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Abstract
In this paper, we establish some new sufficient conditions which guarantee the oscillatory behavior of solutions of a class of

second-order damped neutral differential equations with sub-linear neutral terms. Our criteria improve and complement related
results in the literature. Two examples are given to justify our main results.
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1. Introduction

This article is devoted to studying the oscillatory behavior of solutions of a class of second-order
damped neutral differential equations of the type(

a (t)
(
$′ (t)

)γ)′
+ h (t)

(
$′ (t)

)γ
+ f (t,y (ϕ (t))) = 0, t > t0 > 0, (1.1)

where $ (t) = y (t) +
∑m
i=1 ci (t)y

αi (νi (t)) ,m > 0 is an integer. Throughout the paper, we use the
following assumptions:

(A1) 0 < αi 6 1 for i = 1, 2, . . . ,m, and γ are the ratios of odd positive integers;

(A2) a,h, ci : [t0,∞)→ R+ are continuous functions and lim
t→∞ci (t) = 0 for i = 1, 2, . . . ,m;

(A3) νi,ϕ : [t0,∞) → R are continuous functions with νi (t) < t,ϕ (t) 6 t,ϕ′ (t) > 0 and νi (t) ,ϕ (t) →∞ as t→∞ for i = 1, 2, . . . ,m;

(A4) f (t,y) ∈ C ([t0,∞)×R, R), and there exists a function g (t) ∈ C ([t0,∞) , (0,∞)) such that f (t,y) /yβ

> g (t) where β is a ratio of odd positive integers.
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We will be concerned in this work with nontrivial solutions satisfying sup {y (t) : t > T > ty} > 0. We
mean by an oscillatory solution that nontrivial one which has an infinite number of zeros in the half-line
[t0,∞). Meanwhile we say that equation (1.1) is oscillatory if all its solutions are oscillatory.

In dynamical models, delay and oscillation effects are often formulated by means of external sources
and/or nonlinear diffusion, perturbing the natural evolution of related systems; see, e.g., [23, 24, 33].
Recently, there has been considerable interest in the study of the oscillation of second-order damped
equations because of their numerous applications in the fields of science, engineering, and technology,
etc (see [1, 6, 8, 9, 14–16, 31, 35–37]), and it has been studied extensively, see for instance [25, 28, 30] and
the references cited therein. To the best of our knowledge, we note that most of the results obtained in
the literature have been centered around the special un-damped case of Eq. (1.1), i.e., when h (t) = 0 (see
[2, 3, 5, 7, 11, 13, 18, 21, 22, 26, 27, 29, 32, 34, 38, 40–42]). Moreover, there are relatively few results dealing
with the oscillation of second order differential equations with sub-linear neutral terms (see [2, 4, 10–
12]). Here, we mention some recent works which were concerned with some special cases of (1.1), and
motivated this work.

Grammatikopoulos et al. [18] deduced that all solutions of the equation

(y (t) + b (t)y (t− τ))′′ + g (t)y (t− ν) = 0

are oscillatory if ∫∞
t0

g (s) (1 − b (s− ν))ds =∞.

In [17], Grace and Lalli were able to improve and extend the results of [18] to the more general equation(
a (t) (y (t) + b (t)y (t− ν))′

)′
+ g (t) f (y (t− ν)) = 0, (1.2)

with
f (y)

y
> k > 0 and

∫∞
t0

ds

a (s)
=∞.

They proved that Eq. (1.2) is oscillatory if for some continuously differentiable function U (t), one has∫∞
t0

(
U (s)g (s) (1 − b (s− ν)) −

(U′ (s))2
a (s− ν)

4kU (s)

)
ds =∞.

Agarwal et al. [3] and Baculı́ková et al. [5] discussed the second order nonlinear neutral differential
equation (

a (t)
(
$′ (t)

)γ)′
+ g (t)yβ (ϕ (t)) = 0, (1.3)

where $ (t) = y (t) + b (t)y (ν (t)) with 0 6 b (t) 6 b0 < ∞ and γ,β are the ratios of two positive
odd integers. Recently, Baculı́ková [4] and Džurina et al. [12] discussed the second order nonlin-
ear differential equation (1.3) with γ = 1, and several sub-linear neutral terms, i.e., $ (t) = y (t) +∑m
i=1 ci (t)y

αi (νi (t)) ,m > 0 is an integer, 0 < αi 6 1 for i = 1, 2, . . . ,m and β are the ratios of odd
positive integers, where the conditions (A2) and (A3) hold. Liu et al. [34] and Wu et al. [42] considered
the generalized Emden-Fowler equation with neutral type delay of the form(

a (t)
∣∣$′ (t)∣∣γ−1

$′ (t)
)′

+ g (t) |y (ϕ (t))|β−1 y (ϕ (t)) = 0,

where $ (t) = y (t) + b (t)y (ν (t)) ,a′ (t) > 0,ϕ′ (t) > 0 and 0 6 b (t) < 1,g (t) > 0 in the two cases∫∞
t0

dt

a
1
γ (t)

=∞ (1.4)
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and ∫∞
t0

dt

a
1
γ (t)

<∞. (1.5)

The authors in [42] were able to discuss all the possible cases γ > β,γ = β, and γ < β, while those in [34]
were concerned only with the case γ > β > 0. Meanwhile, Sallam et al. [38] and Wang et al. [40] studied
the nonlinear second order neutral delay differential equation(

a (t)
∣∣$′ (t)∣∣γ−1

$′ (t)
)′

+ f (t,y (ϕ (t))) = 0. (1.6)

In [38], the authors studied Eq. (1.6) when $ (t) = y (t)± b (t)y (ν (t)) ,a (t) > 0, 0 6 b (t) 6 1,γ is a
positive constant and the condition (A4) is satisfied in all the three possible cases γ > β,γ = β, γ < β and
in the two cases (1.4) and (1.5), while the authors in [40] studied Eq. (1.6) when$ (t) = y (t)+b (t)y (ν (t))

with γ is a positive constant and only with the condition (1.4) in the two cases 0 6 b (t) < 1 and
−1 < b (t) < 0, but they considered the condition (A4) with β as a positive constant satisfying 1 < β 6 γ.
On the other hand Eq. (1.1) can be considered as a natural generalization of the second order differential
equation (

a (t)y′ (t)
)′
+ h (t)y′ (t) + g (t) f (y (t)) = 0,

which was studied by Agarwal et al. [1] and Rogovchenko et al. [35–37], under the conditions a ∈
C1 ([t0,∞) , R) ,h,g ∈ C (R, R) ,yf (y) > 0, and f′ (y) > k > 0. Also Eq. (1.1) can be considered as a
natural generalization of the second order differential equation studied by Fu et al. [15] of the form(

a (t)y′ (t)
)′
+ h (t)y′ (t) + g (t) f (y (ν (t))) = 0.

Meanwhile, Jadlovská [16] studied Eq. (1.1) with f (t,y (ϕ (t))) = g (t) f (y (ϕ (t))), where $ (t) = y (t) +
b (t)y (ν (t)) ,γ > 1, is a quotient of positive odd integers, 0 6 b (t) 6 1,a (t) ,h (t) : [t0,∞) → R+ are
continuous functions. They assumed that f ∈ C (R, R), with yf (y) > 0 and f(y)

yβ
> k > 0 with y 6= 0, k is

a constant and β is a ratio of odd positive integers. The aim of this paper is to complement and extend
some of the results given in [12, 16, 34, 38, 40, 42], by using some elementary inequalities and Riccati
substitution. In this paper, we cover all possible cases γ > β,γ = β, and γ < β. So we think that our
results are of high generality.

2. Preliminaries

We consider the notation

E (t) = exp
(
−

∫t
t0

h (s)

a (s)
ds

)
,Π (t) =

∫t
t1

(
E (s)

a (s)

) 1
γ

ds, t1 > t0 > 0. (2.1)

We suppose that there exists a positive, continuous function ρ : [t0,∞)→ R+ decreasing to zero, and

Ψ (t) = 1 −

m∑
i=1

αici (t) −
1
ρ (t)

m∑
i=1

(1 −αi) ci (t) , (2.2)

such that Ψ (ϕ (t)) > 0,

= (t) =
βϕ′ (t) (ξ (ϕ (t)))β−1

M1−β
γa

1
γ (ϕ (t))χ (t)

, ξ (t) =

∫t
t1

a−
1
γ (s)ds, (2.3)

and

Ω (t) =
χ′ (t)

χ (t)
−
h (t)

a (t)
, (2.4)

where the parameter χ (t) ∈ C1 ([t0,∞) , R) will be determined later.
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Lemma 2.1 ([20]). If r is nonnegative, then

rα 6 αr+ (1 −α) for 0 < α 6 1. (2.5)

Lemma 2.2. Assume that ∫∞
t0

(
E (s)

a (s)

) 1
γ

ds =∞ (2.6)

holds, where E (t) is defined by (2.1). If there exists a positive solution y (t) of Eq. (1.1), then there exists T ∈ [t0,∞),
large enough, such that

(i) $ (t) > 0,$′ (t) > 0, and
(
a (t) ($′ (t))γ

)′
< 0;

(ii) $(t)
Π(t) is decreasing.

Proof. Since y (t) is a positive solution of Eq. (1.1) on [t0,∞), then by the assumption (A3) there exists
t1 > t0 such that y (νi (t)) > 0 and y (ϕ (t)) > 0 on [t1,∞). Then $ (t) > y (t) > 0, for t > t1. Thus in
view of (1.1), we have(

a (t)
(
$′ (t)

)γ)′
+ h (t)

(
$′ (t)

)γ
= −f (t,y (ϕ (t))) 6 −g (t)yβ (ϕ (t)) < 0.

Therefore, (
a (t)

E (t)

(
$′ (t)

)γ)′
= −

f (t,y (ϕ (t)))

E (t)
< 0.

Thus a(t)
E(t) ($

′ (t))γ is decreasing. Now, to show that $′ (t) > 0 on [t1,∞), suppose the contrary that there

exists t2 ∈ [t1,∞) such that $′ (t2) < 0. But since a(t)
E(t) ($

′ (t))γ is decreasing, it follows for t > t2, that

a (t)

E (t)

(
$′ (t)

)γ
<
a (t2)

E (t2)

(
$′ (t2)

)γ
= l < 0.

Thus it follows by integration from t2 to t, that

$ (t) < $ (t2) + l
1
γ

∫t
t2

(
E (s)

a (s)

) 1
γ

ds,

for t > t2. This with (2.6), leads to lim
t→∞$ (t) = −∞, which contradicts the fact that $ (t) is eventually

positive. Therefore $′ (t) > 0. Moreover since from Eq. (1.1), we deduce that
(
a (t) ($′ (t))γ

)′
< 0 and

a(t)
E(t) ($

′ (t))γ is decreasing, then we have

$ (t) >

∫t
t2

(
a (s)

E (s)

(
$′ (s)

)γ E (s)
a (s)

) 1
γ

ds >

(
a (t)

E (t)

(
$′ (t)

)γ) 1
γ

Π (t) ,

which yields (
$ (t)

Π (t)

)′
< 0.

Thus $(t)
Π(t) is decreasing for t > t2.
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3. Main results

Theorem 3.1. Let (A1)-(A4), and (2.6) hold. Furthermore suppose that 1 < β 6 γ. If one has∫∞
t0

[
χ (t)g (t)Ψβ (ϕ (t)) −

(Ω (t))2

4= (t)

]
dt =∞, (3.1)

for any function χ (t) ∈ C1 ([t0,∞) , (0,∞)), where Ψ (t), = (t), and Ω (t) are as defined in (2.2), (2.3), and (2.4),
respectively, then every solution of Eq. (1.1) oscillates.

Proof. Suppose the contrary that there exists a t1 > t0 such that y (t) > 0, y (νi (t)) > 0, and y (ϕ (t)) > 0
for t > t1 and i = 1, 2, . . . ,m. Now since $ (t) is increasing, then from the definition of $ (t), and (2.5),
we have

y (t) = $ (t) −

m∑
i=1

ci (t)y
αi (νi (t)) > $ (t) −

m∑
i=1

ci (t)$
αi (νi (t))

> $ (t) −

m∑
i=1

ci (t) (αi$ (νi (t)) + (1 −αi))

>

(
1 −

m∑
i=1

αici (t)

)
$ (t) −

m∑
i=1

(1 −αi) ci (t)

= $ (t)

(
1 −

m∑
i=1

αici (t) −
1

$ (t)

m∑
i=1

(1 −αi) ci (t)

)
.

(3.2)

But since $ (t) is positive and increasing, while ρ (t) is positive and decreasing to zero, there is a t2 > t1
such that

$ (t) > ρ (t) for t > t2. (3.3)

Substituting (3.3) into (3.2), we obtain

y (t) > $ (t)

(
1 −

m∑
i=1

αici (t) −
1
ρ (t)

m∑
i=1

(1 −αi) ci (t)

)
= Ψ (t)$ (t) . (3.4)

This with (1.1) yields(
a (t)

(
$′ (t)

)γ)′
+ h (t)

(
$′ (t)

)γ
+ g (t)Ψβ (ϕ (t))$β (ϕ (t)) 6 0, t > t2, (3.5)

or (
a (t) ($′ (t))γ

E (t)

)′
+
g (t)Ψβ (ϕ (t))$β (ϕ (t))

E (t)
6 0. (3.6)

Define

Θ (t) = χ (t)
a (t) ($′ (t))γ

$β (ϕ (t))
, t > t2. (3.7)

Then Θ (t) > 0 for t > t2, and

Θ′ (t) = χ′ (t)
a (t) ($′ (t))γ

$β (ϕ (t))
+ χ (t)

(
a (t) ($′ (t))γ

)′
$β (ϕ (t))

−
βχ (t)a (t) ($′ (t))γ

$2β (ϕ (t))
$β−1 (ϕ (t))$′ (ϕ (t))ϕ′ (t) .

(3.8)
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Since a (t) ($′ (t))γ is positive and decreasing, then there may exist a positive constant M such that for
some t2 > t1, we have

a (t)
(
$′ (t)

)γ
6M, t > t2. (3.9)

Moreover, since ϕ (t) 6 t, then

a (t)
(
$′ (t)

)γ
6 a (ϕ (t))

(
$′ (ϕ (t))

)γ , (3.10)

and

$ (t) = $ (t1) +

∫t
t1

(
a (s) ($′ (s))γ

) 1
γ

a
1
γ (s)

ds > a
1
γ (t)$′ (t)

∫t
t1

a−
1
γ (s)ds = ξ (t)a

1
γ (t)$′ (t) . (3.11)

By substituting (3.5) and (3.11) into (3.8), we get

Θ′ (t) 6
χ′ (t)

χ (t)
Θ (t) − χ (t)

h (t) ($′ (t))γ

$β (ϕ (t))
− χ (t)g (t)Ψβ (ϕ (t))

−βϕ′ (t)χ (t)
a (t) ($′ (t))γ

$2β (ϕ (t))
$′ (ϕ (t)) (ξ (ϕ (t)))β−1 a

β−1
γ (ϕ (t))

(
$′ (ϕ (t))

)β−1

6

[
χ′ (t)

χ (t)
−
h (t)

a (t)

]
Θ (t) − χ (t)g (t)Ψβ (ϕ (t))

−βϕ′ (t)χ (t) (ξ (ϕ (t)))β−1 a (t) ($
′ (t))γ

$2β (ϕ (t))
a
β−1
γ (ϕ (t))

(
$′ (ϕ (t))

)β .

(3.12)

It follows from (3.9), (3.10), and (3.12) that

Θ′ (t) 6 −χ (t)g (t)Ψβ (ϕ (t)) +Ω (t)Θ (t) −
βϕ′ (t) (ξ (ϕ (t)))β−1

(a (ϕ (t)))
1
γ

χ (t)
a (t) ($′ (t))γ

$2β (ϕ (t))
a
β
γ (t)

(
$′ (t)

)β
= −χ (t)g (t)Ψβ (ϕ (t)) +Ω (t)Θ (t) −

βϕ′ (t) (ξ (ϕ (t)))β−1 a
β
γ (t)

(a (ϕ (t)))
1
γ χ (t)a (t)

Θ2 (t)
1

($′ (t))γ−β

6 −χ (t)g (t)Ψβ (ϕ (t)) +Ω (t)Θ (t) −
βϕ′ (t) (ξ (ϕ (t)))β−1

M1−β
γ (a (ϕ (t)))

1
γ χ (t)

Θ2 (t)

= −χ (t)g (t)Ψβ (ϕ (t)) +Ω (t)Θ (t) − = (t)Θ2 (t) ,

where

= (t) =
βϕ′ (t) (ξ (ϕ (t)))β−1

M1−β
γ (a (ϕ (t)))

1
γ χ (t)

.

By completing the squares, we obtain

Θ′ (t) 6 −χ (t)g (t)Ψβ (ϕ (t)) +
(Ω (t))2

4= (t)
−

[√
= (t)Θ (t) −

Ω (t)

2
√
= (t)

]2

6 −χ (t)g (t)Ψβ (ϕ (t)) +
(Ω (t))2

4= (t)
.

Integrating from t2 to t, we get

0 < Θ (t) 6 Θ (t2) −

∫t
t2

[
χ (s)g (s)Ψβ (ϕ (s)) −

(Ω (s))2

4= (s)

]
ds.

This is a contradiction with (3.1), and so the proof is completed.
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Remark 3.2. Although Theorem 3.1 depends on the technique of Theorem 4 of [40], however the authors
in [40] dealt with the undamped case.

Theorem 3.3. Assume that (A1)-(A4) and (2.6) hold. If for any function χ (t) ∈ C1 ([t0,∞) , (0,∞)), and a
positive number M, we have

∫∞
t0

χ (t)g (t)Ψβ (ϕ (t)) −
M

γ−β
γ χ (t) (Ω (t))2 a

β
γ (ϕ (t))

4β
(
ϕ(t)

2

)β−1
ϕ′ (t)

dt =∞, (3.13)

where Ψ (t) is defined by (2.2), andΩ (t) is defined by (2.4), γ > β > 1, and a′ (t) > 0, then Eq. (1.1) is oscillatory.

Proof. Suppose the contrary that there exists a T1 > t0 such that y (t) > 0, y (νi (t)) > 0, and y (ϕ (t)) > 0
for t > T1 and i = 1, 2, . . . ,m. Now as in the proof of Theorem 3.1, we have the inequality (3.5), by which
with the positivity of a′ (t), we get by Lemma 2.2 (i) that(

a (t)
(
$′ (t)

)γ)′
< 0, t > T1.

This implies that there exists some T2 > T1 such that $′′ (t) < 0, for t > T1, i.e., $′ (t) is eventually
decreasing. Therefore from the mean value theorem, we have

$ (t) −$ (T1) = (t− T1)$
′ (ζ) > (t− T1)$

′ (t) , ζ ∈ (T1, t) ,

i.e.,

$ (t) >
t

2
$′ (t) , for t > T2 > 2T1. (3.14)

Now define Θ (t) as in Theorem 3.1, then Θ (t) > 0. Moreover from (3.5), (3.7), (3.10), and (3.14), we have

Θ′ (t) =
χ′ (t)

χ (t)
Θ (t) + χ (t)

(
a (t) ($′ (t))γ

)′
$β (ϕ (t))

−
βχ (t)a (t) ($′ (t))γ

$2β (ϕ (t))
$β−1 (ϕ (t))$′ (ϕ (t))ϕ′ (t)

6

[
χ′ (t)

χ (t)
−
h (t)

a (t)

]
Θ (t) − χ (t)g (t)Ψβ (ϕ (t))

− χ (t)
βa (t) ($′ (t))γ+β

(
ϕ(t)

2

)β−1
ϕ′ (t)

$2β (ϕ (t))

(
a (t)

a (ϕ (t))

)β
γ

6 Ω (t)Θ (t) − χ (t)g (t)Ψβ (ϕ (t)) −
β
(
ϕ(t)

2

)β−1
ϕ′ (t)

χ (t)a
γ−β
γ (t)a

β
γ (ϕ (t))

Θ2 (t)
1

($′ (t))γ−β
.

(3.15)

Now, from the fact that a (t) ($′ (t))γ is positive and decreasing, there exists a T4 > T3 sufficiently large
such that a (t) ($′ (t))γ 6M, t > T4, where M is defined in (3.9), and therefore

(
$′ (t)

)γ−β
6

(
M

a (t)

)γ−β
γ

, t > T4. (3.16)

Combining (3.15) and (3.16), we get

Θ′ (t) 6 Ω (t)Θ (t) − χ (t)g (t)Ψβ (ϕ (t)) −
β
(
ϕ(t)

2

)β−1
ϕ′ (t)

χ (t)a
β
γ (ϕ (t))M

γ−β
γ

Θ2 (t) .
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By completing the squares, we get

Θ′ (t) 6 −χ (t)g (t)Ψβ (ϕ (t)) +
M

γ−β
γ χ (t)a

β
γ (ϕ (t)) (Ω (t))2

4β
(
ϕ(t)

2

)β−1
ϕ′ (t)

.

Integrating from T4 to t, we have

Θ (t) 6 Θ (T4) −

∫t
T4

χ (s)g (s)Ψβ (ϕ (s)) −
M

γ−β
γ χ (s)a

β
γ (ϕ (s)) (Ω (s))2

4β
(
ϕ(s)

2

)β−1
ϕ′ (s)

ds. (3.17)

Let t→∞ in (3.17), and using (3.13), then Θ (t) will be eventually negative, which is a contradiction, and
so the proof is completed.

Remark 3.4. In the special case f (t,y (ϕ (t))) = g (t) |y (ϕ (t))|β−1 y (ϕ (t)) and h (t) = 0, Theorem 3.3
improves and extends Theorem 2.1 of [34].

Theorem 3.5. Suppose that (A1)-(A4) and (2.6) hold. Furthermore suppose that a′ (t) > 0. If there exists a
function χ (t) ∈ C1 ([t0,∞) , (0,∞)) such that∫∞

t0

[
χ (t)g (t)Ψβ (ϕ (t)) −

(χ′ (t)a (t) − χ (t)h (t))λ+1
a (λ (t))

(λ+ 1)λ+1 (qχ (t)ϕ′ (t))λ (a (t))λ+1

]
dt =∞, (3.18)

where Ψ (t) is defined by (2.2),

λ = min {γ,β} , λ (t) =

{
ϕ (t) , β > γ,
t, γ > β,

and q =

{
1, γ = β,
0 < q 6 1, γ 6= β,

then Eq. (1.1) is oscillatory.

Proof. Suppose for the contrary that Eq. (1.1) has a non-oscillatory solution y (t) > 0, for sufficiently large
t. The case of y (t) < 0 can be similarly treated. Now in view of (A3), there may exist t1 > t0 such that
y (t) > 0, y (νi (t)) > 0, and y (ϕ (t)) > 0 for t > t1 and i = 1, 2, . . . ,m. It is not difficult to see that
y (t) > 0 for t > t1, but since from Lemma 2.2 (i), and the definition of $ (t), we get (3.4), from which and
(1.1), we arrive at (3.5). Now since ϕ (t) 6 t, we have (3.10). Put

Υ (t) =
a (t) ($′ (t))γ

$β (ϕ (t))
, t > T .

Then Υ (t) > 0, and

Υ′ (t) =

(
a (t) ($′ (t))γ

)′
$β (ϕ (t))

−
βϕ′ (t)$′ (ϕ (t))a (t) ($′ (t))γ

$β+1 (ϕ (t))

6 −g (t)Ψβ (ϕ (t)) −
h (t)

a (t)
Υ (t) −

βϕ′ (t)$′ (ϕ (t))a (t) ($′ (t))γ

$β+1 (ϕ (t))
.

(3.19)

Now, we consider the possible cases for (3.19).

Case 1: γ = β. From (3.10), it is clear that

Υ′ (t) 6 −g (t)Ψβ (ϕ (t)) −
h (t)

a (t)
Υ (t) −

γϕ′ (t)

(a (ϕ (t)))
1
γ

Υ
γ+1
γ (t) , t > T . (3.20)
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Case 2: γ < β. Since $ (t) is increasing on [T ,∞), then there may exist a constant q1 > 0 such that

Υ′ (t) 6 −g (t)Ψβ (ϕ (t)) −
h (t)

a (t)
Υ (t) −

βϕ′ (t)

(a (ϕ (t)))
1
γ

[$ (ϕ (t))]
β−γ
γ Υ

γ+1
γ (t)

6 −g (t)Ψβ (ϕ (t)) −
h (t)

a (t)
Υ (t) −

γϕ′ (t)q1

(a (ϕ (t)))
1
γ

Υ
γ+1
γ (t) .

(3.21)

Case 3: γ > β. From the fact that
(
a (t) ($′ (t))γ

)′
< 0, and a′ (t) > 0, we get $′′ (t) < 0, and so $′ (t) is

decreasing. Thus, there exists a positive constant q2, such that

Υ′ (t) 6 −g (t)Ψβ (ϕ (t)) −
h (t)

a (t)
Υ (t) −

βϕ′ (t)

(a (t))
1
β

[
$′ (t)

]β−γ
β Υ

β+1
β (t)

6 −g (t)Ψβ (ϕ (t)) −
h (t)

a (t)
Υ (t) −

βϕ′ (t)q2

(a (t))
1
β

Υ
β+1
β (t) .

(3.22)

Now from (3.20), (3.21), and (3.22) it follows that for any γ > 0, and β > 0,

Υ′ (t) 6 −g (t)Ψβ (ϕ (t)) −
h (t)

a (t)
Υ (t) −

λqϕ′ (t)

(a (λ (t)))
1
λ

Υ
λ+1
λ (t) , t > T . (3.23)

Multiplying (3.23) by χ (t) and integrating it from T to t, we obtain∫t
T

χ (s)g (s)Ψβ (ϕ (s))ds

6 χ (T)Υ (T) +

∫t
T

[(
χ′ (s) −

χ (s)h (s)

a (s)

)
Υ (s) −

λqχ (s)ϕ′ (s)

(a (λ (s)))
1
λ

Υ
λ+1
λ (s)

]
ds.

(3.24)

Applying the following inequality of [39],

DΥ− FΥ
λ+1
λ 6

λλ

(λ+ 1)λ+1D
λ+1F−λ, (3.25)

with F > 0 and λ > 0, then (3.24) will take the form∫t
T

[
χ (s)g (s)Ψβ (ϕ (s)) −

(χ′ (s)a (s) − χ (s)h (s))λ+1
a (λ (s))

(λ+ 1)λ+1 (qχ (s)ϕ′ (s))λ (a (s))λ+1

]
ds 6 χ (T)Υ (T) .

Letting t→∞ in the above inequality, we get a contradiction with (3.18).

Remark 3.6. The above theorem includes Theorem 1 of [42] in the case f (t,y (ϕ (t))) = g (t) |y (ϕ (t))|β−1

y (ϕ (t)), and h (t) = 0.

Theorem 3.7. Let the conditions (A1)-(A4) and (2.6) hold. Furthermore assume that there exists a positive contin-
uously differentiable function χ (t) such that, for all sufficiently large t1 > t0

lim sup
t→∞ {χ (t)E (t)

∫∞
t

g (s)Ψβ (ϕ (s))

E (s)
ds

+

∫t
t1

[
g (s)χ (s)Ψβ (ϕ (s)) −

γγ

(γ+ 1)γ+1
χ (s)a (ϕ (s)) (Ω (s))γ+1

(βϕ′ (s)ψ (s))γ

]
ds} =∞,

(3.26)
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where

ψ (t) =


d1, d1 is some positive constant if β > γ,
1, if β = γ,

d2

(∫t
t0
a

1
γ (s)ds

)
, d2 is some positive constant if β < γ,

and γ > 1. Then, Eq. (1.1) is oscillatory, where E (t), Ψ (t), and Ω (t) be as in (2.1), (2.2), and (2.4).

Proof. Suppose to the contrary that y (t) is a non-oscillatory solution of Eq. (1.1). We may assume that
there exists a t1 > t0 such that y (t) > 0, y (νi (t)) > 0, and y (ϕ (t)) > 0 for t > t1 and i = 1, 2, . . . ,m. It
is not difficult to see that $ (t) > 0 for t > t1. But since from Lemma 2.2 (i) with the definition of $ (t),
we get (3.4). Moreover by substituting (3.4) into (1.1), we arrive at (3.5), and using the assumption (A4),
we get (3.6). Integrating inequality (3.6) from t to∞ and using the fact that $ (t) is increasing, we have

a (t)

E (t)

(
$′ (t)

)γ
>
∫∞
t

g (s)Ψβ (ϕ (s))$β (ϕ (s))

E (s)
ds > $β (ϕ (t))

∫∞
t

g (s)Ψβ (ϕ (s))

E (s)
ds.

Defining Θ (t) as in Theorem 3.1, we get

Θ (t) = χ (t)
a (t) ($′ (t))γ

$β (ϕ (t))
> χ (t)E (t)

∫∞
t

g (s)Ψβ (ϕ (s))

E (s)
ds. (3.27)

This with (3.5) leads to

Θ′ (t) =
(
a (t)

(
$′ (t)

)γ)′ χ (t)

$β (ϕ (t))
+

(
χ (t)

$β (ϕ (t))

)′
a (t)

(
$′ (t)

)γ
6

−χ (t)

$β (ϕ (t))

(
h (t)

(
$′ (t)

)γ
+ g (t)Ψβ (ϕ (t))$β (ϕ (t))

)
+ a (t)

(
$′ (t)

)γ( χ′ (t)

$β (ϕ (t))
−
βχ (t)$β−1 (ϕ (t))$′ (ϕ (t))ϕ′ (t)

$2β (ϕ (t))

)
6

−χ (t)

$β (ϕ (t))

(
h (t)

(
$′ (t)

)γ
+ g (t)Ψβ (ϕ (t))$β (ϕ (t))

)
+ a (t)

(
$′ (t)

)γ( χ′ (t)

$β (ϕ (t))
−
βχ (t)$′ (ϕ (t))ϕ′ (t)

$β+1 (ϕ (t))

)
6 −χ (t)g (t)Ψβ (ϕ (t)) −

h (t)

a (t)
Θ (t) +

χ′ (t)

χ (t)
Θ (t) −βχ (t)

a (t) ($′ (t))γ$′ (ϕ (t))ϕ′ (t)

$β+1 (ϕ (t))
.

(3.28)

Moreover, since a (t) ($′ (t))γ is decreasing, we have

$′ (ϕ (t))

$′ (t)
>

(
a (t)

a (ϕ (t))

) 1
γ

.

Thus the inequality (3.28) becomes

Θ′ (t) 6 −χ (t)g (t)Ψβ (ϕ (t)) +Ω (t)Θ (t) −
βχ (t)ϕ′ (t)

a
1
γ (ϕ (t))

(
Θ (t)

χ (t)

)γ+1
γ

$
β−γ
γ (ϕ (t)) .

Now we have the three possible cases.

Case I: β > γ. In this case, since $′ (t) > 0 for t > t0, then there may exist t1 > t0 such that $ (ϕ (t)) > d
for t > t1. Then it follows that

$
β−γ
γ (ϕ (t)) > d

β−γ
γ = d1.
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Case II: β = γ. In this case, we see that $
β−γ
γ (ϕ (t)) = 1.

Case III: β < γ. Since a (t) ($′ (t))γ is decreasing, there may exist a constant M such that

a (t)
(
$′ (t)

)γ
6M

for t > t0. By integrating from t0 to t, we get

$ (t) 6 $ (t0) +

∫t
t0

(
M

a (s)

) 1
γ

ds.

Hence, there may exist t1 > t0 and a constant M1 depending on M such that

$ (t) 6M1

∫t
t0

a−
1
γ (s)ds for t > t1,

and thus

$
β−γ
γ (ϕ (t)) >M

β−γ
γ

1

(∫t
t0

a−
1
γ (s)ds

)β−γ
γ

= d2

(∫t
t0

a−
1
γ (s)ds

)β−γ
γ

,

for some positive constant d2.
Using the conclusions of these three cases and the definition of ψ (t), we get

Θ′ (t) 6 −χ (t)g (t)Ψβ (ϕ (t)) +Ω (t)Θ (t) −
βϕ′ (t)ψ (t)

(χ (t)a (ϕ (t)))
1
γ

Θ
γ+1
γ (t)

for t > t1 > t0. Now setting

D = Ω (t) , F =
βϕ′ (t)ψ (t)

(χ (t)a (ϕ (t)))
1
γ

,

and using the inequality (3.25), we obtain

Θ′ (t) 6 −χ (t)g (t)Ψβ (ϕ (t)) +
γγ

(γ+ 1)γ+1
χ (t)a (ϕ (t)) (Ω (t))γ+1

(βϕ′ (t)ψ (t))γ
.

Integrating from t1 to t, we have

Θ (t) 6 Θ (t1) −

∫t
t1

[
χ (s)g (s)Ψβ (ϕ (s)) −

γγ

(γ+ 1)γ+1
χ (s)a (ϕ (s)) (Ω (s))γ+1

(βϕ′ (s)ψ (s))γ

]
ds.

Taking into account (3.27), we get

Θ (t1) > χ (t)E (t)
∫∞
t

g (s)Ψβ (ϕ (s))

E (s)
ds

+

∫t
t1

[
χ (s)g (s)Ψβ (ϕ (s)) −

γγ

(γ+ 1)γ+1
χ (s)a (ϕ (s)) (Ω (s))γ+1

(βϕ′ (s)ψ (s))γ

]
ds.

Taking lim sup on both sides of the above inequality as t → ∞, we obtain a contradiction with the
condition (3.26). This completes the proof.

Remark 3.8. Theorem 3.7 improves and extends Theorem 1 of [16].

Theorem 3.9. Let the conditions (A1)-(A4) hold. Suppose further that (2.6) holds and γ = β. If there exists a
positive function χ (t) ∈ C1 ([t0,∞) , R) such that

lim sup
t→∞

∫t
t0

[
χ (s)g (s)Ψβ (ϕ (s)) −

a (ϕ (s)) (Ω (s))β+1 χ (s)

(β+ 1)β+1 (ϕ′ (s))β

]
ds =∞,

where Ψ (t) is defined by (2.2), and Ω (t) is defined by (2.4), then every solution of Eq. (1.1) is oscillatory.

Proof. The proof follows the lines of the proof of Theorem 3.5. And so it is omitted.
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4. Examples

Example 4.1. Consider the differential equation(
t

[(
y (t) +

1
t
y

3
5

(
t

5

)
+

1
t2y

1
7

(
t

7

))′]5)′

+

[(
y (t) +

1
t
y

3
5

(
t

5

)
+

1
t2y

1
7

(
t

7

))′]5

+
ϑ

t3y
3 (t) = 0, t > 3.

(4.1)

Here a (t) = t,a′ (t) = 1 > 0,h (t) = 1, c1 (t) = 1
t , c2 (t) = 1

t2 . Thus clearly lim
t→∞ci (t) = 0. Moreover

ν1 (t) = t
5 ,ν2 (t) = t

7 ,α1 = 3
5 ,α2 = 1

7 , and f (t,y (ϕ (t))) = ϑ
t3y

3 (t), i.e., g (t) = ϑ
t3 , ϑ > 0,ϕ (t) = t,β =

3,γ = 5. It is not difficult to see that E (t) = 3
t , and so (2.6) is satisfied. Choosing ρ (t) = 1

t , then ρ (t)→ 0
as t→∞ and

Ψ (t) = 1 −
3
5t

−
1

7t2 − t

(
2
5t

+
6

7t2

)
=

3
5
−

51
35t

−
1

7t2 =
21t2 − 51t− 5

35t2 > 0, t > 3.

Choosing χ (t) = t2, we have Ω (t) = χ′(t)
χ(t) − h(t)

a(t) = 1
t and

∫∞
t0

χ (t)g (t)Ψβϕ (t) −
M

γ−β
γ χ (t) (Ω (t))2 a

β
γϕ (t)

4β
(
ϕ(t)

2

)β−1
ϕ′ (t)

dt = ∫∞
3

(
ϑ

t

[
3
5
−

51
35t

−
1

7t2

]3

−
M

2
5

3t
7
5

)
dt =∞.

So by Theorem 3.3, every solution of Eq. (4.1) is oscillatory.

Example 4.2. Consider the differential equation(
1
t2

(
y (t) +

1
t
y

1
3

(
t

3

)
+

1
t2y

3
5

(
t

5

))′)′
+

1
t3

(
y (t) +

1
t
y

1
3

(
t

3

)
+

1
t2y

3
5

(
t

5

))′
+
ϑ

t3y (t) = 0, t > 3.

(4.2)

Here a (t) = 1
t2 ,h (t) = 1

t3 ,β = 1, c1 (t) = 1
t , c2 (t) = 1

t2 . Thus clearly lim
t→∞ci (t) = 0. Moreover ν1 (t) =

t
3 ,ν2 (t) = t

5 ,α1 (t) = 1
3 ,α2 = 3

5 , and f (t,y (ϕ (t))) = ϑ
t3y (t), i.e., g (t) = ϑ

t3 , ϑ > 0,ϕ (t) = t. It is not
difficult to see that E (t) = 3

t , and so (2.6) is satisfied. Letting ρ (t) = 1
t , then ρ (t)→ 0 as t→∞ and

Ψ (t) = 1 −
1
3t

−
3

5t2 − t

[
2
3t

+
2

5t2

]
=

1
3
−

11
15t

−
3

5t2 =
5t2 − 11t− 9

15t2 > 0 for t > 3.

Choosing χ (t) = t2, we see that

Ω (t) =
1
t

,

and

lim sup
t→∞

∫t
t0

[
χ (s)g (s)Ψβ (ϕ (s)) −

a (ϕ (s)) (Ω (s))β+1 χ (s)

(β+ 1)β+1 (ϕ′ (s))β

]
ds

= lim sup
t→∞

∫t
3

[
ϑ

3s
−

11ϑ
15s2 −

3ϑ
5s3 −

1
4s2

]
ds =∞.

Then by Theorem 3.9 every solution of Eq. (4.2) is oscillatory.
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[12] J. Džurina, E. Thandapani, B. Baculı́ková, C. Dharuman, N. Prabaharan, Oscillation of second order Nonlinear Dif-

ferential Equations with several sub-linear neutral terms, Nonlinear Dyn. Syst. Theory, 19 (2019), 124–132. 1, 1, 1
[13] M. M. A. El-Sheikh, Oscillation and nonoscillation criteria for second order nonlinear differential equations. I, J. Math.

Anal. Appl., 179 (1993), 14–27. 1
[14] M. M. A. El-Sheikh, R. A. Sallam, D. I. Elimy, Oscillation criteria for second order nonlinear equations with damping,

Adv. Differ. Equ. Control Process., 8 (2011), 127–142. 1
[15] X. Fu, T. Li, Ch. Zhang, Oscillation of second-order damped differential equations, Adv. Difference Equ., 2013 (2013), 11

pages. 1
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