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Abstract
The main aim of this paper is to propose and analyze the dynamics of a generalized age-structured model for hepatitis

B virus (HBV) infection with HBV DNA-containing capsids and two treatments. Such treatments are pegylated interferon and
lamivudine drugs which are used to block new infections of liver cells and stop viral infection. We first investigate the existence
and uniqueness of solutions to the proposed model, as well as the existence of equilibria. Furthermore, the uniform persistence
and the stability analysis are rigorously established by means of characteristic equations and Lyapunov functionals.
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1. Introduction

Nowadays, hepatitis B caused by hepatitis B virus (HBV) is a dangerous infections that attacks the liver
cells called hepatocytes and puts people at high risk of death from cirrhosis and liver cancer. According
to World Health Organization (WHO) [24], hepatitis B resulted in an estimated 820000 deaths in 2019,
mostly from cirrhosis and liver cancer. Also, 296 millions people were living with chronic hepatitis B
infection in the same year.

The treatments for HBV infection depend on several factors, including the phase of the infection (acute
or chronic), the level of liver damage, the presence of symptoms, and the overall health of the individual.
Actually, there is no specific treatment for acute hepatitis B [24]. Chronic hepatitis B can be treated with
antiviral medications and interferon injections like pegylated interferon and lamivudine. The first drug
stimulates the body’s immune system to control and combat the HBV. However, lamivudine is used to
inhibit the replication of HBV and reduce the viral load in the body. Many studies have suggested that
the combination of pegylated interferon and lamivudine may result in a more robust virological response
compared to monotherapy [17, 20].
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In the literature, various age-structured models have been proposed and developed to understand the
dynamics of infectious diseases like HBV. For instance, Hattaf and Yang [8] proposed an age-structured
viral infection model with general incidence function that takes account of the loss of viral particles
due to their absorption into susceptible cells. Liu and Zhang [11] studied an age-structured HBV with
DNA-containing capsids and bilinear incidence rate. Nelson et al. [19] proposed and investigated an age-
structured viral model with bilinear incidence rate. An age-structured viral infection model with latency
was proposed in [23]. Furthermore, an age-structured HBV infection model with bilinear incidence and
cell-to-cell infection was formulated in [10]. In addition, there are other models for HBV with capsids
[15, 16, 18].

The present paper is devoted to the construction of a generalized HBV model with capsids and two
treatments. To do this, Section 2 deals with model formulation and preliminary results including the
existence and uniqueness of solutions by rewriting model (2.1) as an abstract Cauchy problem. Section
3 studies the uniform persistence of solution semi-flow. Section 4 establishes local and global stability of
equilibria. Section 5 presents an application in order to illustrate our analytical results. Finally, Section 6
ends the paper with a conclusion.

2. Model formulation and preliminary results

This section presents model formulation and preliminary results. Such model is governed by the
following nonlinear system:

dT(t)
dt = Λ− µ1T(t) − (1 − η1)f

(
T(t),V(t)

)
V(t),

∂i(t,a)
∂t +

∂i(t,a)
∂a = −δ(a)i(t,a),

dD(t)
dt = (1 − η2)

∫∞
0 p(a)i(t,a)da− (µ2 + k)D(t),

dV(t)
dt = kD(t) − µ3V(t),

(2.1)

with the boundary condition
i(t, 0) = (1 − η1)f(T(t),V(t))V(t),

and initial conditions

T(0) = T0, i(0,a) = i0(a), D(0) = D0, V(0) = V0.

Here, T(t), i(t,a), D(t), and V(t) denote the densities of uninfected hepatocytes, infected hepatocytes
with infection age a, HBV DNA-containing capsids, and free virions at time t, respectively. The biological
meanings of the parameters of our model (2.1) are given in Table 1.

Table 1: Biological meanings of parameters.
Parameters Biological meanings

Λ Recruitment rate of uninfected hepatocytes
δ(a) Death rate of infected hepatocytes with infection age a
p(a) Production rate of capsids from infected hepatocytes with infection age a
µ1 Death rate of uninfected hepatocytes
µ2 Death rate of capsids
µ3 Clearance rate of virions
k Production rate of virions from capsids
η1 Efficiency of pegylated interferon drug
η2 Efficiency of lamivudine drug

The general incidence function f(T ,V) represents the average number of cells, which are infected by
each virus in unit time. As in [7, 21, 22], we assume that f(T ,V) is continuously differentiable in the
interior of IR2

+ and satisfies the following hypotheses:
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(H1) f(0,V) = 0, for all V > 0;
(H2) f(T ,V) is a strictly monotone increasing function with respect to T , for any fixed V > 0;
(H3) f(T ,V) is a monotone decreasing function with respect to V .

Notice that the recent model proposed by Liu and Zhang [11] is a special case of system (2.1), it suffices
to take η1 = η2 = 0 and f(T ,V) = βTV with β is the infection rate. In this paper, we consider the following
assumptions.

(i) Λ,µ1,µ2,µ3,k > 0.
(ii) The functions δ(a),p(a) ∈ L∞+ (0,∞) and

δ̄ = ess sup
a∈[0,∞)

δ(a) <∞, p̄ = ess sup
a∈[0,∞)

p(a) <∞,

where ess sup is essential supremum.
(iii) There exists a m0 ∈ (0,Λ], such that δ(a) > m0 for all a > 0.
(iv) There exists a maximum age a+ > 0, such that p(a) > 0 for a ∈ [0,a+], and p(a) = 0 for a > a+.

Integrating the second equation of model (2.1) along the characteristic line t− a = constant, we get

i(t,a) =

{
(1 − η1)f

(
T(t− a),V((t− a)

)
V(t− a)σ(a), for t > a > 0,

i0(a− t)
σ(a)
σ(a−t) , for a > t > 0,

where σ(a) = e−
∫a

0 δ(θ)dθ is the probability that an infected cell survives to age a. Let

N =

∫∞
0
p(a)σ(a)da,

which denotes the total number of capsids produced by an infected hepatocyte in its lifespan. Consider
the following function

G(t) = T(t) +

∫∞
0
i(t,a)da,

which leads to

dG(t)

dt
= Λ− µ1T(t) −

∫∞
0
δ(a)i(t,a)da 6 s− γG(t),

where γ = min{Λ,m0}. Then

lim sup
t→+∞ G(t) 6

Λ

γ
.

From the third equation of system (2.1), we get

dD(t)

dt
6 (1 − η2)p̄

∫∞
0
i(t,a)da− (µ2 + k)D(t).

Hence,

lim sup
t→+∞ D(t) 6

(1 − η2)p̄Λ

γ(µ2 + k)
.

From the fourth equation of system (2.1), we obtain

dV(t)

dt
= kD(t) − µ3V(t) 6

(1 − η2)p̄Λk

γ(µ2 + k)
− µ3V(t).
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Then

lim sup
t→+∞ V(t) 6

(1 − η2)p̄Λ

γµ3(µ2 + k)
.

Therefore,

Ω =

{
(T , i,D,V) ∈ IR+ × L1

+((0,+∞), IR)× (IR+)
2 : T +

∫+∞
0

i(a)da 6
Λ

γ
,D 6

(1 − η2)p̄Λ

γ(µ2 + k)
,V 6

(1 − η2)p̄Λ

γµ3(µ2 + k)

}
is a positively invariant set of model (2.1). Consider the following spaces:

X = IR× L1((0,+∞), IR)× IR× IR× IR,

X0 = IR× L1((0,+∞), IR)× {0}× IR× IR,

X+ = IR+ × L1
+((0,+∞), IR)× IR+ × IR+ × IR+,

and
X0+ = X+ ∩X0.

Let A : Dom(A) ⊂ X→ X be the linear operator defined by

A


T(
i

0

)
D

V

 =


−µ1T(

−i ′ − δ(a)i
−i(0)

)
−(µ2 + k)D

−µ3V

 ,

with Dom(A) = IR×W1,1((0,+∞), IR)× {0}× IR× IR, where W1,1 is a Sobolev space. Consider F : X0 → X,

F


T(
i

0

)
D

V

 =


Λ− f(T ,V)V(

0L1

f(x, v)v

)
∫∞

0 p(a)i(t,a)da
kD(t)

 ,

and

u(t) =


T(t)(
i(t, .)

0

)
D(t)
V(t)

 .

Hence, system (2.1) can be rewritten as the following abstract Cauchy problem:{ du(t)
dt = Au(t) + F(u(t)), t > 0,
u(0) = u0 ∈ X0+.

(2.2)

Based on the results in [3, 12, 13], we get the following theorem.

Theorem 2.1. System (2.2) generates a unique continuous semiflow {U(t)}t>0 on X0+ that is bounded dissipative
and asymptotically smooth. Moreover, the semiflow {U(t)}t>0 has a global attractor A in X0+, which attracts the
bounded sets of X0+.

It is obvious that system (2.1) has a unique infection-free equilibrium of the forms E0(T 0, 0, 0, 0), where
T 0 = Λ

µ1
. Hence, the basic reproductive number of (2.1) is given as follows:

R0 =
kN(1 − η1)(1 − η2)f(T

0, 0)
µ3(µ2 + k)

.

Biologically, R0 represents the average number of secondary infections produced by a single infected cell
during the period of infection when all cells are uninfected.
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Theorem 2.2.

(i) If R0 6 1, then the system (2.1) has a unique infection-free equilibrium of the form E0(T 0, 0, 0, 0), where
T 0 = Λ

µ1
.

(ii) If R0 > 1, then the infection-free equilibrium is still present and model (2.1) has a unique chronic infec-
tion equilibrium of the form E∗(T∗, i∗(a),D∗,V∗), where T∗ ∈ (0, T 0), D∗ =

N(1−η2)(Λ−µ1T
∗)

µ2+k
, V∗ =

kN(1−η2)(Λ−µ1T
∗)

µ3(µ2+k)
, and i∗(a) = (1 − η1)f(T

∗,V∗)V∗σ(a).

Proof. Any equilibrium of model (2.1) satisfies the following equations:

Λ− µ1T − (1 − η1)f(T ,V)V = 0, (2.3)
di(a)

da
= −δ(a)i(a), (2.4)

(1 − η2)

∫∞
0
p(a)i(a)da− (µ2 + k)D = 0, (2.5)

kD− µ3V = 0, (2.6)
i(0) = (1 − η1)f(T ,V)V . (2.7)

It follows from (2.4) and (2.7) that

i(a) = (1 − η1)f(T ,V)Vσ(a). (2.8)

According to (2.5) and (2.8), we obtain

N(1 − η1)(1 − η2)f(T ,V) =
µ3(µ2 + k)

k
. (2.9)

From (2.3), (2.6), and (2.9), we have

V =
kN(Λ− µ1T)(1 − η2)

µ3(µ2 + k)
and D =

N(Λ− µ1T)(1 − η2)

µ2 + k
. (2.10)

Substituting (2.10) into (2.9) yields

N(1 − η1)(1 − η2)f

(
T ,
kN(Λ− µ1T)(1 − η2)

µ3(µ2 + k)

)
=
µ3(µ2 + k)

k
.

Since V =
kN(Λ−µ1T)(1−η2)

µ3(µ2+k)
> 0, we have T 6 T 0. Hence, model (2.1) has no biological equilibrium when

T > T 0. Consider a function g on the interval [0, x0] as follows:

g(T) = N(1 − η1)(1 − η2)f

(
T ,
kN(Λ− µ1T)(1 − η2)

µ3(µ2 + k)

)
−
µ3(µ2 + k)

k
.

We have g(0) = −
µ3(µ2+k)

k < 0, g(T 0) =
µ3(µ2+k)

k (R0 − 1), and

g ′(T) = N(1 − η1)(1 − η2)

(
∂f

∂T
−
kNµ1(1 − η2)

µ3(µ2 + k)

∂f

∂V

)
> 0.

Therefore, the equation g(T) = 0 has a unique solution T∗ ∈ (0, T 0), when R0 > 1. This completes the
proof.
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3. Uniform persistence

This section establishes the uniform persistence of system (2.1). From a biological point of view, this
notation signifies the persistence of the virus in the human body. Let

M̂ =




T(
i

0

)
D

V

 ∈ X0+ :

∫ ā
0
i(a)da > 0,D > 0,V > 0

 ,

and ∂M̂ = X0+ \ M̂, where ā = inf
{
a :
∫∞
a p(θ)dθ = 0

}
.

Theorem 3.1. ∂M̂ is positively invariant under the semiflow {U(t)}t>0 generated by system (2.2) on X0+. Fur-

thermore, the equilibrium E0


x0(
0L1

0

)
0
0

 is globally asymptotically stable for the semiflow {U(t)}t>0 restricted

to ∂M̂.

Proof. Let


x0(
i0(.)

0

)
v0

 ∈ ∂M̂, we have



∂i(t,a)
∂t +

∂i(t,a)
∂a = −δ(a)i(t,a),

dD(t)
dt = (1 − η2)

∫∞
0 p(a)i(t,a)da− (µ2 + k)D(t),

dV(t)
dt = kD(t) − µ3V(t),

i(t, 0) = (1 − η1)f(T(t),V(t))V(t),
i(0,a) = i0(a), D(0) = 0, V(0) = 0.

Since T(t) 6 T 0 for large enough time t, we get

i(t,a) 6 î(t,a), D(t) 6 D̂(t), V(t) 6 V̂(t), (3.1)

where 

∂î(t,a)
∂t +

∂î(t,a)
∂a = −δ(a)î(t,a),

dD̂(t)
dt = (1 − η2)

∫∞
0 p(a)î(t,a)da− (µ2 + k)D̂(t),

dV̂(t)
dt = kD̂(t) − µ3V̂(t),

î(t, 0) = (1 − η1)f(T
0, 0)V̂(t),

î(0,a) = i0(a), D̂(0) = 0, V̂(0) = 0.

(3.2)

Hence,

î(t,a) =

{
(1 − η1)f(T

0, 0)V̂(t− a)σ(a), if t > a > 0,
i0(a− t)

σ(a)
σ(a−t) , if a > t > 0.

(3.3)

According to the second-third equation of (3.2) and (3.3), we deduce that{ d
dt

(
D̂(t) + V̂(t)

)
= (1 − η1)(1 − η2)f(T

0, 0)
∫t

0 p(a)V̂(t− a)σ(a)da+ Fv(t) − µ2D̂(t) − µ3V̂(t),
D̂(0) = 0, V̂(0) = 0,

(3.4)
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where Fv(t) =
∫+∞
t p(a)i0(a− t)

σ(a)
σ(a−t)da. It follows from p(a) ∈ L∞+ ((0,+∞), IR) \ {0L∞} that Fv(t) ≡ 0

for all t > 0. This system (3.4) has a unique solution
(
D̂(t), V̂(t)

)
= (0, 0). By (3.3), we get î(t,a) = 0 for

t > a. For t 6 a, we obtain

‖î(t,a)‖L1 =

∥∥∥∥i0(a− t) σ(a)

σ(a− t)

∥∥∥∥
L1

6 e−δmint‖i0‖L1 .

This implies that î(t,a) → 0 as t → ∞. By (3.1), we have i(t,a) → 0 and
(
D(t),V(t)

)
= (0, 0) as t → ∞.

Therefore, limt→+∞ T(t) = T 0.

Theorem 3.2. If R0 > 1, then the semiflow {U(t)}t>0 generated by system (2.2) is uniformly persistent with respect
to the pair (∂M̂, M̂), i.e., there exists ε > 0 such that for each y ∈ M̂, lim inf

t→+∞ d(U(t)y,∂M̂) > ε. Moreover, the

semiflow {U(t)}t>0 has a compact global attractor A0 ⊂ M̃.

Proof. E0


T 0(
0L1

0

)
0
0

 is globally asymptotically stable in ∂M̂. From Theorem 4.2 in [4], we only need

to prove
Ws(E0)∩ M̂ = ∅,

where Ws(E0) =

{
y ∈ X0+ : lim

t→+∞U(t)y = E0
}

. Suppose by contradiction that for each n > 0, there

exists

yn =


Tn0(
in0
0

)
Dn0
Vn0

 ∈
{
y ∈ M̂ : ‖E0 − y‖ 6 1

n

}
,

such that ‖E0 −U(t)yn‖ 6 1
n , for all t > 0. Let

Tn(t)(
in(t, .)

0

)
Dn(t)
Vn(t)

 := U(t)yn.

Hence,

‖Tn(t) − T 0‖ 6 1
n

, ‖Dn(t) − 0‖ 6 1
n

, ‖Vn(t) − 0‖ 6 1
n

.

This implies that T 0 − 1
n > 0 for large enough n > 0. For the given n, there exists a t̂ > 0 such that for all

t > t̂, we have

T 0 −
1
n
< Tn(t) < T 0 +

1
n

, 0 6 Dn(t) 6
1
n

, 0 6 Vn(t) 6
1
n

.

According to comparison principle and

in(t,a) > (1 − η1)f

(
T 0 −

1
n

,
1
n

)
Vn(t− a)σ(a),
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we get D̂n(t) 6 Dn(t), V̂n(t) 6 Vn(t), where
(
D̂n(t), V̂n(t)

)
is a solution of the following system

dD̂n(t)
dt = (1 − η1)f

(
x0 − 1

n , 1
n

) ∫∞
0 p(a)σ(a)D̂

n(t− a)da− (µ2 + k) V̂
n(t),

dV̂n(t)
dt = kD̂n(t) − µ3V̂

n(t),
D̂n(0) = Dn(0) > 0, V̂n(0) = Vn(0) > 0.

When
(
D̂n(0), V̂n(0)

)
= (0, 0), we have D̂n(t) > 0 and V̂n(t) > 0. Hence, without loss of generality, we

take D̂n(0) > 0 and V̂n(0) > 0. If R0 > 1, then we can choose the large enough n such that

kN(1 − η1)(1 − η2)f

(
x0 −

1
n

,
1
n

)
> µ3(µ2 + k).

By Lemma 3.5 of Browne and Pilyugin [1], we deduce that
(
D̂n(t), V̂n(t)

)
is unbounded. Since D̂n(t) 6

Dn(t) and V̂n(t) 6 Vn(t), we get that
(
Dn(t),Vn(t)

)
is unbounded. This is a contradiction with the

boundedness of
(
Dn(t),Vn(t)

)
. Thus, Ws(E0) ∩ M̂ = ∅. Based on the results of [14], we prove that

{U(t)}t>0 is uniformly persistent and there exists a compact set A0 ⊂ M̂ that is a global attractor for
{U(t)}t>0.

4. Stability analysis

This section analyzes the local and global stability of equilibria.

4.1. Local stability
We recall that an equilibrium is locally asymptotically stable if all eigenvalues of the characteristic

equation have negative real parts and it is unstable if at least one of the eigenvalues has a positive real
part.

Theorem 4.1. The infection-free steady state E0 is locally asymptotically stable if R0 < 1 and it is unstable if
R0 > 1.

Proof. Linearizing system (2.1) about E0 and defining the perturbation variables

T1(t) = T(t) −
Λ

µ1
, i1(t,a) = i(t,a), D1(t) = D(t), V1(t) = V(t),

we get 
dT1(t)

dt = −µ1T1(t) − (1 − η1)f(T
0, 0)V1(t),

∂i1(t,a)
∂t +

∂i1(t,a)
∂a = −δ(a)i1(t,a),

dD1(t)
dt = (1 − η2)

∫∞
0 p(a)i1(t,a)da− (µ2 − k)D1(t),

dV1(t)
dt = kD1(t) − µ3V1(t),

(4.1)

and
i1(t, 0) = (1 − η1)f(T

0, 0)V1. (4.2)

Look for non-trivial solutions of (4.1) and (4.2) of the form

T1(t) = c1e
λt, i1(t,a) = e0

1(a)e
λt, D1(t) = c2e

λt, V1(t) = c3e
λt. (4.3)

Substituting (4.3) into (4.1) and (4.2), we have
(λ+ µ1)c1 = −(1 − η1)f(x

0, 0)c3,
∂i0

1(a)
∂a = −(λ+ δ(b))i01(a),

(λ+ µ2 + k)c2 = (1 − η2)
∫∞

0 p(a)i
0
1(a)da,

i01(0) = (1 − η1)f(T
0, 0)c3.

(4.4)
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Integrating the second equation of (4.4) yields

i01(a) = i
0
1(0)e

−
∫a

0 (λ+δ(θ))dθ. (4.5)

According to the fourth equation of (4.4) and (4.5), we get

i01(a) = (1 − η1)f(T
0, 0)c3e

−
∫a

0 (λ+δ(θ))dθ.

Substituting i01(a) into the third equation of (4.4), we have the characteristic equation(
λ+ µ2 + k

µ2 + k

λ+ µ3

µ3

N

N(λ)
−R0

)
= 0, (4.6)

where N(λ) =
∫∞

0 p(a)σ(a)e
−λada. If R0 < 1, then all roots of equation (4.6) have negative real parts.

However, equation (4.6) has at least one root satisfying Re(λ) > 0, where R0 > 1. On the other hand, we
have

R0 =

∣∣∣∣λ+ µ2 + k

µ2 + k

λ+ µ3

µ3

N

N(λ)

∣∣∣∣ = ∣∣∣∣λ+ µ2 + k

µ2 + k

∣∣∣∣ ∣∣∣∣λ+ µ3

µ3

∣∣∣∣ ∣∣∣∣ NN(λ)

∣∣∣∣ > 1.

This contradicts with R0 < 1. Thus, all roots of equation (4.6) have negative real parts. Therefore, E0 is
locally asymptotically stable when R0 < 1 and it is unstable when R0 > 1.

Now, we establish the local stability of the chronic infection equilibrium E∗ by supposing that R0 > 1
and the incidence function f satisfies the following hypothesis

(H4) f(T ,V) + V ∂f(T ,V)
∂V > 0, for all T > 0 and V > 0.

Theorem 4.2. Assume that R0 > 1 and (H4) holds. Then the chronic infection equilibrium E∗ is locally asymptot-
ically stable.

Proof. Linearizing system (2.1) about E∗ and defining the perturbation variables

T2(t) = T(t) − T
∗, i2(t,a) = i(t,a) − i∗(a), D2(t) = D(t) −D∗, V2(t) = V(t) − V

∗,

we get

dT2(t)
dt = −

(
µ1 + (1 − η1)V

∗ ∂f(T∗,V∗)
∂T

)
T2(t) − (1 − η1)

(
V∗
∂f(T∗,T∗)
∂V + f(T∗,V∗)

)
V2(t),

∂i2(t,a)
∂t +

∂i2(t,a)
∂a = −δ2(a)i2(t,a),

dD2(t)
dt = (1 − η2)

∫∞
0 p2(a)i2(t,a)da− (µ2 + k)D2(t),

dV2(t)
dt = kD2(t) − µ3V2(t),

(4.7)

and

i2(t, 0) = (1 − η1)V
∗∂f(T

∗,V∗)
∂T

T2(t) + (1 − η1)

(
f(T∗,V∗) + V∗

∂f(T∗,V∗)
∂T

)
V2(t). (4.8)

Look for non-trivial solutions of (4.7) and (4.8) of the form

T2(t) = c1e
λt, i2(t,a) = i02(a)e

λt, D2(t) = c2e
λt, V2(t) = c3e

λt.

Similarly to the proof of Theorem 4.1, we get the characteristic equation as

λ+ µ3

µ3

λ+ µ2 + k

µ2 + k
−
N(λ)

N

f(T∗,V∗) + V∗ ∂f(T
∗,V∗)
∂V

f(T∗,V∗)

[λ+ µ1 + (1 − η1)
(
f(T∗,V∗) + V∗ ∂f(T

∗,V∗)
∂V − V∗ ∂f(T

∗,V∗)
∂T

)
λ+ µ1 + (1 − η1)

(
f(T∗,V∗) + V∗ ∂f(T

∗,V∗)
∂V

) ]
= 0.

(4.9)
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If Re(λ) > 0, then we get ∣∣∣∣λ+ µ3

µ3

λ+ µ2 + k

µ2 + k

∣∣∣∣ > 1,

∣∣∣∣N(λ)

N

∣∣∣∣
∣∣∣∣∣f(T∗,V∗) + V∗

∂f(T∗,V∗)
∂V

f(T∗,V∗)

∣∣∣∣∣
∣∣∣∣∣∣
λ+ µ1 + (1 − η1)

(
f(T∗,V∗) + V∗ ∂f(T

∗,V∗)
∂V − V∗

∂f(T∗,V∗)
∂T

)
λ+ µ1 + (1 − η1)

(
f(T∗,V∗) + V∗ ∂f(T

∗,V∗)
∂V

)
∣∣∣∣∣∣ < 1,

which leads a contradiction to (4.9). Therefore, the chronic infection equilibrium E∗ is locally asymptoti-
cally stable. This completes the proof.

4.2. Global stability

In this subsection, we study the global asymptotic stability of equilibria by means of Lyapunov func-
tionals.

Theorem 4.3. The infection-free equilibrium E0 of (2.1) is globally asymptotically stable if R0 6 1.

Proof. Consider the following Lyapunov functional

L0(t) = T(t) − T
0 −

∫T(t)
T 0

f(T 0, 0)
f(θ, 0)

dθ+
k(1 − η1)(1 − η2)f(T

0, 0)
µ3(µ2 + k)

∫∞
0
α(a)i(t,a)da

+
k(1 − η1)f(T

0, 0)
µ3(µ2 + k)

D(t) +
(1 − η1)f(T

0, 0)
µ3

V(t),

where α(a) =
∫∞
a p(θ)e

−
∫θ
a δ(ξ)dξdθ. We have α(0) = N. Also, α(a) is bounded and its derivative satisfies

α
′
(a) = δ(a)α1(a) − p(a).

Since the function T 7→ T − T 0 −
∫T
T 0
f(T 0,0)
f(θ,0) dθ is nonnegative, we easily deduce that the Lyapunov func-

tional L0 is positive and zero at the equilibrium. Next, calculating the time derivative of L0 along the
solution of system (2.1), we have

dL0

dt
=

(
1 −

f(T 0, 0)
f(T , 0)

)
dT(t)

dt
+
k(1 − η1)(1 − η2)f(T

0, 0)
µ3(µ2 + k)

∫∞
0
α(a)

∂i(t,a)
∂t

da

+
k(1 − η1)f(T

0, 0)
µ3(µ2 + k)

dD(t)

dt
+

(1 − η1)f(T
0, 0)

µ3

dV(t)
dt

=

(
1 −

f(T 0, 0)
f(T , 0)

)(
Λ− µ1T − (1 − η1)f(T ,V)V

)
−
k(1 − η1)(1 − η2)f(T

0, 0)
µ3(µ2 + k)

∫∞
0
α(a)

(
∂i(t,a)
∂a

+ i(t,a)
)

da

+
k(1 − η1)(1 − η2)f(T

0, 0)
µ3(µ2 + k)

∫∞
0
p(a)i(t,a)da−

k(1 − η1)f(T
0, 0)

µ3
D(t)

+
k(1 − η1)f(T

0, 0)
µ3

D(t) − (1 − η1)f(T
0, 0)V(t).

Using integration by parts and Λ = µ1T
0, we obtain

dL0

dt
= Λ

(
1 −

f(T 0, 0)
f(T , 0)

)(
1 −

T

T 0

)
+ i(t, 0)

(
R0 − 1

)
+ (1 − η1)f(T

0, 0)V
(
f(T ,V)
f(T , 0)

− 1
)

.
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Since the function f(T ,V) is strictly monotonically increasing with respect to T and decreasing function
with respect to V , we get(

f(T ,V)
f(T , 0)

− 1
)

6 0 and
(

1 −
f(T 0, 0)
f(T , 0)

)(
1 −

T

T 0

)
6 0.

Thus, dL0
dt 6 0 for R0 6 1. In addition, it is obvious to prove that the largest invariant set where dL0(t)

dt = 0
is the singleton {E0}. By the Lyapunov-LaSalle asymptotic stability theorem, the disease-free equilibrium
E0 is globally asymptotically stable for R0 6 1.

Theorem 4.4. Assume that R0 > 1 and (H4) holds. Then the chronic infection equilibrium E∗ is globally asymp-
totically stable.

Proof. According to Theorem 3.2, let u(t) =
{(
T(t), i(t,a), 0,D(t),V(t)

)T}
t∈IR ⊂ A0 be a given entire

solution of U(t). It remains to show that A0 = {u∗}. Similarly to the proof of Lemma 3.6 and Claim 5.3 in
[2], we deduce that there exist ∆1 > 0 and ∆2 > 0 such that

∆1 6 x(t) 6 ∆2, ∆1 6 i(t,a) 6 ∆2, ∆1 6 D(t) 6 ∆2, ∆1 6 V(t) 6 ∆2,

for all t ∈ IR and a > 0. Now, we consider the following Lyapunov functional

L1(t) = (1 − η2)

(
T(t) − T∗ −

∫T(t)
T∗

f(T∗,V∗)
f(θ,V∗)

dθ

)

+
1 − η2

N

∫∞
0
α(a)i∗(a)φ

(
i(t,a)
i∗(a)

)
da+

1
N
D∗φ

(
D(t)

D∗

)
+

1
N

µ2 + k

k
V∗φ

(
V(t)

V∗

)
,

where φ(x) = x− 1 − ln x, x ∈ IR+. Clearly, φ : IR+ → IR+ attains its strict global minimum at x = 1 and
φ(1) = 0. Calculating the time derivative of L1 along the solution of system (2.1), we get

dL1

dt
= (1 − η2)

(
1 −

f(T∗,V∗)
f(T ,V∗)

)(
Λ− µ1T(t) − (1 − η1)f

(
T(t),V(t)

)
V(t)

)
−

1 − η2

N

∫∞
0
α(a)

(
1 −

i∗(a)

i(t,a)

)(
∂i(t,a)
∂a

+ δ(a)i(t,a)
)
da

+
1
N

(
1 −

D∗

D(t)

)(
(1 − η2)

∫∞
0
p(a)i(t,a)da− (µ2 + k)D(t)

)
+

1
N

µ2 + k

k

(
1 −

V∗

V(t)

)(
kD(t) − µ3V(t)

)
.

By using Λ = µ1T
∗ + (1 − η1)f(T

∗,V∗)V∗, D∗ = 1−η2
µ2+k

∫∞
0 p(a)i

∗(a)da, and
∫∞

0 p(a)i
∗(a)da = Ni∗(0), we

have

dL1

dt
= (1 − η2)µ1T

∗
(

1 −
T

T∗

)(
1 −

f(T∗,V∗)
f(T ,V∗)

)
− (1 − η1)(1 − η2)f(T ,V)V

+ (1 − η2)i
∗(0)

(
1 −

f(T∗,V∗)
f(T ,V∗)

+
V

V∗
f(T ,V)
f(T ,V∗)

)
−

1 − η2

N

∫∞
0
p(a)i∗(a)

[
φ

(
i(t,a)
i∗(a)

)
−φ

(
i(t, 0)
i∗(0)

)]
da

−
1 − η2

N

∫∞
0
p(a)i∗(a)

[
D

D∗
− 1 −

i(t,a)
i∗(a)

+
i(t,a)D∗

i∗(a)D

]
da

−
1 − η2

N

∫∞
0
p(a)i∗(a)

[
V∗D

VD∗
−
D

D∗
+
V

V∗
− 1
]
da.
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Hence,

dL1

dt
= (1 − η2)µ1T

∗
(

1 −
T

T∗

)(
1 −

f(T∗,V∗)
f(T ,V∗)

)
+ i∗(0)

(
− 1 −

V

V∗
+
f(T ,V∗)
f(T ,V)

+
V

V∗
f(T ,V)
f(T ,V∗)

)
−

1 − η2

N

∫∞
0
p(a)i∗(a)φ

(
i(t,a)D∗

i∗(a)D

)
da

− (1 − η2)i
∗(0)

[
φ

(
V∗D

VD∗

)
+φ

(
f(T∗,V∗)
f(T ,V∗)

)
+φ

(
f(T ,V∗)
f(T ,V)

)]
.

Since f(T ,V) is strictly monotonically increasing with respect to T , we have(
1 −

T

T∗

)(
1 −

f(T∗,V∗)
f(T ,V∗)

)
6 0.

From (H3) and (H4), we have

−1 −
V

V∗
+
f(T ,V∗)
f(T ,V)

+
V

V∗
f(T ,V)
f(T ,V∗)

=

(
1 −

f(T ,V)
f(T ,V∗)

)(
f(T ,V∗)
f(T ,V)

−
V

V∗

)
6 0.

Since φ(x) > 0 for x > 0, we have dL1
dt 6 0. Therefore, L1 is a bounded and decreasing map. Arguing

similarly as the end of the proof of Theorem 2.2 (i) in Demasse and Ducrot [2], we get u(t) = u∗, i.e.,
A0 = {u∗}. It follows from Theorem 4.2 that E∗ globally asymptotically stable.

Theorem 4.4 implies that the infection becomes chorionic and the virus persists in the host when
R0 > 1.

5. Application

In this section, we apply our key results to an age-structured model for HBV infection with Hattaf-
Yousfi functional response [9]. In this case, system (2.1) becomes

dT(t)
dt = Λ− µ1T(t) − (1 − η1)

βT(t)V(t)
α0+α1T(t)+α2V(t)+α3T(t)V(t) ,

∂i(t,a)
∂t +

∂i(t,a)
∂a = −δ(a)i(t,a),

dD(t)
dt = (1 − η2)

∫∞
0 p(a)i(t,a)da− (µ2 + k)D(t),

dV(t)
dt = kD(t) − µ3V(t),

(5.1)

where α0,α1,α2,α3 > 0 represent the saturation factors that measure the psychological or inhibitory
effects and β > 0 is the infection coefficient. The other parameters have the same biological meanings as
those in (2.1). The boundary condition is as follows:

i(t, 0) = (1 − η1)
βT(t)V(t)

α0 +α1T(t) +α2V(t) +α3T(t)V(t)
.

The initial conditions of system (5.1) are similar to that of system (2.1). Notice that the Hattaf-Yousfi
functional response includes numerous incidence rates existing in the literature like the bilinear incidence
rate. Also, it satisfies the four hypotheses (H1)-(H4). Furthermore, the basic reproduction number of
system (5.1) is as

R0 =
kN(1 − η1)(1 − η2)(βΛ)

µ3(µ2 + k)(µ1α0 +Λα1)
.

By applying Theorems 4.3 and 4.4, we get the following result.

Corollary 5.1.

(i) If R0 6 1, then the infection-free equilibrium E0 of system (5.1) is globally asymptotically stable.
(ii) If R0 > 1, then the infection-free equilibrium E0 becomes unstable and the chronic infection equilibrium E∗ of

system (5.1) is globally asymptotically stable.
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6. Conclusion

In this work, we have proposed an age-structured model for HBV infection with capsids, general in-
cidence rate and two treatments in order to block new infections of liver cells and stop viral infection. By
a rigorous mathematical analysis, we have proved the well-posedness the model, the existence of equilib-
ria, the uniform persistence, as well as the local and global stability by means of characteristic equations
and Lyapunov functionals. On the other hand, immunological memory is an important characteristic of
immune system against HBV infection. Therefore, the study of the memory effect on the dynamics of our
proposed model by using the new generalized Hattaf fractional operators introduced in [5, 6], will be the
main objective of our future works.
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