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Abstract

This paper introduces the notions of partially equi-integral stability and partially equi-integral
φ0-stability for two differential systems, and establishes some criteria on stability relative to the x-
component by using the cone-valued Lyapunov functions and the comparison technique. An example
is also given to illustrate our main results. c©2016 All rights reserved.
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1. Introduction

In this paper, we discuss the partially equi-integral stability and partially equi-integral φ0-stability
relative to the x-component for two differential systems{

x′= F (t, x, y), x(t0) = x0,
y′ = H(t, x, y), y(t0) = y0,

(1.1)

and the perturbed system {
x′= F (t, x, y) + h1(t, x, y), x(t0) = x0,
y′ = H(t, x, y) + h2(t, x, y), y(t0) = y0,

(1.2)
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where F, h1 ∈ C[R+ × Rn × Rm, Rn], H, h2 ∈ C[R+ × Rn × Rm, Rm], F (t, 0, 0) = h1(t, 0, 0) = 0,
H(t, 0, 0) = h2(t, 0, 0) = 0, t ∈ R+ = [0,+∞), Rn and Rm are n-dimensional and m-dimensional real
Euclidean spaces, respectively, with any convenient norm ‖ · ‖ and scalar product (, ).

It is well-known that the stability of system is one the most important property which must be
considered in system analysis and control system design. Owing to its complicated structure and
many other factors, it is very difficult to analyze its stable property. With the development of science
and technology, various notions of system stability were proposed based on Lyapunov stability theory.
In many actual problems, people are only interested in part state variables of systems, or because
of the technical difficulty, other state variables of the systems cannot be controlled or measured,
this will oblige people to study the partial stability property of system. Thus, the study of partial
stability for systems has its theoretical importance and practical values. Up till now, there are some
results on the partial stability for various systems. For example, Lakshmikantham and Leela [7]
discussed the partial stability of ordinary differential equations. El-Sheikh et al. [2] justified the
partial stability of nonlinear differential systems. Ignatyev [6] studied the partial equi-asymptotical
stability of functional differential equations.

As another development, there has been rapid development in the integral stability theory re-
cently. Soliman and Abd Alla [9] gave the integral stability criteria of nonlinear differential systems,
Hristova and Russinov [5] investigated the φ0-integral stability in terms of two measures for differen-
tial equations, Hristova [3, 4] obtained the integral stability in terms of two measures for impulsive
differential equations with “supremum” and impulsive functional differential equations, respectively.
The main purpose of this paper is to discuss the notions of partially integral stability of two dif-
ferential systems, and extend the notions to the so-called partially integral φ0-stability relative to
the x-component by employing the cone-valued Lyapunov functions that is used in [1, 2, 8] and the
comparison technique. Finally, we give an example to illustrate our main results.

2. Partially integral stability

In this section, we extend partial stability to partially integral stability relative to the x-compon-
ent. Firstly, we give the following class of functions and definitions:

K = {a∈C[[0, ρ], R+] : a(0) = 0, and a(r) is strictly monotone increasing in r, ρ > 0 is a constant}.

We say that function V (t, x, y) belongs to the class V if V ∈ C[R+ × Rn × Rm, R+], is locally
Lipschitzian in x and y. Meanwhile, we define the upper right-hand derivative of V (t, x, y) by

D+V (t, x, y) = lim sup
h→0+

1

h
[V (t+ h, x+ hF (t, x, y), y + hH(t, x, y))− V (t, x, y)].

Consider the comparison equation

u′ = g(t, u), u(t0) = u0 ≥ 0, t0 ≥ 0, (2.1)

and its perturbed equation

u′ = g(t, u) + p(t), u(t0) = u0 ≥ 0, t0 ≥ 0, (2.2)

where g ∈ C[R+ ×R+, R], p ∈ C[R+, R+], g(t, 0) = 0.

Definition 2.1. The zero solution of (1.1) is said to be partially equi-integral stable relative to the
x-component, if for α ≥ 0, t0 ∈ R+, there exists a positive function β(t0, α) which is continuous in t0
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for α, β ∈ K such that for every solution x(t, t0, x0, y0) of the perturbed system (1.2), the inequality
‖x(t, t0, x0, y0)‖ < β, t ≥ t0 holds, provided that ‖x0‖+ ‖y0‖ ≤ α, and∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x, y)‖+ ‖h2(s, x, y)‖}ds ≤ α, T > 0.

Definition 2.2. The zero solution of (1.1) is said to be partially uniformly-integral stable relative
to the x-component, if Definition 2.1 is satisfied, where β is independent of t0.

Definition 2.3. The zero solution of (1.1) is said to be partially equi-asymptotically integral stable
relative to the x-component, if Definition 2.1 holds, and for every ε > 0, α ≥ 0 and t0 ∈ R+, there
exist positive numbers T = T (t0, α, ε) and γ = γ(t0, α, ε) such that for every solution x(t, t0, x0, y0)
of the perturbed system (1.2), the inequality ‖x(t, t0, x0, y0)‖ < ε, t ≥ t0 + T holds, provided that
‖x0‖+ ‖y0‖ ≤ α, and∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x, y)‖+ ‖h2(s, x, y)‖}ds ≤ γ, T > 0.

Definition 2.4. The zero solution of (1.1) is said to be partially uniformly-asymptotically integral
stable relative to the x-component, if Definition 2.3 is satisfied, where T, γ is independent of t0.

Theorem 2.5. Assume that there exists a function V ∈ V, V (t, 0, 0) = 0, satisfying:

(PS1) a(‖x‖) ≤ V (t, x, y), a ∈ K;

(PS2) D+V (t, x, y) ≤ g(t, V (t, x, y)).

If the zero solution of (2.1) is equi-integral stable, then the zero solution of (1.1) is partially equi-
integral stable relative to the x-component.

Proof. Since the zero solution of (2.1) is equi-integral stable, for α ≥ 0, there exists a positive
function β = β(t0, α) which is continuous in t0 for α, β ∈ K such that

u0 ≤ α,

∫ t0+T

t0

p(s)ds ≤ α, T > 0,

implies u(t, t0, u0) < a(β), where u(t, t0, u0) is an arbitrary solution of (2.2).
Setting ‖h1(t, x, y)‖ = M1p(t), ‖h2(t, x, y)‖ = M2p(t), in which M1,M2 > 0 are constants, then∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x, y)‖+ ‖h2(s, x, y)‖}ds ≤ (M1 +M2)α.

Since V (t, 0, 0) = 0 and the function V (t, x, y) is continuous, there exists a δ = δ(t0, ε), such that

V (t0, x0, y0) < α,whenever ‖x0‖+ ‖y0‖ ≤ δ.

By choosing u0 = V (t0, x0, y0) and noting condition (PS2), we can apply Theorem 3.1.1 of [7] to
obtain

V (t, x, y) ≤ u∗(t, t0, u0), t ≥ t0, (2.3)

where u∗(t, t0, u0) is the maximal solution of (2.2).
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From ‖x0‖+ ‖y0‖ ≤ δ, we can obtain

V (t, x, y) ≤ u∗(t, t0, u0) < a(β), (2.4)

thus from (2.4) and the condition (PS1), we obtain ‖x0‖ + ‖y0‖ ≤ δ implies a(‖x‖) ≤ V (t, x, y) <
a(β), t ≥ t0.

Furthermore, by choosing α∗ = min{δ, (M1 +M2)α}, then

‖x0‖+ ‖y0‖ ≤ α∗,

∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x, y)‖+ ‖h2(s, x, y)‖}ds ≤ α∗,

implies ‖x‖ < β, t ≥ t0, where x(t, t0, u0) is any solution of (1.2). The proof is therefore complete.

Theorem 2.6. Let the conditions of Theorem 2.5 be satisfied except the conditions (PS1), is replaced
by

(PS3) a(‖x‖) ≤ V (t, x, y) ≤ b(‖x‖+ ‖y‖), a, b ∈ K.

If the solution of (2.1) is uniformly-integral stable, then the zero solution of (1.1) is partially
uniformly-integral stable relative to the x-component.

Proof. Since the zero solution of (2.1) is uniformly-integral stable, then, for α ≥ 0, β(α) > 0 are
independent of t0, and α, β ∈ K such that

u0 ≤ α,

∫ t0+T

t0

p(s)ds ≤ α, T > 0,

implies u(t, t0, u0) < a(β), a ∈ K, where u(t, t0, u0) is an arbitrary solution of (2.2).
Similar to the above arguments in Theorem 2.5, by choosing ‖h1(t, x, y)‖ = M1p(t), ‖h2(t, x, y)‖ =

M2p(t), in which M1,M2 > 0 are constants, we obtain∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x, y)‖+ ‖h2(s, x, y)‖}ds ≤ (M1 +M2)α.

By setting u0 = b(‖x0‖+ ‖y0‖) and by (PS3), we get

V (t0, x0, y0) ≤ b(‖x0‖+ ‖y0‖) = u0.

Now, by using (PS2), and applying Theorem 3.1.1 of [7], we obtain the inequality (2.3). Mean-
while, we choose α1 > 0 such that b(α1) = α. Then the inequalities

‖x0‖+ ‖y0‖ ≤ α1 and b(‖x0‖+ ‖y0‖) ≤ α,

hold together. Therefore, by (PS3) and (2.3) we get

a(‖x‖) ≤ V (t, x, y) ≤ u∗(t, t0, u0) < a(β).

Thus ‖x0‖+ ‖y0‖ ≤ α1 implies a(‖x‖) ≤ V (t, x, y) < a(β), t ≥ t0.
Set α∗ = min{α1, (M1 +M2)α}, then

‖x0‖+ ‖y0‖ ≤ α∗,

∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x, y)‖+ ‖h2(s, x, y)‖}ds ≤ α∗

implies ‖x‖ < β, t ≥ t0, where x(t, t0, u0) is any solution of (1.2). The proof is therefore complete.
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Theorem 2.7. Let the hypotheses of Theorem 2.5 be satisfied. If the zero solution of (2.1) is equi-
asymptotically integral stable, then the zero solution of (1.1) is partially equi-asymptotically integral
stable relative to the x-component.

Proof. Since the zero solution of (2.1) is equi-asymptotically integral stable, there exist α ≥ 0,
positive numbers T = T (t0, α, ε) and γ1 = γ1(t0, α, ε) such that

u0 ≤ α,

∫ t0+T

t0

p(s)ds ≤ γ1, T > 0,

implies u(t, t0, u0) < a(ε), t ≥ t0 + T , where u(t, t0, u0) is any solution of (2.2).
Set ‖h1(t, x, y)‖ = M1p(t), ‖h2(t, x, y)‖ = M2p(t), in which M1,M2 > 0 are constants. Similar to

the arguments in Theorem 2.5, we can obtain

V (t, x, y) ≤ u∗(t, t0, u0) < a(ε),

where u∗(t, t0, u0) is the maximal solution of (2.2).
Next, we show that ‖x‖ < ε whenever ‖x0‖+ ‖y0‖ ≤ δ, t ≥ t0 + T . Suppose that this is not true,

then there exists a sequence {tk}, tk ≥ t0 + T , and tk → ∞ as k → ∞, such that ‖x0‖ + ‖y0‖ ≤ δ
implies ‖x‖ ≥ ε. Then we get the following contradiction:

a(ε) = a(‖x(tk)‖) ≤ V (tk, x(tk), y(tk)) < a(ε).

Hence ‖x0‖+ ‖y0‖ ≤ δ implies ‖x‖ < ε, t ≥ t0 + T . Furthermore, we have

‖x0‖+ ‖y0‖ ≤ δ,

∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x, y)‖+ ‖h2(s, x, y)‖}ds ≤ γ,

which implies ‖x‖ < ε, t ≥ t0 + T , where x(t, t0, u0) is any solution of (1.2). The proof is therefore
complete.

3. Partially integral φ0-stability

In this section, we extend the partial stability to the partially equi-integral φ0-stable relative to
the x-component. To obtain the main results, we give the following definitions.

Definition 3.1. A proper subset K1 of Rn is called a cone if

(i) λK1 ⊆ K1, λ ≥ 0;

(ii) K1 +K1 ⊆ K;

(iii) K1 = K1;

(iv) K0
1 6= ∅;

(v) K1 ∩ (−K1) = {0};

where K1, K
0
1 and ∂K1 denote the closure, interior and boundary of K1, respectively.

Definition 3.2. The set K∗1 = {φ ∈ Rn : (φ, x) ≥ 0 for all x ∈ K1} is called the adjoint cone if it
satisfies the properties (i)-(v).

x ∈ ∂K1 if (φ, x) = 0, for some φ ∈ K∗0 , K0 = K1\{0}.
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Definition 3.3. A function g : D → Rn, D ⊂ Rn is called quasi-monotone relative to the cone K1 if
x, y ∈ D and y−x ∈ ∂K1, then there exists φ0 ∈ K∗0 such that (φ0, y−x) = 0 and (φ0, g(y)−g(x)) ≥ 0.

Let K1 ⊂ Rn be a cone in Rn, K2 ⊂ Rm be a cone in Rm satisfying the properties (i)-(v) of
Definition 3.1, then it follows that K = K1

⋃
K2 ⊂ Rn

⋃
Rm is a cone in Rn

⋃
Rm.

Let K∗ = {φ ∈ Rn
⋃
Rm : (φ, x+y) ≥ 0 for x ∈ K1 ⊂ K, y ∈ K2 ⊂ K} and satisfies the properties

(i)-(v) of Definition 3.1, where (φ, x+y) ≤ ‖φ‖(‖x‖+‖y‖). For m > n and x = (x1, x2, · · · , xn), y =
(y1, y2, · · · , ym), thus

x+ y = (x1, x2, · · · , xn, 0, 0, · · · , 0) + (y1, y2, · · · , ym)

= (x1 + y1, x2 + y2, · · · , xn + yn, yn+1, yn+2, · · · , ym).

Definition 3.4. The zero solution of (1.1) is said to be partially equi-integral φ0-stable relative to
the x-component, if for every α > 0 and t0 ∈ R+, there exists a positive function β(t0, α) which
is continuous in t0 for α, β ∈ K such that for the maximal solution x∗(t, t0, x0, y0) of the perturbed
system (1.2), the inequality (φ0, x

∗(t, t0, x0, y0)) < β, t ≥ t0 holds, provided that (φ0, x0 + y0) ≤ α,
and ∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x∗, y∗)‖+ ‖h2(s, x∗, y∗)‖}ds ≤ α, T > 0.

Definition 3.5. The zero solution of (1.1) is said to be partially uniformly-integral φ0-stable relative
to the x-component, if Definition 3.4 is satisfied, where β is independent of t0.

Definition 3.6. The zero solution of (1.1) is said to be partially equi-asymptotically integral φ0-
stable relative to the x-component, if Definition 3.4 holds, and for every ε > 0, α ≥ 0 and t0 ∈ R+,
there exist positive numbers T = T (t0, α, ε) and γ = γ(t0, α, ε) such that for the maximal solution
x∗(t, t0, x0, y0) of the perturbed system (1.2) and φ0 ∈ K∗0 , the inequality (φ0, x

∗(t, t0, x0, y0)) < ε, t ≥
t0 + T holds, provided that (φ0, x0 + y0) ≤ α,∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x∗, y∗)‖+ ‖h2(s, x∗, y∗)‖}ds ≤ γ, T > 0.

Definition 3.7. The zero solution of (1.1) is said to be partially uniformly-asymptotically integral
φ0-stable relative to the x-component, if Definition 3.6 is satisfied, where T and γ are independent
of t0.

We will say that function V (t, x, y) belongs to the class W , if V ∈ C[R+ × Snρ × Smρ , K], Snρ =
{x ∈ Rn : ‖x‖ ≤ ρ}, Smρ = {y ∈ Rm : ‖y‖ ≤ ρ}, and V (t, x, y) is locally Lipschitzian in x and y.
Meanwhile, we define the upper right-hand derivative of V (t, x, y) by

D+V (t, x, y) = lim sup
h→0+

1

h
[V (t+ h, x+ hF (t, x, y), y + hH(t, x, y))− V (t, x, y)].

We can consider the comparison system

u′ = G(t, u), u(t0) = u0 ≥ 0, t0 ≥ 0. (3.1)

u′ = G(t, u) + P (t), u(t0) = u0 ≥ 0, t0 ≥ 0, (3.2)

where G ∈ C[R+ ×K1, R
n], P ∈ C[R+, R

n
+], G(t, 0) = 0.
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Theorem 3.8. Assume that there exists a function V ∈ W, V (t, 0, 0) = 0, satisfying

(PS4) a((φ0, x
∗)) ≤ (φ0, V (t, x, y)), a ∈ K;

(PS5) F (t, x, y) is quasi-monotone in x relative to K1;

(PS6) D+V (t, x, y) ≤ G(t, V (t, x, y)).

If the solution of (3.1) is equi-integral stable, then the zero solution of (1.1) is partially equi-integral
φ0-stable relative to the x-component.

Proof. Since the zero solution of (3.1) is equi-integral stable, for given α, β ∈ K such that

‖u0‖ ≤ α,

∫ t0+T

t0

‖p(s)‖ds ≤ α, T > 0,

implies ‖u(t, t0, u0)‖ < a1(β), a1 ∈ K, where u(t, t0, u0) is any solution of (3.2).
Set ‖h1(t, x∗, y∗)‖ = M1‖p(t)‖, ‖h2(t, x∗, y∗)‖ = M2‖p(t)‖, in which M1,M2 > 0 are constants,

then ∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x∗, y∗)‖+ ‖h2(s, x∗, y∗)‖}ds ≤ (M1 +M2)α.

Since V (t, 0, 0) = 0 and the function V (t, x, y) is continuous, then there exists a δ1 = δ1(t0, ε),
such that

‖V (t0, x0, y0)‖ < α, whenever ‖x0‖+ ‖y0‖ ≤ δ1.

By choosing u0 = V (t0, x0, y0) and condition (PS6), therefore we can apply Theorem 1.4.1 of [7]
to obtain

V (t, x, y) ≤ u∗(t, t0, u0), t ≥ t0, (3.3)

where u∗(t) is maximal solution of (3.2). Now for some φ0 ∈ K∗0 ,

(φ0, x0 + y0) ≤ ‖φ0‖(‖x0‖+ ‖y0‖) ≤ ‖φ0‖δ1 = δ,

implies
(φ0, V (t, x, y)) ≤ ‖φ0‖‖V (t, x, y)‖ ≤ ‖φ0‖‖u∗(t, t0, u0)‖ < ‖φ0‖a1(β) = a(β). (3.4)

Thus from (3.4) and the condition (PS4), we obtain (φ0, x0 + y0) ≤ δ implies a((φ0, x
∗)) ≤

(φ0, V (t, x, y)) < a(β), t ≥ t0. Set α∗ = min{δ, (M1 +M2)α}, then

(φ0, x0 + y0) ≤ α∗,

∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x∗, y∗)‖+ ‖h2(s, x∗, y∗)‖}ds ≤ α∗,

implies (φ0, x
∗) < β, t ≥ t0, where x∗(t, t0, u0) is the maximal solution of (1.2). The proof is therefore

complete.

Theorem 3.9. Let the conditions of Theorem 3.8 be satisfied except the conditions (PS4) is replaced
by

(PS7) a(‖x∗‖) ≤ (φ0, V (t, x, y)) ≤ b(‖x‖+ ‖y‖), a, b ∈ K, where φ0 ∈ K∗0 .

If the solution of (3.1) is equi-integralφ0-stable, then the zero solution of (1.1) is partially equi-integral
stable relative to the x-component.

Proof. Since the zero solution of (3.1) is equi-integral φ0-stable, for given α, β ∈ K such that

(φ0, u0) ≤ α,

∫ t0+T

t0

‖p(s)‖ds ≤ α, T > 0,

implies (φ0, u
∗(t, t0, u0)) < a(β), a ∈ K, where u∗(t, t0, u0) is the maximal solution of (3.2).
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Similar to the above arguments in Theorem 3.8, by choosing

‖h1(t, x∗, y∗)‖ = M1‖p(t)‖, ‖h2(t, x∗, y∗)‖ = M2‖p(t)‖,

in which M1,M2 > 0 are constants, thus∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x∗, y∗)‖+ ‖h2(s, x∗, y∗)‖}ds ≤ (M1 +M2)α.

Choose (φ0, u0) = b(‖x0‖+ ‖y0‖), then by (PS7), we get

(φ0, V (t0, x0, y0)) ≤ b(‖x0‖+ ‖y0‖) = (φ0, u0).

Thus V (t0, x0, y0) ≤ u0. Now, by using (PS6), and applying Theorem 1.4.1 of [7], we obtain the
inequality (3.3). Set α1 > 0 such that b(α1) = α, then the inequalities

‖x0‖+ ‖y0‖ ≤ α1 and b(‖x0‖+ ‖y0‖) ≤ α,

hold together. Therefore by (PS7) and (3.3), we get

a(‖x∗‖) ≤ (φ0, V (t, x, y)) ≤ (φ0, u
∗(t, t0, u0)) < a(β).

Thus ‖x0‖+ ‖y0‖ ≤ α1 implies ‖x∗‖ < β, t ≥ t0. Choose α∗ = min{α1, (M1 +M2)α}, then

‖x0‖+ ‖y0‖ ≤ α∗,

∫ t0+T

t0

sup
x∈Snβ , y∈S

m
β

{‖h1(s, x∗, y∗)‖+ ‖h2(s, x∗, y∗)‖}ds ≤ α∗,

implies ‖x∗‖ < β, t ≥ t0, where x∗(t, t0, u0) is the maximal solution of (1.2). The proof is therefore
complete.

4. Example

Consider the two differential systems{
x′ = y − x(x2 + y2), x(t0) = x0,

y′ = −x− y(x2 + y2), y(t0) = y0,
(4.1)

and the perturbed system {
x′ = y − x(x2 + y2) + e−t, x(t0) = x0,

y′ = −x− y(x2 + y2) + e−t, y(t0) = y0.

Let V (t, x, y) = 1
2
(x2 + y2), a(‖x‖) = 1

4
x2, b(‖x‖ + ‖y‖) = x2 + y2, then a(‖x‖) ≤ V (t, x, y) ≤

b(‖x‖+ ‖y‖), V (t, x, y) is locally Lipschitzian in x and y, and D+
(4.1)V ≤ 0.

Consider the comparison equation u′ = g(t, u) ≡ 0 and its perturbed equation u′ = 0+u0e
−t. We

can easily know that the zero solution of the differential equation u′ = g(t, u) = 0 is uniform-integral
stable. According to Theorem 2.6, the zero solution of (4.1) is partially uniformly-integral stable
relative to the x-component.
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