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Abstract
In this article, a new numerical technique based on Haar wavelet is introduced to solve the time fractional advection

diffusion equations (TFADEs). First we have constructed a generalized operational matrix of fractional order integration using
Haar wavelet without taking block pulse functions into account. The fractional derivative in these problems is in the Caputo
sense. In the proposed technique, the unknown function is approximated by truncated Haar wavelet series. The efficiency of
the computational approach is examined and validated using particular test problems, and are compared with those of existing
methodologies. The numerical results show that the proposed technique is computationally more efficient and yields high
accuracy over those methodologies. The behaviour of solutions of fractional order α and their graphical representation is shown
by using MATLAB (R2022a) at various values.
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1. Introduction

The calculus of fractions is an area of mathematics that investigates the characteristics of integrals and
derivatives of orders that are not integers. It is the development of integer-order integrals and deriva-
tives to real or even complex order. The complex-order derivative has allowed the order of fractional
derivatives to be a function of independent variables like time, space, or other considerations. Fractional
calculus has been one of the most useful and sophisticated techniques for expressing a wide range of phys-
ical processes over the last few decades [34], including gas transport through heterogeneous soil and gas
reservoirs [6] and those in the fields of thermal sciences, viscoelasticity [4], electrochemistry, control theory
[27], and traffic-flow simulation [5]. Non-locality is one of the most important characteristics of fractional-
order models, which allows them to represent genuine physical phenomena and dynamic systems more
precisely than standard differential operators. Much study has been conducted in the application of frac-
tional calculus to many mathematical models that originate in the disciplines of engineering and science
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[1, 33]. It provides significant new capabilities for scientists, opening up new avenues for their work and
making their discoveries applicable to a wide range of physical applications. The primary advantage of
fractional calculus is that they are global operators that generate precise and stable results. For more
information, see [24, 32]. Different hydrologic dynamics have been interpreted using fractional-derivative
models, such as gas movement via heterogeneous soil and gas reservoirs [6]. Dissolved contaminants
transport in groundwater [16]. Utilizing control system analysis in eye movement neurophysiology [27].
Numerous real-world phenomena that emerge in science and engineering could be the result of the con-
struction of models based on the notion of fractional calculus. Some of these are the convection advection
equation, the time fractional convection-diffusion equation, the time-fractional heat equations, the time
fractional wave equation, the fractional Burger’s equation, the fractional order Fisher’s equation, and so
on. Solving such fractional differential equations is challenging, so numerical methods play a crucial
role. For the applications of fractional mathematical modeling, one can see [12, 20, 22, 23, 25, 26]. As
a consequence, different numerical and analytical approaches have been effectively utilized to solve the
fractional order equations. The fractional partial differential equations (FPDEs) are categorized as time-
fractional partial differential equations (TFPDEs) and space-fractional partial differential equations. In
this article, we’ll concentrate on the TFPDEs, which are advection-diffusion equations with constant and
variable coefficients,

∂αµ(ζ, τ)
∂τα

+ a(ζ)
∂µ(ζ, τ)
∂ζ

+ b(ζ)
∂2µ(ζ, τ)
∂ζ2 = R(ζ, τ), 0 < ζ < 1, 0 < τ 6 1, (1.1)

with initial condition (IC)
µ(ζ, 0) = f(ζ),

and boundary conditions (BCs)
µ(0, τ) = h0(τ), µ(1, τ) = h1(τ),

where 0 < α < 1 and a(ζ), b(ζ) 6= 0 are continuous functions f(.),h0(.),h1(·) are functions in L2[0, 1)
and h(., .) is a given function in L2([0, 1)× [0, 1)). The Caputo fractional derivatives are used in this con-
text to define the time-fractional derivative. Numerous numerical strategies have been developed for
the solution since the analytic solution for FPDEs is challenging and requires more computational labor.
FPDEs can be solved using a variety of numerical techniques, including the finite difference method,
homotopy perturbation approach [21], generalized differential transform technique [24], Sinc-Legendre
technique [28], discontinuous Galerkin technique [43], and variational iteration method [9]. Recently, sev-
eral methods were proposed to develop the solutions of TFDEs, which include finite difference and finite
volume schemes [14, 29], Gegenbauer spectral method [11], B-spline scaling function for time-fractional
convection-diffusion equations [2], and high-order numerical algorithms for TFPDEs [46], Finite differ-
ence method for fractional dispersion equations [36], extended cubic B-spline technique [37], Chebyshev
collocation methods [31, 35], and RBF-based local meshless method for fractional diffusion equations [13].

The popularity of wavelet-based numerical algorithms in numerical analysis may be attributed to their
straightforwardness, computational simplicity, and speedy convergence. It’s important to keep in mind
that there are distinct wavelet families, including Chebyshev, Daubechies, Fibonacci, B-spline, Bernoulli,
and Legendre wavelets, that are consistently used to solve various biological and physical problems
[10, 17]. However, curiosity for the Haar wavelets has increased significantly, owing to their promising
characteristics such as compact support, orthogonality, and lucidity [7]. Haar wavelets have more unique
qualities that include their proficiency to recognize singular points, the simple incorporation of several
forms of BCs, and the ability to integrate arbitrary times [32]. Currently, several researchers use numerical
techniques based on wavelets to solve problems like TFPDEs. Particularly, Zada et al. [44] developed a
numerical approach to solve FPDEs. A survey of different wavelet-based numerical methods has been
found in [7]. For fractional PDEs, the Hermite wavelet was developed [10], and Jiaquan et al. used the
Chebyshev wavelet for one-dimensional fractional convection diffusion equations [41, 42]. Chin et al.
solved the fractional PDEs via wavelet techniques [8]. Wang solved the fractional Kadomtsov Petviashvili
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Boney Moahony model [38] and the fractional Bogoyavlensky equation [39]. Further Wang gives a solitary
wave solution to fractional KDV equations [40].

Motivated by Haar wavelet supremacy over other wavelet families, we set out to find a solution to the
fractional-order equations by developing a modified Haar wavelet collocation fractional-order integration
approach. Also, it is possible to implement the suggested approach by using the Walsh operational matrix
of integration, regardless of the specific issue we are not going to discuss here, as the generalized Haar
wavelet operational matrix of integration (OMI) is more viable and precise. The primary contribution of
this study is, without applying the block pulse functions, OMIs of fractional order are constructed. Haar
wavelets have the property of transforming the original equations into a series of algebraic equations
with unknown coefficients. Apart from other approaches, ours does not involve computing the inverse
of the Haar matrix. The significance of this work is to contribute to advancing numerical methods for
solving TFADEs with improved efficiency and precision. The advantages of the considered problem are
its relevance to real-world phenomena, and the advantages of the proposed techniques include versatility,
computational efficiency, high accuracy, and a thorough comparative analysis with existing methodolo-
gies. Our results reveal that the present approach agrees perfectly with conventional techniques.

Sections are organized as follows. In Section 1, a brief introduction is discussed. Section 2 contains
the basics of fractional derivatives and an overview of multi-resolution Haar wavelets and their function
approximations. Further, the OMI of generalized Haar wavelets is constructed. In Section 3, the method
of description of the proposed technique is obtained. In Section 4, the convergence and error analysis
is given. In Section 5, four problems are discussed to demonstrate the effectiveness and accuracy of the
current approach. Lastly, a brief conclusion was drawn.

2. Fractional calculus and Haar wavelet

In this part, we will first offer a quick introduction to certain requirements for fractional calculus
before going into the Haar wavelets and their key characteristics. The Haar basis functions are used to
construct fractional-order OMI.

2.1. Fractional calculus
Various techniques exist for defining fractional order derivatives, including Caputo, Riemann-Liouville

(RL), Baleno fractional, and Grünwald-Letnikov. Since most physical processes begin with starting con-
ditions specified in terms of field coordinates and their integer order, Caputo’s method has proven to be
remarkable [15, 32]. To avoid confusion, the fractional derivative will be used throughout the rest of this
article in the sense of Caputo. For further studies, we refer to [32, 44].

Definition 2.1 ([15]). The RL fractional operator of order α > 0 of µ(ζ) ∈ Cn,n > −1 is

Iαµ(ζ) =
1
Γ(α)

∫ζ
0
(ζ− τ)α−1µ(τ)dτ, ζ > 0,

Γ(.) denotes the gamma function. Few, properties of operator Iα are listed below:

1. IαIβµ(ζ) = Iα+βµ(ζ), α,β > 0;

2. Iαζβ =
Γ(1 +β)

Γ(1 +α+β)
ζα+β, β > −1;

3. IαIβµ(ζ) = IβIαµ(ζ), α,β > 0.

Definition 2.2. The Caputo fractional derivative Dα of µ(ζ) ∈ Cn1 is

Dαµ(ζ) =
1

Γ(n−α)

∫ζ
0

µn(τ)

(ζ− τ)α−n+1 dτ, n− 1 < α 6 n, n ∈N,

below are some fundamental features of the Caputo fractional derivative:
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1. Linearity: Dα
(
σµ(ζ) + δg(ζ)

)
= σDαµ(ζ) + δDαg(ζ), where σ, δ are constants;

2. IαDαµ(ζ) = µ(ζ) −
∑n−1
k=0 f

k(0+) ζ
k

k! , n− 1 < α 6 n, n ∈N;

3. Dαζβ =
Γ(1 +β)

Γ(1 +β−α)
ζβ−α, 0 < α < β+ 1, β > −1;

4. DαC = 0, C is a constant.

2.2. Wavelets and multi-resolution analysis
A wavelet is a confined wave-like oscillation that develops from zero, achieves a maximum amplitude,

and then declines back to zero amplitude. The earliest and most straightforward orthonormal wavelet
with compact support among the several wavelet families that are now used is the Haar wavelet. The
Haar wavelet family for ζ ∈ [0, 1] can be computed as

hi(ζ) =


1, for ζ ∈ [α,β) ,
−1, for ζ ∈ [β,γ) ,
0, otherwise,

(2.1)

where

α =
k

m
, β =

k+ 0.5
m

, γ =
k+ 1
m

.

For m = 1,k = 0, we have i = 2, is the minimal value and N = 2M = 2j+1 is the maximal value. i = 1
corresponding to the scaling function, i.e., h1(ζ) = 1 in [0, 1], where m, k ∈ Z, as m = 2j, j = 0, 1, . . . , J,
and J is the maximal level of resolution and the translation parameter is k, where k = 0, 1, . . . ,m− 1. The
index of hi in (2.1) is given by i = m+ k+ 1. For further studies on Haar wavelets and their applications
one may see [17, 32]. Any µ ∈ L2[0, 1] can be transformed using Haar wavelet as

µ(ζ) = c0h0(ζ) + c1h1(ζ) + c2h2(ζ) + · · · =
∞∑
i=0

cihi(ζ),

where ci, i = 0, 1, 2, . . . are the Haar coefficients given by

ci = 〈µ,hi〉 =
∫ 1

0
µ(ζ)hi(ζ)dζ.

The preceding series terminate finitely if µ(ζ) is piecewise constant throughout each subinterval or is
piecewise constant consequently, the discrete matrix form is

µ(ζ) ≈
m−1∑
i=0

cihi(ζ) = C
T
mHm,

where CTm = [c0, c1, . . . , cm−1] are row vectors, and the Haar wavelet matrix Hm of order m = 2M.
Collocation points are computed as

ζl =
l− 0.5

2M
, l = 1, 2, . . . , 2M. (2.4)

The Haar matrix of order 8, i.e., j = 2⇒ N = 8 is given as

H8 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


.
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Integrating the Haar wavelet function one can obtain:

Pi(ζ) =

∫ζ
0
hi(ζ

′)dζ ′, Pi,1(ζ) =


ζ−α, for ζ ∈ [α,β),
γ− ζ, for ζ ∈ [β,γ),
0, elsewhere.

The next integral Qi,2(ζ) of Haar wavelets may be determined in the following manner:

Qi,2(ζ) =


(ζ−α)2

2 , for ζ ∈ [α,β),
1

4m2 −
(γ−ζ)2

2 , for ζ ∈ [β,γ),
1

4m2 , for ζ ∈ [γ, 1),
0, elsewhere.

Proceeding like this the n-th integration of Haar wavelets is

Ri,n(ζ) =


(ζ−α)n

n! , for ζ ∈ [α,β),
(ζ−α)n−2(ζ−β)n

n! , for ζ ∈ [β,γ),
(ζ−α)n−2(ζ−β)n+(ζ−γ)n

n! , for ζ ∈ [γ, 1),
0, elsewhere.

Multi-resolution analysis: Multiresolution is intuitively connected to the study of signals or pictures
with several degrees of resolution, similar to a pyramid. In the framework of wavelet analysis, Mallat and
Meyer [19] proposed the concept of MRA in 1986.

Definition 2.3. A multi-resolution consists of a sequence Vm : m ∈ Z of embeded closed subspace of
L2(R) satisfying the following:

• increasing, Vm ⊂ Vm+1 : m ∈ Z;

• density,
⋃∞
m=−∞ is dense in L2(R), i.e.,

⋃∞
m=−∞ Vm = L2(R);

• separation,
⋂
j∈Z Vm = 0;

• scaling, µ(ζ) ∈ Vm, iff µ(2ζ) ∈ Vm+1, ∀ m ∈ Z;

• orthonormality, there exist φ ∈ V0 a scaling function such that φo,k(ζ) = φ(ζ− k) is a basis for V0.

By defining suitable projections of these functions onto these spaces, the space Vj may be utilized
to approximate generic functions. Because the union of all V0 is dense in L2(R), such projections can
approximate any function in L2[R] arbitrarily close.

2.3. Fractional operational matrix of integration

Here, integration of the vector Hm(ζ) = [h0(ζ),h1(ζ), . . . ,hm−1(ζ)]
T can be approximated by Haar

series as [7] ∫ζ
0
Hm(η)dη ∼= PHm(ζ),

where P is the m order OMI. Next, the generalized OMI of general order is generated without using block
pulse functions. The general order integration of the Haar operational matrix Pα is given by

PαHm(ζ) = IαHm(ζ) =
[
Iαh0(ζ), Iαh1(ζ), . . . , Iαhm−1(ζ)

]T
=
[
Ph0(ζ),Ph1(ζ), . . . ,Phm−1(ζ)

]T ,
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where

Ph0(ζ) =
1√
m

ζα

Γ(1 +α)
, 0 6 ζ 6 1,

Phi(ζ) =
1√
m


0, 0 6 ζ < k− 1/2j,
2j/2Φ1(ζ), k− 1/2j 6 ζ < k− 0.5/2j,
2j/2Φ2(ζ), k− 0.5/2j 6 ζ < k/2j,
2j/2Φ3(ζ), k/2j 6 ζ < 1.

Φ1(ζ) =
1

Γ(α+ 1)

(
ζ−

k− 1
2j

)α
,

Φ2(ζ) =
1

Γ(α+ 1)

(
ζ−

k− 1
2j

)α
−

2
Γ(α+ 1)

(
ζ−

k− 0.5
2j

)α
,

Φ3(ζ) =
1

Γ(α+ 1)

(
ζ−

k− 1
2j

)α
−

2
Γ(α+ 1)

(
ζ−

k− 0.5
2j

)α
+

1
Γ(α+ 1)

(
ζ−

k

2j

)α
.

For instance, if α = 1.5,N = 4, and N = 8, we have

P1.5H4 =


0.0166 0.0864 0.1858 0.3079
0.0166 0.0864 0.1526 0.1351
0.0235 0.0751 0.0420 0.0319

0 0 0.0235 0.0751

 ,

P1.5H8 =



0.0042 0.0216 0.0465 0.0770 0.1122 0.1516 0.1948 0.2414
0.0042 0.0216 0.0465 0.0770 0.1039 0.1084 0.1019 0.0875
0.0059 0.0305 0.0540 0.0478 0.0331 0.0273 0.0238 0.0214

0 0 0 0 0.0059 0.0305 0.0540 0.0478
0.0083 0.0266 0.0149 0.0113 0.0095 0.0083 0.0075 0.0069

0 0 0.0083 0.0266 0.0149 0.0113 0.0095 0.0083
0 0 0 0 0.0083 0.0266 0.0149 0.0113
0 0 0 0 0 0 0.0083 0.0266


.

3. Description of method

This part aims to demonstrate the applicability of the OMI of the generalized Haar wavelet for solving
the TFPDEs with boundary conditions. Consider TFPDEs with variable coefficient

∂αµ(ζ, τ)
∂tα

+ a(ζ)
∂µ(ζ, τ)
∂ζ

+ b(ζ)
∂2µ(ζ, τ)
∂ζ2 = R(ζ, τ), 0 < ζ < 1, 0 < τ 6 1, (3.1)

along with IC
µ(ζ, 0) = f(ζ), 0 < ζ < 1, (3.2)

and BCs
µ(0, τ) = h0(τ), µ(1, τ) = h1(τ), (3.3)

where R(ζ), b(ζ) 6= 0, and a(ζ) are smooth functions, and f(ζ),h0(τ), and h1(τ) are functions in L2[0, 1).
To solve time fractional equation (3.1), we assume

∂2+αµ(ζ, τ)
∂ζ2∂τα

≈ ΨT (ζ)CΨ(τ), (3.4)

where C is unknown Haar wavelet coefficient. Using R-L fractional integral of order α, we integrate (3.4)
w.r.t to τ as given by

∂2µ(ζ, τ)
∂ζ2 ≈ ∂

2µ(ζ, τ)
∂ζ2

∣∣∣∣
τ=0

+ΨT (ζ)CPαΨ(τ), (3.5)
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where Pα = Pα2k−1M×2k−1M
, using initial condition (3.2), enable to put in (3.5),

∂2µ(ζ, τ)
∂ζ2 ≈ f′′(ζ) +ΨT (ζ)CPαΨ(τ). (3.6)

By integrating (3.6) w.r.t ζ, twice, we get

µ(ζ, τ) ≈ µ(0, τ) + ζ
∂µ(ζ, τ)
∂ζ

∣∣∣∣
ζ=0

− ζf′(0) +
(
P2Ψ(ζ)

)T
C (PαΨ(τ)) + f(ζ) − f(0). (3.7)

Taking ζ = 1 in (3.7) and employing the conditions given in (3.3), we get

µ(1, τ) ≈ µ(0, t) +
∂µ (ζ, τ)
∂ζ

∣∣∣∣
x=0

− f′(0) +
(
P2Ψ(1)

)T
C (PαΨ(τ)) + f(1) − f(0). (3.8)

Therefore, we get

∂µ(ζ,τ)
∂ζ

∣∣∣
ζ=0
≈ −

(
P2Ψ(1)

)T
C (PαΨ(τ)) + f(0) + f′(0) − f(1) + h1(τ) − h0(τ) = S(τ). (3.9)

Substituting (3.9) in (3.7), we obtain

µ(ζ, τ) ≈µ(0, τ) + ζS(τ) + f(ζ) − f(0) − ζf′(0) +
(
P2Ψ(ζ)

)T
C (PαΨ(τ)) . (3.10)

By one time differentiation of (3.10) w.r.t τ we get,

∂µ(ζ, τ)
∂ζ

≈ S(τ) + f′(ζ) − f′(0) + (PΨ(ζ))TC (PαΨ(τ)) . (3.11)

Applying the Caputo fractional derivative w.r.t τ in (3.10), we obtin the following equation

∂αµ(ζ, τ)
∂τα

≈
(
P2Ψ(ζ)

)T
CΨ(τ) + ζDαS(τ) +Dαh0(τ), (3.12)

where

DαS(τ) = −
(
P2Ψ(1)

)>
CΨ(τ) +

∂α

∂τα
h1(τ) −

∂αh0(τ)

∂τα
, Dαh0(τ) =

∂αh0(τ)

∂τα
.

By inserting equations (3.8), (3.11), (3.12) in (3.1) and using the pre-defined collocation points given in
(2.4), and replacing ≈ by =, we get the system of algebraic equation of the form given below:(

P2Ψ(ζ)
)T
CΨ(τ) +βDαR(τ) +Dαh0(τ) + a(ζ)(R(τ) + f

′(ζ) − f′(0)

+ (PΨ(ζ))TC (UαΨ(τ)) + b(ζ)(f′′(ζ) +ΨT (ζ)CPαΨ(τ)) = h(ζ, τ).
(3.13)

We obtain the unidentified generalized Haar coefficient C in (3.13), solving the system of equations by
using an iterative method such as the Newton method. Finally, by inserting C in (3.10), we obtain an
approximate solution.

4. Error estimation

Assume that µ(ζ) fulfills the requirements of the Lipschitz condition on [0, 1], ∃ K > 0, such that

|µ(ζ1) − µ(ζ2)| 6 K|ζ1 − ζ2|, ∀ ζ1, ζ2 ∈ [0, 1],

where K is Lipschitz constant. Consequently, Haar approximation µm(ζ) of µ(ζ) is obtained as

µm(ζ) =

m−1∑
i=0

cihi(ζ), m = 2q+1, q = 0, 1, . . . ,M.
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Then corresponding error norm at m-th level can be obtained as

‖µζ) − µ(ζm)‖ = ‖µζ) −
m−1∑
i=0

cihi(ζ)‖2 = ‖
∞∑

i=2q+1

cihi(ζ)‖.

We are able to carry out an error analysis since the exact solution to the fractional-order differential equa-
tions is already known. Here, in the context of an upper limit, we deduce an inequality, demonstrating
the convergence of Haar wavelet for fractional order PDEs.

Theorem 4.1 ([18]). Suppose the Lipschitz condition for the function µ(ζ, τ) on [0, 1] are satisfied and µm(ζ, τ)
are the Haar approximations of µ(ζ), then the error norm is

∥∥µ(ζ, τ) − µm(ζ, τ)
∥∥

2 6
K√
3m2

,

where

||µ(ζ, τ)||E =

( ∫ 1

0

∫ 1

0
µ2(ζ, τ)dζdτ

) 1
2

.

Theorem 4.2 ([7]). Assume that the k-th derivative exist and bounded on [a,b] for any M = 2j, j = 0, 1, 2, 3, . . . ,
if µM and µ are the Haar solution and exact solution, respectively, then

‖µ− µM‖∞ 6 O

(
1
M

)2

as j→∞.

The absolute error to observe the performance and accuracy of Haar wavelet is defined as

Er = |µ(ζ, τ) − µk(ζ, τ)|,

the exact solution is denoted as µ(ζ, τ) and µk(ζ, τ) is the approximate solution. The maximum absolute
error is

L∞ = max|µ(ζ, τ) − µk(ζ, τ)|.

5. Numerical examples

To show how the generalized Haar wavelet technique works, we have presented some numerical
examples in this section. The results are tabulated and contrasted with those from earlier methodologies
that were reported in the literature and the absolute error is measured.

Problem 5.1. Consider a(ζ) = ζ and b(ζ) = −1 and

R(ζ, τ) =
Γ(1 + 2α)
Γ(1 +α)

τα
(
ζ− ζ3)+ (1 + τ2α) (7ζ− 3ζ3) .

Then equation (1.1) becomes

∂αµ(ζ, τ)
∂τα

+ ζ
∂µ(ζ, τ)
∂ζ

−
∂2µ(ζ, τ)
∂ζ2 =

Γ(1 + 2α)
Γ(1 +α)

τα
(
ζ− ζ3)+ (1 + τ2α) (7ζ− 3ζ3) , 0 < ζ < 1, 0 < τ < 1,

with IC
µ(ζ, 0) = ζ− ζ3,

and BCs are
µ(0, τ) = 0 = µ(1, τ).
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Figure 1: Plot of exact and approximate solutions for time τ = 0.1 and α = 0.95 of Problem 5.1.

(a) Behaviour of approximate solutions at j =
3.

(b) Behaviour of approximate solutions at j =
4.

(c) Behaviour of exact solution at j = 4.

Figure 2: Graphs of approximate and exact solutions of Problem 5.1 at α = 0.95.
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Table 1: Absolute error of Problem 5.1 at various values of α and τ = 0.5 with resolution j = 4.

ζ α=0.1 α=0.3 α=0.5 α=0.7
0.1 3.4533e-05 2.4255e-05 8.1341e-05 1.2085e-06
0.2 4.6352e-05 2.4788e-05 1.7233e-05 7.6121e-05
0.3 5.3451e-05 6.0388e-05 1.4631e-04 1.5390e-05
0.4 6.2124e-05 6.6252e-05 8.6268e-04 3.4718e-05
0.5 7.0770e-05 1.2351e-05 5.5453e-04 1.9165e-06
0.6 8.5630e-05 4.7453e-05 1.2652e-04 1.0258e-05
0.7 9.7569e-05 5.3982e-05 2.2377e-05 6.1842e-05
0.8 1.0654e-04 6.0259e-05 2.2160e-05 6.5283e-06
0.9 1.3325e-04 9.2655e-05 3.4241e-05 9.2498e-06

Table 2: Absolute error of Problem 5.1 at α = 0.9, τ = 0.1 with resolution j = 4.

x
Chebyshev collocation method [31] Present method

m=5 m=6 j=4 j=6
0.1 2.4568e-03 2.4473e-03 1.9579e-05 2.3215e-06
0.2 4.7198e-03 4.7146e-03 1.8181e-05 3.6568e-06
0.3 6.6174e-03 6.6114e-03 2.1976e-05 2.0309e-06
0.4 7.9816e-03 7.9728e-03 2.5772e-06 4.6186e-06
0.5 8.6666e-03 8.6566e-03 6.3649e-05 8.7586e-06
0.6 8.5616e-03 8.5537e-03 5.3649e-05 9.2855e-05
0.7 7.6045e-03 7.5997e-03 4.3685e-06 2.9346e-05
0.8 5.7951e-03 5.7900e-03 4.3685e-05 9.9165e-06
0.9 3.2082e-03 3.1971e-03 6.7125e-06 2.4445e-06

The given problem has an exact solution provided below as

µ(ζ, τ) =
(
1 + τ2α) (ζ− ζ3) .

In Figures 1 and 2, approximate solutions and exact solutions are compared in two and three di-
mensions, and the behavior of approximate solutions at different resolution levels of the Haar wavelet is
shown. Table 1 shows the absolute error at time τ = 0.5 for different values of the fractional parameter α,
and the comparison of the approximate solution with other methods is shown in Table 2.

Problem 5.2. Consider

∂αµ(ζ, τ)
∂τα

− ζ
∂µ(ζ, τ)
∂ζ

−
∂2µ(ζ, τ)
∂x2 = R(x, τ), 0 < ζ < 1, 0 < τ 6 1, 0 < α < 1, (5.1)

R(ζ, τ) =
10ζ2(1 − ζ)τ2−α

Γ(2 −α)
− 10(τ+ 1)

(
2
Γ(1)

−
6ζ
Γ(2)

)
+ 10(τ+ 1)

(
2ζ
Γ(2)

−
6ζ2

Γ(2)

)
,

with IC
µ(ζ, 0) = 10ζ2 − 10ζ3,

and BCs
µ(0, τ) = 0, µ(1, τ) = 0.

The exact solution of (5.1) is
10(τ+ 1)(1 − ζ)ζ2.
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(a) Behaviour of approximate solutions at j =
3.

(b) Behaviour of approximate solutions at j =
4.

(c) Behaviour of exact solutions at j = 4.

Figure 3: Graphs of approximate and exact solution of Problem 5.2 at α = 0.05.

Table 3: Absolute error of Problem 5.2 at different values of α and τ = 0.95 with resolution j = 4.
ζ α=0.01 α=0.03 α=0.05 α=0.07

0.1 5.3328e-04 2.4832e-03 8.1341e-04 1.2085e-03
0.2 2.5766e-04 2.4425e-04 1.7563e-04 7.6121e-03
0.3 3.1422e-04 6.0352e-04 1.4571e-04 1.5390e-04
0.4 4.5249e-04 6.6452e-03 8.6468e-03 3.4718e-04
0.5 2.7517e-04 1.2331e-04 5.5723e-04 0.0024
0.6 2.2554e-04 4.7243e-04 1.2482e-04 0.0027
0.7 1.2581e-04 5.3512e-04 0.0015 0.0029
0.8 2.9325e-04 0.0011 0.0019 6.5283e-03
0.9 3.5282e-04 0.0013 0.0023 0.0015

In Figure 3, the approximate solution and exact solution are compared in 3-dimensional, and the
behavior of the approximate solution at various resolution levels of the Haar wavelet is also compared.
Figure 4 represents the behavior of the approximate solution at different values of α. Table 3 shows the
absolute error at time τ = 0.5 for various values of the fractional parameter α, and a comparison of the
approximate solution with existing techniques is given in Table 4.



S. Ahmed, S. Jahan, K. S. Nisar, J. Math. Computer Sci., 34 (2024), 217–233 228

Table 4: Absolute error of Problem 5.2 at different values of α and τ=0.95 with resolution j = 4.
ζ Chebyshev wavelets[3] Method in [45] Present method

(0.1) 0.17775401 017760929 5.3327e-04
(0.2) 0.63545182 0.63439865 2.7514e-04
(0.3) 1.25138745 1.25076281 1.2581e-04
(0.4) 1.90954789 1.90718308 1.2585e-04
(0.5) 2.487001534 2.48418437 3.5282e-04
(0.6) 2.87001534 2.86234006 4.3875e-04
(0.7) 2.92456444 2.92227732 2.2551e-04
(0.8) 2.55014586 2.54468333 7.1839e-04
(0.9) 1.611254478 1.61031324 1.3528e-04
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(d) Absolute error of Problem 5.2 at α = 0.05.

Figure 4: Graphs of approximate solutions and absolute error.

Problem 5.3. Consider the following equation

∂αµ(ζ, τ)
∂τα

+ ζ
∂µ(ζ, τ)
∂ζ

+
∂2µ(ζ, τ)
∂ζ2 = 2τα + 2ζ2 + 2, 0 < ζ < 1, 0 < τ 6 1, 0 < α < 1,
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with IC and BCs

µ(ζ, 0) = β2, 0 < ζ < 1, µ(0, τ) =
2Γ(α+ 1)
Γ(2α+ 1)

τ2α, µ(1, τ) = 1 +
2Γ(α+ 1)
Γ(2α+ 1)

τ2α, 0 6 τ 6 1.

The given problem has an exact solution provided below:

µ(ζ, τ) = ζ2 +
2Γ(α+ 1)
Γ(2α+ 1)

ζ2α.

(a) Approximate solutions at j = 3. (b) Approximate solutions at j = 4.

(c) Exact solution at j = 4. (d) Absolute error at j = 4.

Figure 5: Comparison between approximate solutions and exact solution at different resolution levels.

Problem 5.4. Consider,

∂αµ(ζ, τ)
∂τα

+ ζ
∂µ(ζ, τ)
∂ζ

−
∂2µ(ζ, τ)
∂ζ2 = R(ζ, τ), 0 < ζ < 1, 0 < τ 6 1, 0 < α < 1,

and the IC and BCs are
µ(x, 0) = ζ2 − ζ3, µ(0, τ) = µ(1, τ) = 0,

where

R(ζ, τ) =
2τ2−α

Γ(3 −α)

(
ζ2 − ζ3)+ (τ2 + 1

) (
2ζ2 − 3ζ3 + 6ζ− 2

)
.

The given problem has exact solution as

µ(ζ, τ) =
(
τ2 + 1

) (
ζ2 − ζ3) .
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Table 5: Absolute error of Problem 5.3 at α = 0.5, τ = 0.5 with resolution j = 4.

ζ
Haar wavelet [8] B-Spline Sinc [2] Chebyshev [31] Sinc-Legendre [28] Present method

m=64 m=20 m=5 m=15 j=6
0.1 1.210E-3 1.369E-09 7.964e-06 6.462e-6 3.5362E-14
0.2 1.259E-3 7.591e-10 3.912e-06 1.578e-5 2.1005E-13
0.3 1.865E-3 1.184e-09 6.162e-06 2.272e-5 5.5344E-14
0.4 7.412E-3 1.068e-09 5.953e-06 2.674e-5 5.1520E-14
0.5 1.000E-6 9.819e-10 2.103e-06 3.004e-4 4.4321E-15
0.6 7.460E-3 1.039e-09 7.639e-06 2.534e-5 3.1104E-14
0.7 1.724E-3 1.031e-09 1.967e-06 2.035e-5 1.1104E-16
0.8 4.990E-3 1.030e-09 8.103e-06 1.320e-5 9.1534E-15
0.9 1.678E-2 1.031e-09 6.019e-06 4.653e-6 6.0192E-14

(a) Exact solution at j = 5. (b) Approximate solutions at j = 5.

(c) Absolute error at j = 4.

Figure 6: Graphs of approximate and exact solution.

In Figure 6 (a) the approximate solution at resolution levels j = 5 and at α = 0.05 (b) the exact solution
at resolution levels j = 5 and at α = 0.05 (c) shows the absolute error at α = 0.05 and τ = 0.02. The
time complexity for each numerical examples depends upon the resolution levels, for Problem 5.1 the
computation time is 1.511sec at resolution j = 2 and at j = 4 we have 3.237sec, similarly for Problem 5.2
at j = 4 is 3.046 sec and 1.171 sec at j = 2, and for Problem 5.3 the time is 1.123 sec at j = 2 and 3.106 sec
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at j = 4. Also for Problem 5.4 the time is 1.401 sec at j = 2 and 3.195 sec at j = 4.

6. Conclusion

In this paper, a generalized Haar wavelet approach is effectively used to find the numerical solution of
a TFADEs. The Caputo derivative is utilized in the analysis of fractional derivatives. The approximated
solutions of fractional order PDEs subjected to specific BCs were found to match the exact solutions.
To demonstrate the efficacy and accuracy of our proposed technique, we present numerical examples
and compare them with existing methods such as the Chebyshev collocation method [3, 31], method in
[45], Haar wavelet [8], B-Spline [2], and Sinc-Legendre [28]. The graphical representation facilitates a
clear observation of how the fractional parameter α evolves over time. Additionally, tables displaying
the impact of α on absolute error for a range of values are provided. Analysis of the tables reveals that
the error diminishes at an exponential rate, and as the resolution levels j increase, the result converges
closer to the exact solution. The 3-dimensional error graph is presented at resolution j = 4. The obtained
findings indicate that the suggested method is an excellent tool for numerically solving the TFADEs and
can be used to solve other fractional order PDEs. In the future, one can use the proposed method to
solve fractional-order nonlinear PDEs, pandemic models, fractional oder integrodifferential equations,
and many more.
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