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Abstract
The present paper is about the inverse nodal problem for Sturm-Liouville problem with eigenparameter in the boundary

condition using the conformable derivative approach. We defined a function f(µ) generally in the boundary condition and we
found the zeros of the eigenfunctions (nodal points) by nucleus function K(x, t), which is a derived transformation operator.
Then, we obtained the potential function by using the nodal parameters.
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1. Introduction

When we compare the usual fractional derivatives approaches with the conformable derivative, we
see that conformable derivative has some advantages, for example, some properties related to calculus
and some theorems which are commonly used in classical derivatives, do not lose their functionality
in conformable derivatives. In addition, the conformable derivative can be more appropriately applied
to many models in physics, chemistry and engineering compared to the usual fractional derivatives ap-
proaches. Thus, it is possible to numerically solve the differential equations with conformable derivative
that we obtained from such models. This approach extended the derivative to the whole interval [0, 1]
and details on these can be found as [1] introduced conformable derivatives. Further, valuable work has
been done ion the area of fractional calculus including history, new results, new operators and appli-
cations in diverse fields of science and technology, for which we refer some literature as [5–8, 14, 17–
19, 24, 25, 29, 32, 33, 35, 36].

In Sturm-Liouville theory, the solution of the inverse problem means finding the coefficients of the
equation and the constants in the boundary conditions using spectral parameters. These spectral param-
eters are; eigenvalues, eigenfunctions, norming constants, and also nodal points can be considered. By
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changing these parameters, the problem can be named differently, for example, if the problem is treated
with eigenvalues the inverse eigenvalue problem occurs and if its with the nodal points the inverse nodal
problem arises. However there are many studies on fractional Sturm-Liouville Problem (SLP) and in-
verse SLP as discussed in [2, 4, 11, 16, 20, 23, 28, 30, 31, 34] and the inverse nodal problem can be found
in [3, 9, 10, 12, 13, 15, 21, 22, 26, 27], it seems that these results are not enough as such many differ-
ent researches are continuously being carried out in this field. Some authors introduced a formula for
the potential function in inverse nodal problem as in [3]. The authors in [31] treated the inverse eigen-
value problem of the SLP using conformable derivative approach with eigenparameter in the boundary
condition and here in this work we treated the same problem under the same derivative approach and
developed the inverse nodal problem.

2. Some basic terms

The following definitions and theorems can be found in [1, 26].

Definition 2.1. The α order conformable derivative of any g : [0,∞)→ R is defined as

Dαxg(x) = lim
e→0

g(x+ ex1−α) − g(x))

e

for all x > 0, α ∈ (0, 1].

Definition 2.2. For a function g, the conformable integral of g of order α is given as

Iαg(x) =

∫x
0
g(t)dαt =

∫x
0
tα−1g(t)dt

for all x > 0.

Lemma 2.3. If g is differentiable, then for x > a, Dαx Iαg(x) = g(x) − g(a).

Theorem 2.4. Let g,h are two differentiable functions. Then∫b
a

g(x)Dαx (h(x))dαx = gh|ba −

∫b
a

h(x)Dαx (g(x))dαx.

Lemma 2.5. The α-Leibniz integral rule gives

Dαx

[∫b(x)
a(x)

g(x, t)dαt

]
= Dαxb(x)g(x,b(x))b(x)α−1 −Dαxa(x)g(x,a(x))a(x)α−1 +

∫b
a

Dαx (g(x, t))dαt

for a(x) 6 t 6 b(x) while a(x) and b(x) are both α-differentiable for x0 6 x 6 x1.

Let us consider the conformable SLP Lα(q, f) from [31],

−DαxD
α
xy+ q(x)y = µy (2.1)

with
Dαxy(0) = 0, Dαxy(π) + f(µ)y(π) = 0, (2.2)

where Dαx defines the conformable derivative of order α, 0 < α 6 1, q is a real valued continuous function
and

f(µ) = a1
√
µ+ a2

√
µ

2 + · · ·+ ar
√
µ

r, ai ∈ R,ar 6= 0, r ∈ Z+.
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Let S(x,µ) be solution of (2.1) under the condition y(0) = 1. Then, S(x,µ) can be expressed as

S(x,µ) = cos
(√

µ

α
xα
)
+

∫x
0
K(x, t) cos

(√
µ

α
tα
)
dαt. (2.3)

The kernel K(x, t) is solution of

Dαx (D
α
xK(x, t)) − q(x)K(x, t) = Dαt (D

α
t K(x, t)), (2.4)

K(x, x) =
∫x

0

1
1 + hα−1q(h)dαh.

Conversely, if K(x, t) is a solution of (2.4), then (2.3) satisfies (2.1) under the condition y(0) = 1. This is
known as transformation operator in the Sturm-Liouville theory. It should be noted that the classical case
of this problem was considered by the authors of [11].

It is well known that µ is an eigenvalue of the problem (2.1) under (2.2) if and only if

Wα(µ) = D
α
xS(π,µ) + f(µ)S(π,µ) = 0. (2.5)

Then from [31] and by (2.5), Wα(µ) can be written as

Wα(µ) = −
√
µ sin

(√
µ

α
πα
)
+K(π,π) cos

(√
µ

α
πα
)

+

∫π
0
DαxK(π, t) cos

(√
µ

α
πα
)
dαt+ f(µ) cos

(√
µ

α
πα
)

+
f(µ)
√
µ
K(π,π) sin

(√
µ

α
πα
)
−
f(µ)
√
µ

∫π
0
Dαt K(π,π) sin

(√
µ

α
tα
)
dαt = 0.

3. The main results

In this part, we will give the nodal points, nodal lengths and the reconstruction of the potential with
proof for each. The following lemma gives us the asymptotic form of the eigenvalues for the problem (2.1)
in addition eigenvalues are roots of the equation Wα(µ) = 0. It is clear that this function just depends on
µ and α not x.

Let {µn}n>0 be the spectrum of (2.1) under (2.2) and y(x,µn) be the eigenfunctions subject to the
eigenvalues. Obviously from Oscillation theorem, y(x,µn) have exactly n roots which lie in (0,π). Further,
define

Yα =

{
ynj =

(xnj )
α

α
, xnj ∈ Xα

}
,n > 0,

and j = 1, 2, . . . ,n. Besides, Xα =
{
xnj : n ∈N

}
denotes a set which is consisting of the nodal set of (2.1)

under (2.2). That is , y(xnj ,µn) = 0. In addition, representing jth nodal domain of the nth element by

Inαj =
[
ynj ,ynj+1

]
. Also, if lnj = ynj+1 − y

n
j be the nodal length of the jth domain. Another mapping is

needed need to describe which will play main role in solving the inverse nodal problem jn(y) for being
the largest index j, such that 0 6 ynj 6 y. Then, j = jn(y) if and only if y ∈

[
ynj ,ynj+1

)
.

The authors of [11] obtained the classical asymptotic form of the eigenvalues of this problem and
below are the asymptotic form of the eigenvalues using the conformable derivative.

Lemma 3.1. For r = 1, then the eigenvalues {µn} has the asymptotic form as n→∞,

√
µn =

αn

πα−1 +
α arctana1

πα
+

α

παn

∫π
0

q(h)

(1 + hα−1)
dαh+O

(
1
n2

)
,
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for r = 2,
√
µn =

αn

πα−1 +
α

2πα−1 +
α

πα(n+ 1
2)

[∫π
0

q(h)

(1 + hα−1)
dαh−

1
a2

]
+O

(
1
n2

)
,

for r > 3,
√
µn =

αn

πα−1 +
α

2πα−1 +
α

πα(n+ 1
2)

[∫π
0

q(h)

(1 + hα−1)
dαh

]
+O

(
1
n2

)
.

Theorem 3.2. The nodal points of the problem (2.1) under (2.2) provide the asymptotic form as n→∞,
for r = 1

ynj =

(
j−

1
2

)
πα

αn
+

(
j−

1
2

)
πα−1 arctana1

αn2 +
π2α−2

α2n2 K(y
n
j ,ynj ) +O

(
1
n3

)
,

and for r > 2

ynj =

(
j−

1
2

)(
1 +

1
2n

)
πα

αn
+

(
1 +

1
2n

)2
π2α−2

α2n2 K(y
n
j ,ynj ) +O

(
1
n3

)
.

Proof. Considering the solution of (2.1) under (2.2),

S(x,µ) = cos
(
s
xα

α

)
+

∫x
0
K(x, t) cos

(
s
tα

α

)
dαt

or

S(x,µ) = cos
(
s
xα

α

)
+
K(x, x)
s

sin
(
s
tα

α

)
+O

(
1
s

)
,

where s =
√
µ, then by definition of nodal points, it yields

S(x,µ) = cos
(
s
xα

α

)
+
K(x, x)
s

sin
(
s
tα

α

)
+O

(
1
s

)
= 0,

cot
(
s
xα

α

)
= −

K(x, x)
s

+O

(
1
s

)
,(

s
xα

α

)
= arccot

[
−
K(x, x)
s

+O

(
1
s

)]
,

and using Taylor’s expansion of arccot(x) near to zero we have

ynj =

(
j− 1

2

)
π

sn
+
K(ynj ,ynj )

s2
n

+O

(
1
s2
n

)
. (3.1)

If r = 1,

sn =
αn

πα−1 +
α arctana1

πα
+O

(
1
n2

)
,

1
sn

=
πα−1

αn
+

arctana1

αn2 πα−2 +O

(
1
n3

)
, (3.2)

and also
1
s2
n

=
π2α−2

α2n2 +O(
1
n3 ). (3.3)

Then inserting (3.2) and (3.3) in (3.1), gives the first case. For r > 2,

sn =
αn

πα−1 +
α

2πα−1 +O

(
1
n

)
,

1
sn

=
πα−1

αn
+
πα−1

2αn2 +O

(
1
n3

)
=
πα−1

αn

(
1 +

1
2n

)
+O

(
1
n3

)
. (3.4)
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This implies that
1
s2
n

=
π2α−2

α2n2

(
1 +

1
2n

)2

+O

(
1
n3

)
. (3.5)

Then using (3.4) and (3.5) in (3.1), we have

ynj = (j−
1
2
)

(
1 +

1
2n

)
πα

αn
+

(
1 +

1
2n

)2
π2α−2

α2n2 K(y
n
j ,ynj ) +O

(
1
n3

)
,

which completes the proofs.

Theorem 3.3. The nodal lengths of the problem (2.1) under (2.2) are

lnj =
πα

nα
+
πα−1 arctana1

αn2 +
π2α−2

α2n2

[∫ynj+1

ynj

q(h)

(1 + hα−1)
dαh

]
+O

(
1
n3

)
for r = 1, and for r > 2,

lnj =

(
1 +

1
2n

)
πα

nα
+

(
1 +

1
2n

)2
π2α−2

α2n2

[∫ynj+1

ynj

q(h)

(1 + hα−1)
dαh

]
+O

(
1
n2

)
.

Proof. By the definition of the nodal lengths, lnj = ynj+1 − y
n
j , the proofs for r = 1 and r > 2 can be easily

obtained, respectively.

3.1. Reconstruction of the potential
Besides calculating the spectral parameters in two cases so far, we will give the potential function for

the two cases. Formulas for potential function q with respect to two different cases of eigenvalues can be
given in two cases, r = 1, and r > 2, as follows.

Theorem 3.4. The reconstruction of the potential of the problem (2.1) under (2.2) for q ∈ C[0,π] is, for r = 1,

q(x) = (1 + xα−1) lim
n→∞ s2

n

(
snl

n
j

π
− 1
)

,

and for r > 2,

q(x) = (1 + xα−1) lim
n→∞ s

3
n

π

(
1 +

1
2n

)
.

Proof. However we study conformable problem, the proof will be similar with the classical case. By
definition of nodal lengths, we have

(
lnj − π

(
πα−1

nα
+
πα−2 arctana1

αn2

))
α2n2

π2α−2 =

∫ynj+1

ynj

q(h)

(1 + hα−1)
dαh+O

(
1
n3

)
.

Then, from (3.2) and (3.3) we have(
lnj −

π

sn

)
s2
n =

∫ynj+1

ynj

q(h)

(1 + hα−1)
dαh+O

(
1
n3

)
,

that is (
snl

n
j

π
− 1
)

=
1
snπ

[∫ynj+1

ynj

q(h)

(1 + hα−1)
dαh

]
+O

(
1
n

)
.
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By mean value theorem for the integrals there is a z ∈ (ynj ,ynj+1) such that(
snl

n
j

π
− 1
)

=
lnj

snπ

q(z)

(1 + zα−1)
+O

(
1
n

)
.

From the fact that, as n→∞, lnj →
π
sn

, we obtain

q(x) = (1 + xα−1) lim
n→∞ s2

n

(
snl

n
j

π
− 1
)

,

and for the proof for r > 2, from (3.1), (3.4), and (3.5), we obtain(
1 +

1
2n

)2

lnj = π

(
1 +

1
2n

)
1
sn

+
1
s2
n

[∫ynj+1

ynj

q(h)

(1 + hα−1)
dαh

]
+O

(
1
n5

)
,

which becomes (
1 +

1
2n

)
lnj
s3
n

π
=

[∫ynj+1

ynj

q(h)

(1 + hα−1)
dαh

]
+O

(
1
n5

)
,

also, by mean value theorem as in the above case, we have(
1 +

1
2n

)
lnj
s3
n

π
= lnj

q(z)

(1 + zα−1)
+O

(
1
n5

)
,

and by taking limit as n→∞ we have

q(x) = (1 + xα−1) lim
n→∞ s

3
n

π

(
1 +

1
2n

)
.

The following function consists of fractional integral of q and nodal lengths. Note that this function
with classical derivative was given in [3]. Let us consider

Fn(x) =
2n2α2

π2α−2

[
nαlnαj

π
+

lnαj

2n2απ2

∫π
0
q(t)dαt− 1

]
. (3.6)

Following lemmas are to complete the proof of Theorem 3.4 and because of similarity with the classical
case, the proof is omitted.

Lemma 3.5. Suppose that the sequence gk ∈ C [0,π] converges to any function g in the space Lα1 . Then for any
ε > 0, with j = jn(y), ∥∥∥∥∥µnαπ

∫ynj+1

ynj

(gk(t) − g(t))dαt

∥∥∥∥∥
1

< ε.

Lemma 3.6. Assume that q ∈ Lα1 (0,π) and r = 1. Then, as n→∞,∥∥∥∥∥µnαπ
∫ynj+1

ynj

q(t)dαt− q(y)

∥∥∥∥∥
1

→ 0, j = jn(y).

Theorem 3.7. Fn(x) converges to the potential function q(x) in Lα1 .

Proof. Proof of the theorem is omitted.
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4. Conclusion

We have shown that generally, the inverse nodal problem is solvable for a SLP depending on con-
formable derivative and also containing the spectral parameter in boundary conditions. We also recon-
structed the potential function by using the spectral parameters. This study is significant in two respects.
First, the function we consider in the boundary condition is an nth degree polynomial. Thus, special cases
can be easily obtained. Secondly, the conformable derivative we have discussed here is more general than
the classical derivative. Eventually, it is possible to obtain some different results of spectral theory by
conformable derivative.
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