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Abstract
One of the effective techniques for nonlinear equation is the Newton algorithm. In the event that the system’s nonsingular

Jacobian is found close to the solution, this method’s convergence is guaranteed, and its rate is quadratic. Any deviation from
this specified condition, such as the presence of a singular Jacobian, would, however, lead to an inadequate convergence or
possibly the loss of convergence. This study constructs a derivative quasi-Newton method for large-scale nonlinear equation
systems, particularly, when the system contains fuzzy coefficient rather that crisp coefficient. This modification is based on
a recent method available in literature. The convergence result of the proposed method has been discussed under suitable
assumptions. Preliminary obtained results show that the new algorithm is computationally much faster and promising. An
interesting feature of the proposed scheme is that despite the fact that the Jacobian matrix is singular in the neighborhood of the
solution, the new algorithm was still able to converge to the solution point.
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1. Introduction

Numerous real-world applications exist for systems of nonlinear equations, including the modeling
of predator-prey relationships, chemical reactions, economics, and more [21, 25]. These applications are
common, and their solutions offer important new perspectives on the behavior of the intricate systems.
They are essential for anticipating or optimizing outcomes in a variety of fields, as well as for compre-
hending real-world phenomena. However, in many situations, the coefficients are found to be imprecise
and it could be practical in this situation to use fuzzy numbers to represent some or all of the imprecise
coefficients [23].

Zadeh [32] introduced the idea of fuzzy numbers and logic in 1965 as a mathematical method of
handling ambiguity and imprecision in information. Unlike classical (crisp) numbers, fuzzy numbers
admit a degree of membership or possibility within a given range. However, a fuzzy number lacks a
precise value and is instead defined by a membership function that gives each element within its range
a degree of membership [16]. Applications for this creative idea can be found in many domains, such as
artificial intelligence, decision-making, control systems, and more. Zadeh’s contributions to fuzzy logic
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and fuzzy numbers have greatly influenced how we handle and model uncertainty across a wide range
of applications. In situations where there is imprecision and uncertainty and where the relationships
between the variables are not well defined, fuzzy nonlinear equations are created. In these situation,
specific techniques are needed to solve these equations because they involve fuzzy variables. Iterative
techniques can be modified for fuzzy systems and are comparable to solving crisp nonlinear equations.

A study by Fang [10] examined nonlinear equation systems with fuzzy coefficients and demonstrated
the widely used applications of fuzzy number arithmetic. Buckley and Qu [5, 6] also introduced a few
common analytical methods for fuzzy linear equations. These techniques, however, are not suitable for
the following equation types:

ay5 + by3 + cy− e = f, d cos(y) − hy = g, x− sin(y) = d, iy3 + g sin(y) cos(y) = a,

having the fuzzy numbers a,b, c,d, e, f,g,h, and i as their coefficients. It is not always possible to directly
apply conventional numerical techniques meant for crisp systems to fuzzy nonlinear equations. Rather,
in order to find solutions that take into account the fuzziness in the coefficients or variables, specialized
iterative procedures are frequently used. This has motivated the call for investigating different iterative
procedures for solving nonlinear equations with fuzzy coefficients.

Exploring numerical procedures for solving system with fuzzy coefficient is an active area of research
within the broader field of fuzzy mathematics. Researchers continue to enhance existing methods and
construct novel algorithms to provide accurate and efficient solutions of the fuzzy nonlinear problems.
Most of the recent algorithms for solving fuzzy nonlinear equation took into account situations in which
the Jacobian is non-singular near the solution, in particular, [13, 25] present studies on iterative methods
for nonlinear equations with dual fuzzy coefficients. The authors discussed the convergence of these
methods under mild conditions and outcome of their computational experiments to illustrate the effi-
ciency of the algorithms. Abbasbandy and Asady [2] investigated the computational efficiency of steepest
descent algorithm on fuzzy nonlinear equations and discused the convergence under suitable conditions.
Also, [20] examined the performance of midpoint Newton based method on nonlinear systems with
fuzzy coefficients. Currently, several studies investigated the performance of conjugate gradient method
for fuzzy nonlinear equation (see [17]). This methods are iterative algorithms characterized by low mem-
ory requirement and global convergence properties [15, 19, 22, 28, 29, 31]. For recent study on iterative
methods for solving fuzzy nonlinear equations see [1, 12, 17, 18, 24, 26, 27, 30].

Most of these algorithms are based on Newton’s procedure. However, the singularity of the Jacobian in
the solution neighborhood, is a significant challenge associated with Newton-type schemes in the context
of fuzzy nonlinear systems [7]. The singularity of the Jacobian may render Newton-type methods less
applicable and cause problems with convergence [3, 4, 14]. This motivates us to construct a novel Quasi-
Newtonian approach that is derivative-free and appropriate in the case of singular Jacobian problems.
The proposed algorithm would try to avoid the Jacobian’s singularity point during the iteration process.

The other parts of the research are as follows. An overview and necessary definitions pertaining to
fuzzy problems are presented in Section 2. The new approach’s derivation process is presented in Section
3, while experimental findings are discussed in Section 4. The summary and conclusion is discussed in
Section 5.

2. Preliminaries

Fuzzy logic is an extension of classical (or crisp) logic that enables the representation of vagueness and
uncertainty. Fuzzy numbers is one of the major concepts in fuzzy logic with numerous applications in
fields where precise or uncertain information needs to be modeled and represented. This section provides
an overview of concepts related to this study.

Definition 2.1 ([32]). A fuzzy set A ∈ X is a generalization of a classical set with elements having degrees
of membership for the function fA(x), ranging from 0 to 1.
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Definition 2.2. A fuzzy number of the form u : R→ I = [0, 1] is defined such that it satisfies the conditions
[8]:

1. u(x) = 0 within [c,d];
2. u is upper semi-continuous;
3. c 6 a 6 b 6 d for a defined set of real numbers a,b; and

(a) u(x) is monotonously decreasing on [b,d] and increasing on [c,a];
(b) u(x) = 1 for a 6 x 6 b.

The symbol E is used to denote the set of fuzzy numbers whose parameterized form is shown in [11].

Definition 2.3 ([8]). Let u(∝), u(∝), 0 6∝6 1 be fuzzy functions, the pair (u,u) are called the parameter-
ized form of the function if they satisfy the following:

1. the bounded functions u(∝) and u(∝) are monotonously decreasing and increasing left continuous
for 0 6∝6 1;

2. u(∝) 6 u(∝), for 0 6∝6 1.

For more references on types of fuzzy number (see [8, 11]).

3. Derivative-free quasi-Newton (DQN) type scheme

This study is more interested in constructing an efficient numerical procedure for fuzzy nonlinear
equations of the form:

H(x) = c, (3.1)

where c is a constant. By parameterizing (3.1), we have:

H(x, x, t) = c(r), H(x, x, r) = c(r), for 0 6 r 6 1. (3.2)

Suppose the solution of (3.2) is x = (λ, λ, r), this implies:

H(λ, λ, r) = c(r), H(λ, λ, r) = c(r). (3.3)

Let F(λ, λ, t) = c(r) and F(λ, λ, r) = c(r), then, (3.3) reduces to

F(λ, λ, r) = H(λ, λ, r), F(λ, λ, r) = H(λ, λ, r).

Let the approximate solution of (3.1) be xk = (xk, xk), then, ∀r ∈ [0, 1], we have p(r) and q(r) satisfying

λ = xk(r) + p(r), λ = xk(r) + q(r), k > 0. (3.4)

To iteratively obtaining (λ(r), λ(r)) for k = 0, 1, 2, . . . , we have λ(r) = xk+1 and λ(r) = xk+1, then, (3.4)
becomes:

xk+1 = xk(r) + p(r), xk+1 = xk(r) + q(r). (3.5)

By considering Taylor’s expansion of H and H about a point (x0, x0) without the lost of generality, and if
we eliminate the highest order terms, we have:

F(λ, λ, r) = H(x0, x0, r), F(λ, λ, r) = H(x0, x0, r). (3.6)

After some simplification on (3.6), it becomes:

J(xk, xk, r)
(
p(r)
q(r)

)
=

(
αk

βk

)
, (3.7)
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where βk = H(xk, xk, r) − F(xk, xk, r) and αk = H(xk, xk, r) − F(xk, xk, r).
The proposed approximation of the Jacobian matrix J(xk, xk, r) is defined by a diagonal matrix says

Dk, i.e.,
J(xk, xk, r) ≈ D(xk, xk, r), (3.8)

where D(xk, xk, r) is a given diagonal matrix, updated at each iteration. This means (3.7) can be written
as (

p(r)
q(r)

)
D(xk, xk, r) =

(
αk

βk

)
. (3.9)

From (3.5), it is clear to let Mk = (λ(r), λ(r)) = ((xk+1, xk+1)− (xk, xk)). And by letting Uk = (αk+1,βk+1)
−(αk,βk), using (3.8), relation (3.9) turns into

MkDk+1 ≈ Uk.

Let u = (u1,u2, . . . ,un) and M = (m1,m2, . . . ,mn). Since we require Dk+1 to be a diagonal matrix, then,
we define D = Bk = diag((d(1)

k )2, (d(2)
k )2, . . . , (d(n)

k )2), with Tr(B2
k) =

∑n
i=1(d

(i)
k )4), where Tr denotes the

trace operator. Now, we present the new diagonal updating formula as

Dk+1 = DK +
dTkyk − dkDkdk

Tr(B2
k)

Bk. (3.10)

Next, we define the the algorithm detailing the procedure of the proposed scheme.

Algorithm 3.1 (Derivative-free quasi-Newton (DQN) type procedure for solving fuzzy nonlinear equa-
tions).
Step 1: Transforming (3.1) into its parametrized form.
Step 2: Consider D0 = In and generate the starting point x0 with r = 0 and r = 1 in the parameterized

equations.
Step 3: Evaluate H(xk) = (αk,βk).
Step 4: Calculate xk+1 = xk −D−1

k H(xk), where Dk is defined by (3.10).
Step 5: Repeat Steps 3 and 4 using next k until convergence condition is achieved.
Step 6: Update xk+1 = xk −D−1

k H(xk).
Step 7: Restart the process with the next k from Steps 3 and 4.

Next, we prove that the proposed procedure terminate after finite steps. Establishing this condition
will demonstrate the robustness of the proposed algorithm.
Remark 3.2. The Algorithm 3.1 is well-defined such that it terminates after finite steps.

Proof.

Basis:

Step 1: For k = 0, then, D0 = In since the loop is not entered and thus, the starting points is considered
as x0. This implies xk+1 = xk −D−1

k H(xk) and ‖H(xk)‖ 6 10−5 hold.

Step 2: Let p of k be an arbitrary value, after going through the loop p times and at p+ 1, then, xp+1 =
xp −D−1

p H(xp). This implies, with p+ 1 = k.xk+1 = xk −D−1
k H(xk) will hold inside and out side the

loop.
Therefore, xk+1 = xk −D−1

k H(xk) and ‖H(xk)‖ 6 10−5 hold for any k > 0.

4. Convergence study of DQN method

In this section, we showed that the proposed diagonal updating formula is linearly convergence to
(λ, λ) under some mild assumptions.
Remark 4.1. Let {xk, xk}∞k=0 be a sequence defined over 0 6 k 6 ∞. Then, we say the sequence converges
to (λ, λ) ⇐⇒ limk→∞(xk(r)) = λ(r), and limk→∞(xk(r)) = λ(r), 0 6 r 6 1.



M. A. Aal, J. Math. Computer Sci., 33 (2024), 234–242 238

This remark led to the following theorem, which is very important in the convergence results of the
proposed method.

Theorem 4.2. Let F and F be smooth functions defined over xk and xk. Suppose Dk is bounded by any positive
constant γ. If the derivative of f(x) possesses the Lipschitz condition of order one, then, for every xk and xk, the
sequence {xk, xk}k>0 computed using the proposed algorithm, linearly converges to (λ, λ), that is

‖(xk+1, xk+1) − (λ, λ)‖ 6 µ‖(xk, xk) − (λ, λ)‖, µ ∈ (0, 1).

Proof. Redefining the diagonal elements, we have

Dk+1 = diag(d̂(i)k ),

d̂ik = min{max{`,dik},u}, where ` > 0 and u << +∞. Using the component-wise approximation proce-
dure, it is guaranteed that the proposed method would be bounded. Since, the proposed algorithm was
derived via component-wise approximation, this proof will consider the situation where the updating
matrix is bounded. Now, consider the Taylor series expansion of the fuzzy function H(x, x) about the
points (x, x) is defined as:

H(x, x) = H(xk, xk) +H
′
(xk, xk)((x, x) − (xk, xk)) +O(‖(x, x) − (xk, xk)‖2). (4.1)

Since (λ, λ) = (x, x), then, (4.1) reduces to:

H(λ, λ) = H(xk, xk) +H
′
(xk, xk)((λ, λ) − (xk, xk)) +O(‖(λ, λ) − (xk, xk)‖2). (4.2)

But, we have F(λ, λ) = 0, and thus, we have

−H(xk, xk) = H
′
(xk, xk)((λ, λ) − (xk, xk)) +O(‖(λ, λ) − (xk, xk)‖2). (4.3)

Applying (4.3) in algorithm 1, we have

(xk+1, xk+1) − (λ, λ) = (xk, xk) − (λ, λ) −D−1
k H(xk, xk). (4.4)

If we substitute (4.2) into (4.4), it produces:

(xk+1, xk+1) − (λ, λ) = (xk, xk) − (λ, λ) −D−1
k [H

′
(xk, xk)((λ, λ) − (xk, xk)) +O(‖(λ, λ) − (xk, xk)‖2)]. (4.5)

By neglecting the highest order terms from (4.5) , it will reduce to

(xk+1, xk+1) − (λ, λ) = ((xk, xk) − (λ, λ))[A−D−1
k H

′
(xk)] (4.6)

with A denoting the identity matrix. If we take the norm of both sides of (4.6), it becomes:

‖(xk+1, xk+1) − (λ, λ)‖ 6 ‖A−D−1
k H

′
(xk, xk)‖‖(xk, xk) − (λ, λ)‖.

From an earlier assertion, we know that the Jacobian is bounded. Now, suppose the diagonal update Dk

is bounded, then, we have

‖(xk+1, xk+1) − (λ, λ)‖ 6 ‖
√
n−αδ‖‖(xk, xk) − (λ, λ)‖. (4.7)

Let σ =
√
n−αδ and thus, (4.7) becomes:

‖(xk+1, xk+1) − (λ, λ)‖ 6 σ‖(xk, xk) − (λ, λ)‖.

This implies that {x, x}k>0 linearly converges to (λ, λ) and thus, completes the proof.

5. Results and discussion

This section demonstrate the computational efficiency of our new algorithm on set of fuzzy nonlinear
problems. To evaluate the uniqueness of the new scheme, the study also considered the cases, where the
Jacobian is singular. The computational procedure was coded on MATLAB programming software, which
was installed on a Corei5 double precision computer. For the initial Jacobian approximation, the study
considered the identity matrix. The problems considered for the numerical experiments are as follow.
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Problem 5.1. Consider
(3, 4, 5)x2 + (1, 2, 3)x = (1, 2, 3), (5.1)

without the lost of generality, let x is positive, now, the parametrized equation of (5.1) is obtained as:

(5 − r)x2(r) + (3 − r)x(r) = (3 − r), (3 + r)x2(r) + (1 + r)x(r) = (1 + r). (5.2)

After some simplification, we have

α = (3 + r)x2(r) − (1 + r)x(r) = (1 + r), β = (5 − r)x2(r) − (3 − r)x(r) = (3 − r),

and Jacobian is given as

J(x, x; r) =
[

2(5 − r)x(r) − 3 + r 0
0 2(3 + r)x(r) − 1 + r

]
,

whose inverse is obtained as:

J(x, x; r)−1 =

[
1

2(5−r)x(r)−3+r 0
0 1

2(3+r)x(r)−1+r

]
.

Set r = 0 and r = 1 in (5.2) to derive the starting guess. For r = 0, we have

5x2(0) + 3x(0) = 3, 3x2(0) + x(0) = 1, (5.3)

while for r = 1, it follows that

4x2(1) + 2x(1) = 2, 4x2(1) + 2x(1) = 2. (5.4)

By solving for x(0), x(1), x(0), and x(1) in (5.3) and (5.4), we obtained the initial points for this problem
as x(0) = 0.4343, x(0) = 0.5307, and x(1) = x(1) = 0.5, that is x0 = (0.4343, 0.5, 0.5307). These initial
guesses are very close to the exact solution of the problem and to assess the robustness of the new
scheme, we need to define new set of starting guesses that are further away from the root of the problem.
Therefore, for the purpose of this study, we propose the following initial guess as used in several literature
x0 = (0.4, 0.5, 0.6). After performing the computation using the proposed algorithm with the initial guess
set as x0 = (0.4, 0.5, 0.6), the problem converges to the solution after just six iterations, where the error
was less than 10−5. To further demonstration of the results, the study presented a graphical performance
for 0 6 r 6 1 as in Figure 1.
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Figure 1: Performance profile of the proposed (DQN) method for the solution of Problem 5.1.



M. A. Aal, J. Math. Computer Sci., 33 (2024), 234–242 240

Problem 5.2. Consider
(4, 6, 58)x2 + (2, 3, 4)x− (8, 12, 16) = (5, 6, 7),

without the lost of generality, let x is positive, then the parametrized form of (5.1) is obtained as

(8 − 2r)x2(r) + (4 − r)x(r) − (16 − 4r) = (7 − r), (4 + 2r)x2(r) + (2 + r)x(r) − (8 + 4r) = (5 + r). (5.5)

After some simplification on (5.5), we have

α = (4 + 2r)x2(r) + (2 + r)x(r) − (13 + 5r) = β = (8 − 2r)x2(r) + (4 − r)x(r) − (23 − 5r),

and Jacobian is given as

J(x, x; r) =
[

2(4 + 2r)x(r) + 2 + r 0
0 2(8 − 2r)x(r) + 4 − r

]
. (5.6)

The inverse of (5.6) is obtained as

J(x, x; r)−1 =

[
1

2(4+2r)x(r)+2+r 0
0 1

2(8−2r)x(r)+4−r

]
.

To compute the initial guesses, we set r = 0 and r = 1 in (5.5) as follows: For r = 1, it follows that

6x2(1) + 3x(1) = 6, 6x2(1) + 3x(1) = 6, (5.7)

and for r = 0, we have
4x2(0) + 2x(0) = 3, 8x2(0) + 4x(0) = 9. (5.8)

After solving for x(0), x(1), x(0), and x(1) in (5.7) and (5.8), we obtained the initial points for this problem
as x(1) = x(1) = 0.78078, x(0) = 0.83972, x(0) = 0.5307, that is x0 = (0.65139, 0.78078, 0.83972). This initial
guess is very close to the exact solution of the problem and to demonstrate the efficiency of the new
method, we need to define new set of initial guesses that are further away from the root of the problem.
Therefore, for the purpose of this study, we propose the following initial guess as used in several literature
x0 = (0.5, 0.75, 0.9). After performing the computation using the proposed algorithm with the initial guess
set as x0 = (0.5, 0.75, 0.9), the problem converges to the solution after just four iterations with maximum
error less than 10−5. Further demonstration of the performance profile of the solution for 0 6 r 6 1 is
presented in Figure 2.
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Figure 2: Performance profile of the proposed (DQN) method for the solution of Problem 5.1.

The analytical solution of Problems 5.1 and 5.2 are presented in Figures 1 and 2 to further demonstrate
the efficiency of the proposed method on fuzzy nonlinear equations. Despite the success of the proposed
method on fuzzy nonlinear problems, the efficiency of the method is yet to be investigated on dual fuzzy
nonlinear equation.
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6. Conclusions

In this study, we proposed a new derivative free algorithm based on quasi-Newton procedure for
solving fuzzy nonlinear equation. The considered fuzzy problems are first parameterized before applying
the proposed method to find the roots. For the initial iteration, the study uses an identity matrix as the
Jacobian approximation. An interesting feature of the new method is that despite the fact that the Jacobian
matrix is singular in the neighborhood of the solution, the proposed method was still able to converge to
the solution point under few iterations. Preliminary results from numerical test show that the proposed
method is not only efficient on fuzzy nonlinear problems, but also promising for solving fuzzy nonlinear
problems with singular Jacobian. Since this study is limited to fuzzy nonlinear equations, future study
on this area can investigate the performance of the proposed method on dual fuzzy nonlinear equations.
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