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Abstract
This work explores the use of state-feedback pinning control in the presence of time-varying delay to solve the synchro-

nization problem of uncertain nonlinear multi-agent systems (MASs). To begin, it is assumed that the agent’s communication
topology is a directed, static network. Second, the synchronization issue is transformed into the typical closed-loop system
stability issue by employing Laplacian matrix inequality (LMI). The primary goal of this study is to construct a state-feedback
pinning controller that yields a closed-loop system that is stable under all permissible uncertainty and impulsive cases. To
achieve this goal, we develop a new set of delay-dependent synchronization criteria for the closed-loop system by constructing
an appropriate Lyapunov functional and making use of Kronecker product features in conjunction with matrix inequality ap-
proaches. All that’s needed to construct the optimal state-feedback controller is a set of constraints in the form of linear matrix
inequalities, which can be solved with any number of powerful optimization methods. To further illustrate the practicality and
efficiency of the suggested control design system, a numerical example and associated simulations are provided.
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1. Introduction

Cooperative control has earned a lot of interest from scientists in the past few years for its wide
range of real-life applications in various fields, namely circuits, vehicle formulation, and mobile networks
[9, 11, 31]. Cooperative tracking (synchronization) and the cooperative regulator (consensus) two general
types of coordinated control of MASs. Distributed controllers are developed for every agent (node) such
that all agents subsequently converge to an unknown standard value. This value may be time-varying
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or a fixed constant and is usually a function of the initial states of the agents and the transmission
network topology. Consider a leader agent that serves as a command generator for the tracking problem,
generating the desired reference response while ignoring data from the follower agents.

In linear MASs, many necessary synchronization and consensus control results have been established.
According to the relative neighbors’ output signals and distributed observer-type protocols in [40], the
consensus of general linear MASs has been achieved. In [39], the agreement of heterogeneous linear MASs
under DoS attack subject to aperiodic sampled data had examined. The authors dealt in [13] network-
based practical set consensus of MASs subject to input saturation. Besides, distributed consensus control
for MASs with DoS has been investigated in [19].

Even though most of the real-world MASs contain nonlinearities innately and are more complex than
linear dynamics, these consensus control methods are constrained only to the linear multi-agent scenario.
As a result, synchronization control for nonlinear MASs has gained more attention from numerous aca-
demics [12, 18, 41] and has practical value. The authors in [36] have investigated fuzzy theory adaptive
finite-time consensus of high-order multi-agent under the dead zone. Synchronization analysis of MASs
with stochastic packet losses and external perturbations via a memory state-feedback controller have been
discussed in [33]. In addition, the authors derived in [32] the quasi-synchronization of heterogeneous dy-
namical networks under event-triggered impulsive controls.

It is well acclaimed in many applications that the effects of time delay should be addressed. For
the time delay, many noteworthy results arose in consensus control of linear MASs. For linear MASs,
the existing consensus control approaches for linear delayed MASs can not be applied directly to the
nonlinear case due to the mathematical analysis and complex dynamic involved under nonlinear MASs.
Only some results were available in consensus control for nonlinear MASs with time delays [8, 17, 23, 30]
so far. Synchronization of MASs with state time delays had yet to be addressed comprehensively, which
offers significant challenges. Channel noises may destroy.

Innumerable good properties of practical control systems. Impulsive noise is familiar, even though
channel disturbance may express itself in many forms. Throughout the information transmission process
of MASs connected by communications topologies, it is reasonable to consider the effects of impulse
perturbations.

The research on the dynamical properties of neural networks (NNs) has earned massive attention be-
cause of their potential real-life applications in numerous areas, such as signal, image processing, pattern
recognition, and combinatorial optimization [34, 35, 37]. Uncertain behaviors, including bifurcation, at-
tractors, and periodic oscillations, were exhibited by delayed NNs, as unique artificial dynamical systems.
A delayed chaotic neural system is an infinite system with infinitely large positive Lyapunov exponents
in general, which has a wide range of applications, including secure communication to increase security.
Also, examining numerous interacting delayed NNs might help us understand synchronized oscillation
events that occur in physics, nature, society, control systems, and other contexts see in [4, 28, 29].

Numerous coupled dynamic systems are modelable as chaotic nonlinear systems in several contexts,
including physics, nature, and society [22, 25, 26]. Therefore, there is significant research value in studying
chaotic systems and their synchronization. Additionally, in recent years, researchers in various domains,
including biological systems, chemical reactions, and secure communication, have paid a great deal of
attention to the master-slave synchronization of two chaotic systems [14–16, 24]. This shows that the
findings in this research have practical applications in expanding secure communications and chaotic
synchronization to MASs.

Because of its ease of implementation, the state-feedback pinning synchronization control problem
has received a lot of attention [1, 5, 38]. State-feedback control allows one agent in MASs to have its state
converge on a specific common form by leveraging its condition and the states of its neighbors. In practice,
obtaining the complete state information of MASs takes time and effort. Instead, measurement-based
control protocols like observer-based consensus control protocols have been developed. The feedback
gain is included in the synchronization protocol’s control input, implying that enough circumstances are
deduced for the systems to achieve their goals. On the other hand, the feedback gained should be tailored
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to meet the required criteria.
In the controller design, further examination of MASs in the presence of the time-varying delays,

under state-feedback pinning control is carried out. Derived from the aforementioned conversations,
investigations into MASs exhibit the subsequent constraints.

• Due to certain limitations in the applicability of current research, it is evident that further investiga-
tion is required regarding the comparison example of MASs with state-feedback pinning control.

• The prior research has not exhaustively explored the correlation between varying time delays, MASs
synchronization, and the design of state-feedback pinning control.

This work explores the use of state-feedback pinning control in the presence of time-varying delay to
solve the synchronization problem of uncertain nonlinear MASs. To begin, it is assumed that the agent’s
communication topology is a directed, static network. Second, the synchronization issue is transformed
into the typical closed-loop system stability issue by employing LMI. The primary goal of this study is to
construct a state-feedback pinning controller that yields a closed-loop system that is stable under all per-
missible uncertainty and impulsive cases. To achieve this goal, we develop a new set of delay-dependent
synchronization criteria for the closed-loop system by constructing an appropriate Lyapunov functional
and making use of Kronecker product features in conjunction with matrix inequality approaches. All
that’s needed to construct the optimal state-feedback controller is a set of constraints in the form of linear
matrix inequalities, which can be solved with any number of powerful optimization methods. To further
illustrate the practicality and efficiency of the suggested control design system, a numerical example and
associated simulations are provided.

This manuscript finds a class of impulsive MASs inspired by the prior discussion with time delay. The
main contribution to this chapter relates to the following aspects.

• First, exponential synchronization conditions of MASs with time delays and impulse effects are
investigated.

• By employing linear matrix inequality (LMI) and LF, it has been possible to study the exponen-
tial synchronization for MASs under time delays and impulse proposed. Compared to previous
publications [20], the MASs explored in this manuscript are more advanced.

• A pinning controller with satisfactory performance for achieving exponential synchronization has
been developed.

• The synchronization control scheme, which is ideal for MASs with unknown parameters, is con-
structed through a state-feedback pinning control strategy and the achievement of the rule.

• Finally, to avoid computational complexity in this study, we construct the LF based on Lyapunov
theory and graph theory, which is connected to the topology of the MASs and the LF.

Throughout the entire paper, we use the notations in Table 1.

Table 1: Notations.
Notation Description
Rn n-dimensional Euclidean space
Rm×n Set of all m×n real matrices
λmin(T)(λmax(T)) The minimal(maximal) eigenvalue of matrix T

‖.‖ The Euclidean norm
∗ Symmetric matrix
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2. Network model and preliminaries

Let G = (σ, ε,W) be an interconnection graph to describe the connection topology of N agents, each
of which is represented by a node in σ = {z1, z2, . . . , zN} and is connected to some other nodes by at least
one edge ε ⊆ σ× σ. If the edge (zi, zj) ∈ ε connecting node zi and node zj exists, zj is a neighbor of
zi. W = [aij]N×N is the adjacent weighted matrix, where the existence of the edge (zi, zj) implying aij
must be zero. Ni refers the group of neighbors of agent i corresponding to node z1. A path from node zj
towards node zi is of a sequence of edges (zi, zl1), (zl1 , zl2), . . . , (zlm , zj). When a directed path exists from
one arbitrary node to the other nodes, the directed topology is called linked. L = (lij)N×N is called the
Laplacian matrix and it is represented by lij = −aij, i 6= j; and lii =

∑N
j=1,j6=i lij (i, j = 1, 2, 3, . . . ,N).

Let us assume the follower system is described as follows:{
żi(t) = −Azi(t) +Bzi(t − r(t)) +Cĝ(zi(t)) +Dĝ(zi(t − r(t))) +Ki(t), t 6= tK,
∆zi(tK) = Jzi(t−K), t = tK, K ∈ Z+,

here, i = 1, 2, 3, . . . ,N; zi(t) ∈ Rn refers to state of ith agent; ĝ : Rn → Rn refers to nonlinear agent
function. Let A = diag{a1, . . . ,an},B,C, and D are known matrices of Rn×n. r(t) refers time delay
satisfies 0 6 r1 6 r(t) 6 r2, ṙ(t) 6 ι, and r = max{r1, r2}, where r1, r2, and ι are constant. Ki(t) denotes
control input, and J is a impulsive gain.

Now, we assume the leader system is represented by{
ż0(t) = −Az0(t) +Bz0(t − r(t)) +Cĝ(z0(t)) +Dĝ(z0(t − r(t))), t 6= tK,
∆z0(tK) = Jz0(t−K), t = tK, K ∈ Z+,

the leader state denote z0(t) ∈ Rn; ĝ : Rn → Rn refers to nonlinear agent function. Let$i(t) = zi(t)− z0(t),
we assume the error as:{

$̇i(t) = −A$i(t) +B$i(t − r(t)) +Cf($i(t)) +Df($i(t − r(t))) +Ki(t), t 6= tK,
∆$i(tK) = J$i(t−K), t = tK, K ∈ Z+,

(2.1)

here, f($i(t)) = ĝ(zi(t)) − ĝ(z0(t)), and J is a impulsive gain. The state-feedback pinning control design
is

Ki(t) = mi

{ N∑
j=1

aij[zj(t) − zi(t)] −ψi[zi(t) − z0(t)]
}

= mi

{
−

N∑
j=1

lij($j(t)) −ψi($j(t))
}

, i = 1, 2, . . . ,N, and j = 1, 2, . . . ,N,

(2.2)

the compact form is,

K(t) = −(L⊗M)$(t) − (<⊗M)$(t),

where, M = {m1,m2, . . . ,mN} is the control gain and < = {ψ1,ψ2, . . . ,ψN} is pinning matrix. The compact
representation of system (2.1) is{

$̇(t) = −(I⊗A)$(t) + (I⊗B)$(t − r(t)) + (I⊗C)f($(t)) + (I⊗D)f($(t − r(t))) +K(t), t 6= tK,
∆$(tK) = (I⊗ J)$(t−K ), t = tK, K ∈ Z+,

(2.3)

where $(t) = ($1,$2, . . . ,$N)T refers the error and K(t) = (K1,K2, . . . ,KN)T is the designed controller.
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Lemma 2.1 ([10]). Linear matrix inequality (LMI) is given as(
T11 T12

TT
12 T22

)
< 0,

where T11 = TT
11, T22 = TT

22, is equivalent to the following conditions:

1. T11 < 0, T22 − TT
12T−1

11 T12 < 0;
2. T22 < 0, T11 − T12T−1

22 TT
12 < 0.

Lemma 2.2 ([20]). Consider the non-negative function V(t), t ∈ [−r,∞), satisfies

V̇(t) 6 −µV(t) + ηṼ(t), t > t0,

where 0 6 η < µ, Ṽ(t) = sups∈[t−r,t] V(s), then, V(t) = Ṽ(t0)e
−ω(t−t0), t > t0, where, ω > 0 is the unique

solution of the equation ω = µ− ηeωr.

Lemma 2.3 ([21]). For any vectors x,y ∈ Rn, scalar ε > 0, and positive definite matrix Q ∈ Rnxn, the following
inequality holds:

2xTy 6 εxTQx+ ε−1yTQ−1y.

Definition 2.4. The MASs (2.1) is cooperative synchronization [7] if

lim
t→∞ ‖$i(t)‖ = lim

t→∞ ‖zi(t) − z0(t)‖ = 0, for all i = 0, 1, . . . ,N.

Assumption 2.5. Assume that ∃ constant k > 0 such that ∀x,y ∈ Rn, satisfying

‖ĝ(x) − ĝ(y)‖ 6 k‖x− y‖.

3. Main results

We will investigate exponential synchronization criteria for leader-follower problems for specific and
uncertain MASs with delay using Halanay’s inequality.

Theorem 3.1. Under Assumption 2.5, there exist positive constants γ̄1, γ̄2, γ̄3, γ̄4, and γ̄5, some constant 0 6 η <
µ and positive matrix T in order to attain following conditions:

Θ̄ =


ψ̄ (I⊗TB) (I⊗TC) (I⊗TD) (I⊗H1)
∗ −γ̄1 0 0 0
∗ ∗ −γ̄2 0 0
∗ ∗ ∗ −γ̄3 0
∗ ∗ ∗ ∗ −γ̄4

 < 0, (3.1)

Ω̄ =

[
χ̄ (I⊗H1)
∗ −γ̄5

]
< 0, (3.2)

where, ψ̄ = −2(I⊗TA) − 2(L⊗TM) − 2(<⊗TM) + µ
′
+ γ̄2k

2 − γ̄5 − 2(I⊗H1), χ̄ = γ̄1 + γ̄3k
2 + γ̄4 + 2(I⊗

H1) − η
′
. The error of MASs (2.3) can achieve exponential under time constant ω

2 , where ω ∈ (0, µ− η] is the
solution for the equation below

ω = µ− ηeωr.
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Proof. Design the Lyapunov function as:

V(t) = $T (t)(I⊗T)$(t). (3.3)

Depending on (3.3), we get

V̇(t) = 2$T (t)(I⊗T)$̇(t),

V̇(t) = 2$T (t)(I⊗T)[−(I⊗A)$(t) + (I⊗B)$(t − r(t)) + (I⊗C)f($(t))
+ (I⊗D)f($(t − r(t))) − (L⊗M)$(t) − (<⊗M)$(t)]

= −2$T (t)(I⊗TA)$(t) + 2$T (t)(I⊗TB)$(t − r(t)) + 2$T (t)(I⊗TC)f($(t))

+ 2$T (t)(I⊗TD)f($(t − r(t))) − 2$T (t)(L⊗TM)$(t) − 2$T (t)(<⊗TM)$(t).

(3.4)

In view of Lemma 2.3, we have

2$T (t)(I⊗TB)$(t − r(t)) 6
1
γ̄1
$T (t)(I⊗TBBTT)$(t) + γ̄1$

T (t − r(t))$(t − r(t)),

2$T (t)(I⊗TC)f($(t)) 6
1
γ̄2
$T (t)(I⊗TCCTT)$(t) + γ̄2f

T ($(t))f($(t))

6
1
γ̄2
$T (t)(I⊗TCCTT)$(t) + γ̄2k2$

T (t)$(t)),

2$T (t)(I⊗TD)f($(t − r(t))) 6
1
γ̄3
$T (t)(I⊗TDDTT)$(t) + γ̄3f

T ($(t − r(t)))f($(t − r(t)))

6
1
γ̄3
$T (t)(I⊗TDDTT)$(t) + γ̄3k3$

T (t − r(t))$(t − r(t))).

Then, for any matrix M1, it is straightforward that

0 = 2ξT (t)(I⊗M1)[$(t − r(t)) −$(t) +
∫ t

t−r(t)
$̇(s)ds], (3.5)

where, ξT (t) =
[
$T (t) $T (t − r(t))

]
. From Lemma 2.3, one obtains

2$T (t)(I⊗M1)$(t − r(t)) 6
1
γ̄4
$T (t)(I⊗M1M

T
1 )$(t) + γ̄4$

T (t − r(t))$(t − r(t)), (3.6)

2$T (t − r(t))(I⊗M1)$(t) 6
1
γ̄5
$T (t − r(t))(I⊗M1M

T
1 )$(t − r(t)) + γ̄5$

T (t)$(t). (3.7)

Combining equation (3.1), (3.2), and (3.4)-(3.7), we obtain

V̇(t) 6 −2$T (t)(I⊗TA)$(t) +
1
γ̄1
$T (t)(I⊗TBBTT)$(t) + γ̄1$

T (t − r(t))$(t − r(t))

+
1
γ̄2
$T (t)(I⊗TCCTT)$(t) + γ̄2k2$

T (t)$(t)) +
1
γ̄3
$T (t)(I⊗TDDTT)$(t)

+ γ̄3k3$
T (t − r(t))$(t − r(t))) +

1
γ̄4
$T (t)(I⊗M1M

T
1 )$(t) + γ̄4$

T (t − r(t))$(t − r(t))

−
1
γ̄5
$T (t − r(t))(I⊗M1M

T
1 )$(t − r(t)) − γ̄5$

T (t)$(t) − 2$T (t)(I⊗M1)$(t)

+ 2$T (t − r(t))(I⊗M1)$(t − r(t)) − 2$T (t)(L⊗TM)$(t) − 2$T (t)(<⊗TM)$(t),

V̇(t) 6 $T (t)[−2(I⊗TA) − 2(L⊗TM) + γ̄−1
1 (I⊗TBBTT) + γ̄−1

2 (I⊗TCCTT) + γ̄−1
3 (I⊗TDDTT)
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+ γ̄2k2 + γ̄
−1
4 (I⊗M1M

T
1 ) − γ̄5 − 2(I⊗M1) + µ

′
− 2(<⊗TM)]$(t)

+$T (t − τ(t))[γ̄1 + γ̄3k3 + γ̄4 − γ̄
−1
5 (I⊗M1M

T
1 ) + 2(I⊗M1) − η

′
]$(t − τ(t))

− µ
′
$T (t)$(t) + η

′
$T (t − r(t))$(t − r(t)),

V̇(t) 6 $T (t)Θ̄$(t) +$T (t − r(t))Ω̄$(t − r(t)) − µ
′
$T (t)$(t) + η

′
$T (t − r(t))$(t − r(t)),

V̇(t) 6 −µ
′
$T (t)$(t) + η

′
$T (t − r(t))$(t − r(t))

6 −
µ
′

λmax(T)
$T (t)$(t) +

η
′

λmin(T)
$T (t − r(t))$(t − r(t))

6 −µ$T (t)$(t) + η$T (t − r(t))$(t − r(t)) 6 −µV(t) + ηV(t − r(t)) 6 −µV(t) + ηṼ(t),

where, µ
′
= λmax(T)µ, η

′
= λmin(T)η, Ṽ(t) = sups∈[t−r,t] V(s), we get from Lemma 2.2 that V(t) 6

Ṽ(t0)e
−ω(t−t0), where ω ∈ (0, µ− η] is the solution of ω = µ− ηeωr. From V(t) = $T (I⊗T)$, we can

get

λmin(T)‖$(t)‖2 = λmin(T)$T$ 6 V(t), λmin(T)‖$(t)‖2 6 V(t), λmin(T)‖$(t)‖2 6 Ṽ(t0)e
−ω(t−t0)

‖$(t)‖2 6
Ṽ(t0)

λmin(T)
e−ω(t−t0), ‖$(t)‖ 6

√
Ṽ(t0)

λmin(T)
e

−ω
2 (t−t0),

when t = tK,

V($(tK)) −V($(t−K)) = $
T (tK)(I⊗T)$(tK) −$T (t−K)(I⊗T)$(t−K)

= $T (t−K)(I⊗ ĴTTĴ)$(t−K) −$T(t
−
K)(I⊗T)$(t−K)

= $T (t−K)((I⊗ ĴTTĴ) − (I⊗T))$(t−K) 6 0
V($(tK)) −V($(t−K)) 6 0,

V($(tK)) 6 V($(t−K)), K ∈ Z+.

As a consequence, the impulse effect of synchronization error is exponential.

Theorem ?? is used to acquire the control gain matrix for the pinning control scheme (2.2) to exponen-
tially synchronize the considered synchronization error system (2.3) with the help of Theorem 3.1.

Theorem 3.2. Under Assumption 2.5, there exist positive constant γ̄1, γ̄2, γ̄3, γ̄4, and γ̄5, some constant 0 6 η < µ
and positive matrix T in order to attain the conditions:

ˆ̄Θ =


ˆ̄ψ (I⊗ T̂B) (I⊗ T̂C) (I⊗ T̂D) (I⊗ Ĥ1)
∗ −γ̄1 0 0 0
∗ ∗ −γ̄2 0 0
∗ ∗ ∗ −γ̄3 0
∗ ∗ ∗ ∗ −γ̄4

 < 0, (3.8)

ˆ̄Ω =

[
ˆ̄χ (I⊗ Ĥ1)
∗ −γ̄5

]
< 0, (3.9)

where, ˆ̄ψ = −2(I⊗ T̂A) − 2(L⊗ T̂M) − 2(<⊗ T̂M) + µ
′
+ γ̄2k2 − γ̄5 − 2(I⊗ Ĥ1), ˆ̄χ = γ̄1 + γ̄3k2 + γ̄4 + 2(I⊗

Ĥ1) − η
′
. The error of MASs (2.3) can achieve exponential under time constant ω

2 , where ω ∈ (0, µ− η] is the
solution for the equation below

ω = µ− ηeωr,

and the gain matrix M is given by M = SQ−1.

Proof. Let T−1 = R, MQ = S, T̂j = QTQT . Then, pre and post multiplying diag{(I⊗ R), (I⊗ R)︸ ︷︷ ︸
2 times

} with the

LMIs (3.1) and (3.2), we can obtain the LMIs (3.8) and (3.9).
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3.1. Robust synchronization criteria
Let us assume the synchronization of uncertain MASs (UMASs) as:

$̇i(t) = −(A+∆A(t))$i(t) + (B+∆B(t))$i(t − r(t)) + (C+∆C(t))f($i(t))
+(D+∆D(t))f($i(t − r(t))) +Ki(t), t 6= tK,

∆$i(tK) = Ĵi$i(t−K), t = tK, K ∈ Z+.
(3.10)

Compact form of UMASs is
$̇(t) = −(I⊗ (A+∆A(t)))$(t) + (I⊗ (B+∆B(t)))$(t − r(t)) + (I⊗ (C+∆C(t)))f($(t))

+(I⊗ (D+∆D(t)))f($(t − r(t))) +K(t), t 6= tK,
∆$(tK) = (I⊗ Ĵ)$(t−K), t = tK, K ∈ Z+,

(3.11)

where $(t) = ($1,$2, . . . ,$N)T denotes the error vector.

Theorem 3.3. Under Assumption 2.5, there exist positive constant γ̄1, γ̄2, γ̄3, γ̄4, and γ̄5, some constant 0 6
η < µ and positive matrix T in order to attain the conditions:

Θ̄ =


ψ̄ (I⊗TB) (I⊗TC) (I⊗TD) (I⊗H1)
∗ −γ̄1 0 0 0
∗ ∗ −γ̄2 0 0
∗ ∗ ∗ −γ̄3 0
∗ ∗ ∗ ∗ −γ̄4

 < 0, (3.12)

Ω̄ =

[
χ̄ (I⊗H)1
∗ −γ̄5

]
< 0, (3.13)

where ψ̄ = −2(I⊗ T̂A) − 2(L⊗ T̂M) − 2(<⊗ T̂M) + (I⊗WT
1 W1) + (I⊗WT

3 W3) + µ
′
+ γ̄2k2 − γ̄5 − 2(I⊗

Ĥ1) + 4(I ⊗ T̂RRT T̂); χ̄ = γ̄1 + γ̄3k2 + (I ⊗WT
2 W2) + k2(I ⊗WT

4 W4) + γ̄4 + 2(I ⊗ Ĥ1) − η
′
. The error of

UMASs (3.11) can achieve exponential under time constant ω
2 , where ω ∈ (0, µ − η] is the solution for the

equation
ω = µ− ηeωr.

Proof. Design the Lyapunov function

V(t) = $T (t)(I⊗T)$(t). (3.14)

Depending on (3.14), we get

V̇(t) = 2$T (t)(I⊗T)$̇(t),

V̇(t) = 2$T (t)(I⊗T)[−(I⊗ (A+∆A(t)))$(t) + (I⊗ (B+∆B(t)))$(t − r(t)) + (I⊗ (C

+∆C(t)))f($(t)) + (I⊗ (D+∆D(t)))f($(t − r(t))) − (L⊗M)$(t) − (<⊗M)$(t)].

(3.15)

Replace ∆A(t),∆B(t),∆C(t),∆D(t) with RS(t)W1,RS(t)W2,RS(t)W3,RS(t)W4, respectively. Then, we ob-
tain

2$T (t)(I⊗T∆A(t))$(t) = 2$T (t)(I⊗TRS(t)W1)$(t) 6 $T (t)(I⊗ (TRRTT +WT
1 W1))$(t),

2$T (t)(I⊗T∆B(t))$(t − r(t)) = 2$T (t)(I⊗TRS(t)W2)$(t − r(t))

6 $T (t)(I⊗TRRTT)$(t) +$T (t − r(t))(I⊗WT
2 W2)$(t − r(t)),

2$T (t)(I⊗T∆C(t))f($(t)) = 2$T (t)(I⊗TRS(t)W3)f($(t)) (3.16)

6 $T (t)(I⊗TRRTT)$(t) + fT ($(t))(I⊗WT
3 W3)f($(t))
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6 $T (t)(I⊗TRRTT)$(t) + k2$
T (t)(I⊗WT

3 W3)$(t),

2$T (t)(I⊗T∆D(t))f($(t − r(t))) = 2$T (t)(I⊗TRS(t)W4)f($(t − r(t)))

6 $T (t)(I⊗TRRTT)$(t) + k2$
T (t − r(t))(I⊗WT

4 W4)$(t − r(t)).

As a consequence, the impulse effect of UMASs is exponentially synchronization by applying (3.15)-(3.16)
in (3.12) and (3.13).

Remark 3.4. The algorithm presented below outlines the process of constructing the control gain matrix
using the LMI condition as defined in Theorem 3.2.

Algorithm 1: Grid search algorithm
1: function LYAPUNOV FUNCTION (A,B,C,D, r1, r2).

where A, B, D, and D are system parameters with positive constants r1, r2, r ι, µ η.
2: if the matrix T, γ̄j, (j = 1, . . . , 6) > 0, any matrices M1, H1 exists

and for a given upper bound, LMIs (3.8) and (3.9) true then
3: Compute, the control gain matrix M = SQ−1

4: else
5: repeat with a superior upper limit
6: end if
7: N = 0 to End time
8: Input: In Examples, the system values are shown
9: for i = 1 to N do
10: Derive the system by R-K fourth order method
11: end for
12: end function

Remark 3.5. All of the findings mentioned above rely on the Lyapunov stability theory, in which the num-
ber of variables in the resulting LMIs is critical to consider. In all likelihood, the computing complexity
increases directly to the number of variables. On the other hand, double integral terms are introduced in
the constructed LF (3.3) to reduce conservatism. However, the addition of these terms will, in general, in-
crease the computational complexity. Furthermore, this work is distinct in that it proposes novel integral
inequalities and LKF, which provide less conservatism on outcomes than earlier results. Based on these
findings, the protocol established in this work has more extensive applicability in MAS control design.
Remark 3.6. The pinning controller plays an essential role in achieving the goal of global exponential
synchronization. The controller mechanism will reduce the time delay compared to other controllers, and
the proposed controller will be more effective. The follower agent fractional receives the details from the
leader agent.

4. Numerical examples

The numerical results are implemented in this section to demonstrate the efficacy of the determined
conditions for assumed MASs.

Example 4.1. Assume the system (2.1) containing of leader and followers indexed by 0 and 1, . . . , 4,
respectively. Consider the error system as:

$̇i(t) = −A$i(t) +B$i(t − r(t)) + Cδ($i(t)) +Dδ($i(t − r(t))) +Ki(t).

Consider the function is δ($i(t)) = 0.01 sinh($i(t)). The discrete delay is r(t) = 0.73 sin(t) + 0.67, r1 =
0.67, r2 = 1.4, ι = 0.9, and r = max{0.67, 1.4} = 1.4, µ = 2.8545, and η = 1.4367. The system matrices are

A =

[
1 0
0 1

]
, B =

[
0.013 0.01
0.02 0.12

]
, C =

[
0.004 0.01
0.03 0.006

]
, D =

[
0.014 0.02
0.3 0.12

]
.
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Figure 1: Topology structure of MASs.

Table 2: Comparisons of time delays.
Methods [20] Theorem 3.2

Time Delay r 1 1.4

For the communication topology displayed in Fig. 1, we calculate the Laplacian matrix and leader adja-
cency matrix as

L =


2 −1 0 −1
0 1 −1 0
−1 0 2 −1
−1 0 −1 2

 , < =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

and corresponding gain matrix is

M =

[
1.8752 −0.2469
−0.5361 0.7381

]
.

In this case, the agent is chosen to be σ0(0) = [0.2,−0.2]T ,σ1(0) = [0.02,−0.1]T , σ2(0) = [−0.03, 0.2]T ,
σ3(0) = [0.1,−0.15]T , and σ4(0) = [−0.1, 0.1]T , and the communication of MASs is shown in Fig. 1.
The evolution of the leader and four followers under control inputs is displayed in Fig. 3, showing that
the proper leader-following synchronization is obtained, whereas the state evolution of leader and four
followers is shown in Fig. 2, and it’s obvious that the leader and follower agents exactly synchronize.
Additionally, the comparison of time delay is depicted in Table 2.
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Figure 2: The plot of σi1(t) and σi2(t), i = 0, 1, 2, 3, 4 of the MASs guided by Theorem 3.2.
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Figure 3: The plot of ith follower agent’s errors $i(t), i = 1, 2, 3, 4 of the MASs.

Example 4.2. Consider the UMASs (3.10) indexed by 0 and 1, 2, 3, 4, respectively. Then consider the
system

$̇i(t) = −(A+∆A(t))$i(t) + (B+∆B(t))$i(t − r(t)) + (C+∆C(t))δ($i(t)) + (D

+∆D(t))δ($i(t − r(t))) +Ki(t).

Here considered non-linear function is δ($i(t)) = 0.02 sinh($i(t)). The discrete delay r(t) = 0.62 sin(t) +
0.58, r1 = 0.58, r2 = 1.2, ι = 0.8, and r = max{0.58, 1.2} = 1.4 µ = 1.8050, and η = 1.0243. The system
matrices are

A =

[
1 0
0 1

]
, B =

[
1.013 0.21
0.02 0.12

]
, C =

[
3.004 1.01
0.43 0.6

]
, D =

[
2.014 0.92
0.3 0.21

]
.

Uncertain parameters are taken below

W1 =

[
0.03 0.04
0.02 0.05

]
, W2 =

[
0.03 0.02
0.004 0.001

]
,

W3 =

[
0.01 0.02
0.03 0.06

]
, W4 =

[
0.06 0.01
0.02 0.03

]
, R =

[
0.02 0.04
0.05 0.01

]
.

The Laplacian matrix L and pinning matrix < are

L =


2 −1 0 −1
0 1 −1 0
−1 0 2 −1
−1 0 −1 2

 , < =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

and control gain matrix M is

M =

[
2.0143 0.5412
0.5443 1.2782

]
.



N. Kaewbanjak, et al., J. Math. Computer Sci., 33 (2024), 162–175 173

Table 3: Comparisons of time delays.
Methods [20] Theorem 3.3

Time Delay r 1 1.2
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Figure 4: The plot of σi1(t) and σi2(t), i = 0, 1, 2, 3, 4 of the MASs guided by Theorem 3.3.

In this case, the agent is selected to be σ0(0) = [0.1,−0.1]T ,σ1(0) = [0.2,−0.62]T , σ2(0) = [−0.07, 0.03]T ,
σ3(0) = [−0.1, 0.1]T , and σ4(0) = [0.05,−0.05]T , and the communication of MASs is shown in Fig. 1.
The evolution of the leader and four followers under control inputs is displayed in Fig. 5, showing that
the proper leader-following synchronization is obtained, whereas the state evolution of leader and four
followers is shown in Fig. 4, and it’s obvious that the leader and follower agents exactly synchronize.
Additionally, the comparison of time delay is depicted in Table 3.
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Figure 5: The plot of ith follower agent’s errors $i(t), i = 1, 2, 3, 4 of the MASs.
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5. Conclusion

In this manuscript, we analyzed the exponential synchronization problem of non-linear UMass with
time delay and impulse effects. Here the exponential synchronization analysis for solved proper Lyapunov
by utilizing LMI condition in MASs with a linear-feedback pinning controller scheme was proposed. Also,
a leader-follower problem has been solved by constructing an appropriate Lyapunov function, and by
using the LMI condition in the MASs, it achieved exponential synchronization. At last, two numerical
validations under simulations have been presented to show and support the main proofs derived in the
theoretical section.

In [3, 6, 27], the authors engaged in discussion regarding the synchronization for fractional-order sys-
tems with sampled-data control (SDC) approach and impulsive effect under cyber attack. Subsequently,
in [2], the authors provided an explanation of T-S fuzzy systems accompanied by sliding-mode control
(SMC) techniques. Inspiration from the insights presented in [2, 3, 6, 27], the proposed control methodol-
ogy will offer applicability to T-S fuzzy fractional of MASs using an innovative approach. The proposed
method in this research will be used to examine the H∞ SMC for T-S fuzzy MASs with cyber-attack in
future work.
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