on (2.8), we give the expression of substitution variable as

q̇1 =
x̂2 + α2x̂4 cosx1

α1

, q̇2 = x̂4.

Table 1: Mechanical parameters of Furuta pendulum.

m1 [kg] m2 [kg] L1 [m] L2 [m]

0.098 0.080 0.215 0.150

r1 [m] r2 [m] J1 [kg ·m2] J2 [kg ·m2]

0.148 0.100 2.619× 10−3 3.127× 10−2

4. Numerical example

In this section, a numerical example is presented in order to demonstrate the effectiveness of our
proposed theoretical results.

The physical parameters of Furuta pendulum used in simulations are shown in Table 1. These
parameters come from a Furuta pendulum device presented in [7]. In addition, the control design
parameters in (3.5), (3.7), and (3.11) were chosen to be

Q = I4, R = 50I2, ρ = 106, Qf = 1000I4, Rf = 1, T = 0.1,

where In is an n× n identity matrix. By using the MATLAB functions of lqr, we get

L =

[
418.4331 258.3406 0.0017 0.5591
0.0017 −0.5591 259.1970 258.1983

]T
.

We chose the initial condition of Furuta pendulum to be

[q1, q2, q̇1, q̇2]
> = [0, π, 1, 0]> . (4.1)

The simulation results of q, q̇ and F with (4.1) are shown in Fig. 2. The results show that Furuta
pendulum is quickly stabilized at the origin. The stabilization time is less than 10s and the maximal
value of input is less than 15 Nm. These demonstrate the validity of our proposed control strategy.
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Figure 2: Time responses of qi(t), q̇i(t) (i = 1, 2) and F (t).

5. Conclusions

This paper develops a new control method of globally stabilizing underactuated Furuta pendulum.
This new method only requires the angle position measurements to design the stabilizing controller.
The procedure of designing controller consists of three successive steps. First, the state space model
of Furuta pendulum is given, which is an affine nonlinear system. And then, the nonlinear system
is linearized around the origin and the nonlinear higher order term is taken to be the fictitious
disturbance of system. After that, we use an idea of equivalent input disturbance to design a global
stabilizing controller for the nonlinear system. The simulation results demonstrate the effectiveness
of our proposed control strategy.
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