
J. Math. Computer Sci., 34 (2024), 257–267

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Some properties of Ri-axioms via multi-set topological
spaces

S. Saleha,b,∗, Jawaher Al-Mufarrijc, Alia M. Alzubaidid, Amani Al-Salemia

aDepartment of Mathematics, Hodeidah University, Hodeidah, Yemen.
bDepartment of Computer Science, Cihan University-Erbil, Erbil, Iraq.
cDepartment of Mathematics, Women section, King Saud University, Riyadh 12372, KSA.
dDepartment of Mathematics, Al-Qunfudhah University College, Umm Al-Qura University, KSA.

Abstract

multi-set are sets that are allowed to have repeated members, that is a multi-set M on a set U is a count function CM from U

to non-negative numbers. This study focuses on introducing and analyzing two new classes of separation axioms named, M-R0
and M-R1 in the context of multi-set topological spaces by utilizing the concepts of distinct M-singletons and m-closure operator,
investigating certain properties and characterizing them with some illustrative examples. Relationships with other M-separation
axioms are explored, and it is demonstrated that M-R0 and M-R1 are special cases of M-regularity. Furthermore, we show that
in the context of compact M-spaces, M-R1 is equivalent to whole M-regularity. Finally, the hereditary property of these classes
is examined.
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1. Introduction

The concept of a multi-set, abbreviated as m-sets, holds a significant presence in both mathematical
and computer science fields. In mathematical terms, an m-set is viewed as an extension of an ordinary set
which define a set as a well-defined family of distinct objects. When the possibility of repeated occurrences
of any object is introduced, it gives rise to the structure known as an m-set (or bag) [1, 12, 22]. An m-set
M over a set U, conveniently represented as M = {k1/u1,k2/u2, . . . ,kn/un}, indicates that the object ui
occurs ki times in M, with each multiplicity ki being a non-negative integer. In studies involving m-sets,
the number of occurrences of an object u in a finite m-set M is termed its multiplicity or characteristic
value, typically symbolized by CM(u). A natural and straightforward example is the m-set representing
the prime factors of a non-negative integer n. For instance, the factorization of 360 as (23)(32)(51) yields
the m-set M = {3/u, 2/v, 1/t}, where CM(u) = 3,CM(v) = 2, and CM(t) = 1.
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In the context of ordinary sets, each element appears only once in a set, implying that all mathematical
objects are unique. However, in the real world, particularly in the physical realm, significant repetition
is observed such as multiple hydrogen atoms, water molecules, and DNA strands [4]. Even seemingly
identical objects like coins, electrons, or grains of sand exist separately. This challenges the classical
set theory’s assumption, leading to three possible relationships between physical objects: they can be
different, the same but separate, or coincident and identical. To clarify, we consider two physical objects
as identical if they physically coincide, and as the same or equal if they are indistinguishable but possibly
separate. This led to the introduction of multi-set Theory.

The m-sets have wide-ranging applications in logic, philosophy, linguistics, physics, mathematics,
and computer science [3, 20, 21]. Singh et al. [19] conducted a comprehensive survey on m-sets and
their various applications. The utilization of m-sets in decision-making is exemplified in [23]. In mathe-
matics, m-sets find widespread applications in various mathematical branches. Ibrahim et al. [11] have
established algebraic structures for M-space. The topological structure of the m-sets (or M-topological
space) was introduced by Girish-Sunil in 2012 [10]. They proposed the M-topologies arising from m-
set relations. These authors also delved into the exploration of some notions and associated properties
within M-topologies [8]. Subsequently, many authors study various concepts in M-topology such as
M-compactness [16], M-connectedness [14, 15], M-proximity [13], rough m-sets [9], and M-filters [24].
Tripathy et al. in [17, 18] introduced generalized closed sets and studied the notion of M-ideals in M-
topological space respectively. ElSheikh et al. [5] proposed the various forms of generalized open m-sets.
They also, introduced the concept of supra M-topologies [7] and studied their respective properties. Then
the same authors [6] defined the separation axioms M-Ti(i = 0, 1, 2, 3, 4, 5) and studied some of their
properties. However, there are further developments that have not yet been achieved in these settings.

This paper is an attempt to explore the theoretical aspects of m-set theory by extending the study
of separation axioms in M-topologies by introducing new classes of separation properties, namely M-
R0 and M-R1. We investigate their properties and characterizations, providing illustrated examples. We
establish their relationships with M-Ti(i = 0, 1, 2) and demonstrate that the classes M-R0 and M-R1 are
special cases of M-regularity. Additionally, we prove the equivalence of M-R1 and WM-regularity in the
case of compact M-spaces, investigating the hereditary property of M-R0 and M-R1. Finally, we delve
into the interconnection between these classes and other M-separation properties. Through our study, we
significantly contribute to the understanding of these new classes in M-topology, offering an extensive
analysis of their properties, relationships, and implications.

2. Basic definitions and preliminaries

In all this document, U refers to a set of objects from which m-sets are constructed, M is an m-set on
U, [U]w refers to the m-sets space which is the set of all m-sets whose members are from U such that no
member occurs more than w times, and (M, τ) refers to M-topological space (or M-TS) on M.

Firstly, we will recall a set of fundamental definitions and key findings that will be employed through-
out this article. For more information see [1, 2, 10, 12, 22].

Definition 2.1 ([1, 12]). Consider the set of objects U = {u1,u2,u3, . . . ,un}. An m-set M on U is a count
function CM from U to the set of non-negative integers N such that for u ∈ U, CM(u) ∈ N, where CM(u)
refers to the number of times occurs u in M. The set U is named the ground or generic set of the class of
all m-sets containing elements from U.

In other words, the m-set M drawn from the set U, conveniently represented as

M = {k1/u1,k2/u2, . . . ,kn/un}.

Here ki represents the number of occurrences of the element ui, i = 0, 1, 2, . . . ,n within M. However, the
element u ∈ U will have CM(u) = 0 if it is not belong to M. If M is an m-set with element u repeated
k-times, it is symbolized by u∈kM and the negation of this case is denoted by u/∈kM. An m-set M is
named an empty-set if CM(u) = 0 for all u ∈ U.
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Definition 2.2 ([12]). M ∈ [U]w is named a finite m-set if the number of distinct elements and their
occurrences in M is finite, otherwise it is called an infinite m-set. The support or root of an m-set M,
denoted by M∗, is given by M∗ = {u ∈ U : CM(u) > 0}.

Remark 2.3. We provide some new concepts in M-topology based on the count function. When CM(u) =
1 for all u ∈ U, the m-sets align structurally with the class of sets. Consequently, any findings and
definitions established under this condition are inherently equivalent to corresponding results in ordinary
set theory.

Definition 2.4 ([12]). For two m-sets M,N ∈ [U]w, we have:

• M ⊆ N if CM(u) 6 CN(u) for all u ∈ U;

• D = M∪N if CD (u) = max{CM(u),CN (u)} for all u ∈ U;

• D = M∩N if CD (u) = min{CM (u) ,CN (u)} for all u ∈ U;

• D = M⊕N if CD (u) = min{CM (u) +CN (u) ,w} for all u ∈ U;

• D = M	N if CD (u) = max{CM (u) − CN (u) , 0} for all u ∈ U, where ⊕ and 	, represent m-set
addition and m-set subtraction respectively.

Definition 2.5 ([12]). Consider M ∈ [U]w and H ⊆ M. The complement Hc of H in [U]wis an element of
[U]wsuch that Hc = M	H.

Definition 2.6 ([10]). A sub m-set H of M ∈ [U]w is named:

• a whole sub m-set of M if and only if CM (u) = CH(u) for all u ∈ H∗;

• a partial whole sub m-set of M if and only if CM (u) = CH(u) for some u ∈ H∗;

• a full sub m-set of M if and only if H∗ = M∗ with CH (u) 6 CM(u) for all u ∈ H∗.

Note. Evidently, ∅ could be a whole sub m-set of any m-set, however it does not achieve both of the other
two types in the case of m-set is nonempty.

Based on the previously defined sub m-sets, Girish and John [10] also introduced power sub m-sets in
the following manner.

Definition 2.7. For an m-set M ∈ [U]w, we have:

• the set of all sub m-sets of M, symbolized by P(M), is named a power m-set of M;

• the set of all whole sub m-sets of M is named a power whole m-set of M and is symbolized by
PW(M);

• the set of all full sub m-sets of M, symbolized by PF(M), is named a power full m-set of M.

Note. In ordinary set theory, Cantor’s power set theorem does not hold for m-sets. However, feasible to
define a power m-set of a finite m-set M in a manner that maintains Cantor’s power set theorem.

Definition 2.8 ([10]). Consider M ∈ [U]w. The power m-set P(M) of M is the set of all sub m-sets of M.
We have H ∈ P(M) if and only if H ⊆ M. If H = ∅, then H∈1P(M) and if H 6= ∅, then H∈kP(M), where
k =

∏
z(

|[M]z|
|[H]z|

), the product
∏

z is taken over by distinct elements z of the m-set H and |[M]z| = m if and

only if z∈mM and |[H]z| = r if and only if z∈rH, then ( |[M]z|
|[H]z|

) = (mr ) =
m!

r!(m−r)! .
The power set of an m-set is the support set of the power m-set and is denoted by P∗(M).
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Note. A power m-set is itself an m-set, but its support set is an ordinary set consisting of elements that
are m-sets.

Definition 2.9 ([10]). Let M ∈ [U]w and τ ⊆ P∗(M). Then τ is named a multi-set topology (or M-topology)
of M if τ satisfies the next properties.

• (i) M and φ are in τ.

• (ii) The m-set union of the elements of any sub-collection of τ is in τ.

• (iii) The m-set intersection of the elements of any finite sub-collection of τ is in τ.

The pair (M, τ) is named an M-topological space (or M-TS). Each element in τ is named an open m-set.
A sub m-set H of an M-TS (M, τ) is named a closed m-set if the m-set Hc = M	H is open. In discrete
M-TS, every m-set is an open m-set as well as a closed m-set.

Definition 2.10 ([8]). For an M-space (M, τ) and a sub m-set H of M, the class τH = {G∩H : G ∈ τ} is an
M-topology on H, called the subspace M-topology.

Definition 2.11 ([8]). For a sub m-set H in an M-space (M, τ), the m-interior intM(H) of H is the m-set
union of all open m-sets contained in H. That is, intm(H) = ∪{G ⊆ M : G ∈ τ, G ⊆ H} and Cintm(H)(u) =
max {CG(u) : G ⊆ H}.

On the other hand, the m-closure clm(H) of H in (M, τ), is the m-set intersection of all closed m-sets
containing H. That is, clm(H) = ∩{G ⊆ M : G is a closed m-set, H ⊆ G} and Cclm(H)(u) = min {CG(u) :
H ⊆ G}.

Definition 2.12 ([3]). An m-set M is named simple if all its elements are the same. For example {k/u}.
Moreover, k/u is named simple multipoint (briefly, m-point).

Definition 2.13 ([8]). For an M-TS (M, τ), u∈kM, and H ⊆ M, the m-set H is named a neighborhood of
k/u if there is an open m-set N such that u∈kN and CN(v) = CH(v) for all v 6= u that is, N(k/u) = {H ⊆
M : ∃ N ∈ τ such that u∈kN, CN(v) = CH(v), ∀ v 6= u} is the class of all τ-neighborhood of k/u.

Definition 2.14 ([6]). For u, v ∈ U and M ∈ [U]w, we have:

(i) u ∈kM means that CM(u) = k, so {k/u} is named whole M-singleton sub m-set of M and {m/u} is
named M-singleton, where 0 < m < k. This approach contains all m-points which considered as a
sub m-set of M;

(ii) the two M-singletons {k/u} and {m/v} are called distinct if u 6= v;
(iii) for an m-set M, if u∈mM and u∈nM, then, m = n.

Theorem 2.15 ([8]). For an M-space (M, τ), H ⊆M, and {k/u} ⊆M, we have:

(1) {k/u} ⊆ clm(H)⇐⇒ every open m-set F containing {k/u} intersects H;
(2) a sub m-set of an M-space (M, τ) is an open m-set ⇐⇒ it is a neighborhood of each of its elements with some

multiplicity.

Definition 2.16 ([6]). An M-TS (M, τ) is named:

(i) M-T0 iff for any two M-singletons {k/u}, {m/v} ⊆ M with u 6= v, there is τ-open m-set that contains
one of the m-sets {k/u}, {m/v} but not the other;

(ii) M-T1 iff for any two M-singletons {k/u}, {m/v} ⊆ M with u 6= v, there are G,H ∈ τ such that
{k/u} ⊆ H, {m/v} 6⊆ H and {k/u} 6⊆ G, {m/v} ⊆ G;

(iii) M-T2 iff for any two M-singletons {k/u}, {m/v} ⊆ M with u 6= v, there are G,H ∈ τ such that
{k/u} ⊆ G, {m/v} ⊆ H and G∩H = ∅;
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(iv) M-regular (or M-R2) iff for any closed m-set F with {k/u} 6⊆ F, there are G,H ∈ τ such that {k/u} ⊆
G, F ⊆ H and G∩H = ∅;

(v) M-normal (or M-R3) iff for any closed m-sets F1, F2 with F1 ∩ F2 = ∅, there are G,H ∈ τ such that
F1 ⊆ G, F2 ⊆ H and G∩H = ∅;

(vi) M-T3 (resp. M-T4) iff it is both M-regular (resp. M-normal) and M-T1.

Remark 2.17 ([6]). M-T4 =⇒M-T3 =⇒M-T2 =⇒M-T1 =⇒M-T0.

Definition 2.18 ([16]). For M ∈ [U]w and an M-TS (M, τ) on M, then:

(i) the class C = {Ni : Ni ⊆M, i ∈ J} is named a cover of M if M ⊆ ∪{N : N ∈ C};
(ii) (M, τ) is named a compact M-space if for any open cover C of M there is a finite sub-cover of C

covering M.

Theorem 2.19 ([16]). Every closed whole sub m-set of a compact M-space (M, τ) is compact.

3. Basic properties of multi-set R0 and R1 spaces

In this part, we will introduce and discuss two new classes of separations properties named, M-
Ri, i = 0, 1 in M-topologies, investigating certain properties and characterizing them.

Definition 3.1. An M-TS (M, τ) is named:

(i) M-R0 iff for any open m-set F and any {k/u} ⊆ F, clm({k/u}) ⊆ F;
(ii) M-R1 iff for any two distinct M-singletons {k/u}, {m/v} ⊆M with clm({k/u}) 6= clm({m/v}), there are

G,H ∈ τ such that {k/u} ⊆ G, {m/v} ⊆ H and G∩H = ∅.

Example 3.2. Consider the m-set M = {2/u, 3/v, 1/t} and an M-topology τ on M, where τ = {∅,M,
{2/u}, {3/v}, {1/t}, {2/u, 3/v}, {2/u, 1/t}, {3/v, 1/t}}. One can verify that (M, τ) is an M-R0 space. Indeed,
any open m-set in (M, τ) contains the m-closure of all its m-points.

Example 3.3. For an m-set M= {2/u, 3/v, 1/t} and an M-topology τ on M, where τ= {∅,M, {3/v}, {2/u, 1/t}},
one can verify that (M, τ) is an M-R1 space. Indeed, for any two distinct M-singletons {k/u}, {m/v} ⊆ M,
which have different m-closure, there are disjoint open m-sets G,H ∈ τ containing {k/u}, {m/v}, respec-
tively.

In the following, we investigate some characterizations of M-Ri spaces, i = 0, 1.

Theorem 3.4. For an M-TS (M, τ), the next items are equivalent:

(1) (M, τ) is M-R0;
(2) {k/u} ⊆ clm({m/v}) iff {m/v} ⊆ clm({k/u}) for all {k/u}, {m/v} ⊆M.

Proof.

(1) =⇒ (2). Assume that (M, τ) is M-R0 with {k/u} 6⊆ clm({m/v}), there is an open m-set K containing {k/u}

such that K ∩ {m/v} = ∅. That is, {m/v} 6⊆ K. Since (M, τ) is M-R0 and {k/u} ⊆ K, we get clm({k/u}) ⊆ K,
but {m/v} 6⊆ K. Hence {m/v} 6⊆ clm({k/u}). The other implication is similar.

(2) =⇒ (1). Assume that H is an open sub m-set in (M, τ) with {k/u} ⊆ H. To prove that clm({k/u}) ⊆ H,
let {m/v} 6⊆ H, then {k/u} 6⊆ clm({m/v}) and from (2) we get {m/v}} 6⊆ clm({k/u}). Therefore (M, τ) is
M-R0.

Theorem 3.5. For an M-TS (M, τ), the next items are equivalent:

(1) (M, τ) is M-R0;
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(2) for any two distinct M-singletons {k/u}, {m/v} ⊆ M with clm({k/u}) 6= clm({m/v}), we have clm({k/u}) ∩
clm({m/v}) = ∅.

Proof.

(1) =⇒ (2). Suppose that (M, τ) is M-R0 and {k/u}, {m/v} ⊆ M are two distinct M-singletons with
clm({k/u}) 6= clm({m/v}), there is {n/t} ⊆ M such that {n/t} ⊆ clm({k/u}) and {n/t} 6⊆ clm({m/v}).
Suppose {k/u} ⊆ clm({m/v}), then clm({k/u}) ⊆ clm({m/v}), which implies {n/t} ⊆ clm({m/v}). This is
a contradiction. Hence {k/u} 6⊆ clm({m/v}) and so, there is an open m-set H containing {k/u} such that
H∩ {m/v} = ∅, and the result holds.

(2) =⇒ (1). Consider two distinct M-singletons {k/u}, {m/v} ⊆M with clm({k/u}) 6= clm({m/v}) and let G
be an open m-set in (M, τ) with {k/u} ⊆ G. To show that clm({k/u}) ⊆ G, suppose that {m/v} 6⊆ G. By
assumption clm({k/u}) ∩ clm({m/v}) = ∅ implies that {m/v} 6⊆ clm({k/u}). This means that clm({k/u}) ⊆
G. Therefore, (M, τ) is M-R0.

Based on the aforementioned theorems, it is possible to confirm the next corollary.

Corollary 3.6. An M-TS (M, τ) is M-R0 iff for any closed m-setG in (M, τ) with {k/u} 6⊆G, we have clm({k/u})∩
G = ∅.

Proposition 3.7. If (M, τ1) is M-R0 and τ1 6 τ2, then (M, τ2) is also an M-R0 space.

Proof. It is immediate.

Definition 3.8. For an M-TS (M, τ) and a sub m-set F in (M, τ), the multi-set kernel (or M-kernel)
of F symbolized by MK(F) is the m-set given by MK(F) = ∩{G ∈ τ : F ⊆ G} with CMK(F)(u) =
min{CG(u) : F ⊆ G, G ∈ τ} . In particular, the M-kernel of {k/u} ⊆M is the m-set MK({k/u}) = ∩{H ∈ τ :
{k/u} ⊆ H}.

Lemma 3.9. For an M-TS (M, τ) and a sub m-set F in (M, τ), we haveMK(F) = ∪{{k/u} ⊆M : clM({k/u})∩F 6=
∅}.

Proof. Assume that {k/u} ⊆ MK(F) with clm({k/u}) ∩ F = ∅, we have F ⊆ [clm({k/u})]c = H ∈ τ and
{k/u} 6⊆ H. This contradicts that {k/u} ⊆ MK(F). Hence clm({k/u}) ∩ F 6= ∅. On the other hand, Suppose
that clm({k/u}) ∩ F 6= ∅ and {k/u} 6⊆ MK(F). This means that there is an open m-set K with F ⊆ K and
{k/u} 6⊆ K. Now let {m/v} ⊆ clm({k/u})∩ F 6= ∅, then K is an open m-set containing {m/v} but {k/u} 6⊆ K.
This is a contradiction. Therefore, {k/u} ⊆MK(F).

Lemma 3.10. For an M-TS (M, τ) and {k/u} ⊆M, we have {m/v} ⊆ clm({k/u})⇐⇒ {k/u} ⊆ clm({m/v}).

Proof. It is straightforward.

Proposition 3.11. For an M-TS (M, τ), the following items are equivalent.

(i) (M, τ) is M-R0.
(ii) clm({k/u}) ⊆MK({k/u}) for any {k/u} ⊆M.

Proof. It stems from Definition 3.1 and Lemma 3.10.

Theorem 3.12. For an M-TS (M, τ), the following items are equivalent.

(1) (M, τ) is M-R0.
(2) H =MK(H) for any closed m-set H in (M, τ).
(3) If H is a closed m-set with {k/u} ⊆ H, then MK({k/u}) ⊆ H.
(4) MK({k/u}) ⊆ clm({k/u}) for any {k/u} ⊆M.
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Proof.

(1) =⇒ (2). Assume that H is closed m-set and {k/u} 6⊆ H, we have {k/u} ⊆ Hc that is an open m-set that
contains {k/u}. Since (M, τ) is M-R0, we have clm{k/u} ⊆ Hc implies that clm({k/u})∩H = ∅. By Lemma
3.9, {k/u} 6⊆MK(H). Hence H =MK(H).

(2) =⇒ (3). It follows from fact that, G ⊆ K =⇒MK(G) ⊆MK(K).
(3) =⇒ (4). It is clear.

(4) =⇒ (1). Assume that {k/u}, {m/v} ⊆ M are two distinct M-singletons with {k/u} ⊆ clm({m/v}). By
Lemma 3.9, we get {m/v} ⊆ MK({k/u}). Since {k/u} ⊆ clm({k/u}) which is a closed m-set. From (4) we
get, {m/v} ⊆MK({k/u}) ⊆ clm({k/u}). That is, {m/v} ⊆ clm({k/u}). Hence (M, τ) is M-R0.

From above theorem, Proposition 3.11, and Lemma 3.10, one can verify the next result.

Corollary 3.13. An M-TS (M, τ) is M-R0 iff clm({k/u}) =MK({k/u}) for any {k/u} ⊆M.

Lemma 3.14. For any two distinct M-singletons {k/u}, {m/v} in (M, τ),

MK({k/u}) 6=MK({m/v})⇔ clm({k/u}) 6= clm({m/v}).

Proof.

Necessity. Assume that MK({k/u}) 6= MK({m/v}), there is {n/t} ⊆ M such that {n/t} ⊆ MK({k/u})
and {n/t} 6⊆ MK({m/v}). If {n/t} ⊆ MK({k/u}), by Lemma 3.9, we get {k/u} ∩ clM({n/t}) 6= ∅ implies
{k/u} ⊆ clm({n/t}) that is, clm({k/u}) ⊆ clM({n/t}). Similarly, if {n/t} ⊆ MK({m/v}), we get {m/v} ⊆
clm({n/t}). Since clm({k/u}) ⊆ clm({n/t}) and {m/v} 6⊆ clm({n/t}), we get {m/v} 6⊆ clm({k/u}). Hence
clm({k/u}) 6= clm({m/v}).

Converse. Suppose clm({k/u}) 6= clm({m/v}), there is {n/t} ⊆M such that {n/t} ⊆ clm({k/u}) and {n/t} ⊆
clm({m/v}). So, there is an open m-set containing {n/t} and so {k/u} but not {m/v}. Therefore {m/v} 6⊆
MK({k/u}. Hence MK({k/u}) 6=MK({m/v}).

Theorem 3.15. For an M-TS (M, τ), the following items are equivalent.

(i) (M, τ) is M-R0.
(ii) For any two distinct M-singletons {k/u}, {m/v} ⊆M withMK({k/u}) 6=MK({m/v}), we haveMK({k/u})∩

MK({m/v}) = ∅.

Proof.

Necessity. Assume that (M, τ) is M-R0 and {k/u}, {m/v}⊆M are two distinct M-singletons withMK({k/u})
6= MK({m/v}. From Lemma 3.14, clm({k/u}) 6= clm({m/v}). Suppose that clm({k/u}) ∩ clm({m/v}) 6= ∅.
This means there is {n/t} ⊆ MK({k/u} ∩MK({m/v}). If {n/t} ⊆ MK({k/u}), by Lemma 3.10, {k/u} ⊆
clm({n/t}) and so, {k/u} ⊆ clm({n/t}). Clearly {k/u} ⊆ clm({k/u}). By Theorem 3.5, we have clm({k/u}) =
clm({n/t}. Similarly, if {n/t} ⊆ MK({m/v}), we get clm({m/v}) = clm{n/t} = clm({k/u}). This is a
contradiction. Hence {k/u}∩ clm({n/t} = ∅.
Converse. Suppose that {k/u}, {m/v} ⊆ M are two distinct M-singletons with clm({k/u} 6= clm({m/v}.
From Lemma 3.14,MK({k/u}) 6=MK({m/v}) implies that {k/u}∩ clm({m/v} = ∅. Assume that clm({k/u})∩
clm({m/v}) 6= ∅, there is {n/t} ⊆ M such that {n/t} ⊆ clm({k/u}) and {n/t} ⊆ clm({m/v}). So, by
Lemma 3.10, {k/u} ⊆ MK({n/t}), {m/v} ⊆ MK({n/t}). By Lemma 3.9, MK({k/u}) ∩MK({n/t}) 6= ∅ and
MK({m/v})∩MK({n/t}) 6= ∅ and by hypothesis,MK({k/u})) =MK({n/t}) andMK({m/v}) =MK({n/t}) =
MK({k/u}). So, MK({k/u})∩MK({m/v}) 6= ∅. This is a contradiction. Hence clm({k/u})∩ clm({m/v}) = ∅.
By Theorem 3.5, (M, τ) is M-R0.

Theorem 3.16. For an M-TS (M, τ), the following items are equivalent.
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(i) (M, τ) is M-R1.
(ii) For any two distinct M-singletons {k/u}, {m/v} ⊆ M with MK({k/u}) 6= MK({m/v}), there are G,K ∈ τ

such that clm({k/u}) ⊆ G, clm({m/v}) ⊆ K and G∩K = ∅.

Proof. It follows from Lemma 3.10.

From Definition 3.1, Lemma 3.14, and above theorem, one can verify the next corollary.

Corollary 3.17. For an M-TS (M, τ), the following properties are equivalent.

(i) (M, τ) is M-R1.
(ii) For every distinct M-singletons {k/u}, {m/v} ⊆ M with {k/u} 6⊆ clm({m/v}), there are G, K ∈ τ such that

{k/u} ⊆ G, {m/v} ⊆ K, and G∩K = ∅.
(iii) For any two distinct M-singletons {k/u}, {m/v} ⊆ M with clm({k/u} 6= clm({m/v}), there are G, K ∈ τ

such that clm({k/u}) ⊆ G, clm({m/v}) ⊆ K, and G∩K = ∅.

Theorem 3.18. Every M-R1 is M-R0.

Proof. Assume that {k/u}, {m/v} ⊆ M are two distinct M-singletons with {k/u} 6⊆ clm({m/v}), then
clm({k/u}) 6= clm({m/v}). Since (M, τ) is M-R1, there is F ∈ τ such that {m/v} ⊆ F, {k/u} 6⊆ F, and
so, then {m/v} 6⊆ clm({k/u}). Therefore (M, τ) is M-R0.

The next example demonstrates that the converse of Theorem 3.18 may not always hold.

Example 3.19. Consider an infinite setU and M ∈ [U]w, then the class τ∞ = {∅}∪ {K ⊆M : Kc is finite} is an
M-topology on M, called a cofinite M-topology. Now, to show that (M, τ∞) is M-R0 but not M-R1, assume
that {k/u}, {m/v} ⊆ M are two distinct M-singletons with {k/u} ⊆ ({m/v})c. Clearly, ({k/u})c, ({m/v})c ∈
τ∞, we have {k/u} is a closed m-set, this implies that clm({k/u}) = {k/u} ⊆ ({m/v})c. Hence (M, τ∞) is M-
R0. On other hand, suppose (M, τ∞) is M-R1, we have for any two distinct M-singletons {k/u}, {m/v} ⊆M

with, clm({k/u}) 6= clm({m/v}), there are F, G ∈ τ∞ such that {k/u} ⊆ F, {m/v} ⊆ G, and F∩G = ∅. Hence
Fc ∪Gc = U. Since Fc, Gc are two finite sub m-sets of M, this contradicts that U is infinite. Hence (M, τ∞)
is not M-R1.

4. More characterizations and relations

In the following discussion, we will explore more properties and some related theorems of M-Ri, i =
0, 1. The interconnections between these classes and other separation properties such as M-Ti, i = 0, 1, 2
are examined.

Theorem 4.1. Every M-subspace (N, τN) of M-Ri space (M, τ) is M-Ri, i = 0, 1.

Proof. For i = 1, assume {k/u}, {m/v} are distinct M-singletons in (N, τN) with clm(({k/u}) 6= clm({m/v}),
we have {k/u}, {m/v} are distinct M-singletons in (M, τ) with clm({k/u}) 6= clm({m/v}). Since (M, τ) is
M-R1, there are F, G ∈ τ such that {k/u} ⊆ F, {m/v} ⊆ G with F ∩G = ∅. So that, there are open m-sets,
PN = N ∩ F ∈ τN and QN = N ∩G∈τN which are containing {k/u} and {m/v}, respectively such that
PN∩QN = ∅. Therefore (N, τN) is M-R1. The proof for i = 0 is analogous.

Theorem 4.2. Every M-Ti space (M, τ) is M-Ri−1, i = 1, 2.

Proof. For i = 1, let H ∈ τ with {k/u}⊆H. We want to show that clm({k/u}) ⊆ H. Assume that {m/v} 6⊆ H,
we have {k/u} 6⊆ clm({m/v}), where {k/u}, {m/v} are distinct M-singletons in (M, τ). Since (M, τ) is M-T1,
there is G∈τ such that {m/v} ⊆ G, {k/u} 6⊆G and so, {m/v}⊆clm{k/u}. Thus, clm{k/u}⊆H. Hence (M, τ) is
M-R0. The proof for i = 0 is obvious.

The next example explains that the converse of Theorem 4.2 does not necessarily hold.
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Example 4.3. Consider the m-set M = {2/u, 3/v, 1/t} with an M-topology τ = {∅,M, {3/v}, {2/u, 1/t}} on
M. One can verify that (M, τ) is an M-R0 space but doesn’t M-T1. Indeed, for two distinct M-singletons
{1/u}, {1/t} ⊆ M there are no open sub m-sets G,H of M such that {1/u}⊆G, {1/t} 6⊆G, and {1/u}⊆H,
{1/t} 6⊆H.

Theorem 4.4. For an M-TS (M, τ), we have:

(1) (M, τ) is M-T1 ⇐⇒ it is both M-R0 and M-T0;
(2) (M, τ) is M-T2 ⇐⇒ it is both M-R1 and M-T1.

Proof.

(1) Necessity. It can be inferred from Theorem 4.2 and Remark 2.17.

Converse. Assume that {k/u}, {m/v} are distinct M-singletons in (M, τ). Since (M, τ) is M-T0 and M-R0,
we have clm{k/u} 6= clm{m/v}. From Theorem 3.5, clm{k/u}∩ clm{m/v} = ∅. Thus, [clm{m/v}]c is an open
m-set containing {k/u} not {m/v} and [clm{k/u}]c is an open m-set containing {m/v} not {k/u}.

Thus (M, τ) is M- T1.

(2) Necessity. It can be deduced from Theorem 4.2 and Remark 2.17.

Converse. Consider two distinct M-singletons {k/u}, {m/v} ⊆ M with {k/u} 6⊆ clm{m/v}. Since (M, τ) is
M-R0, then {m/v} 6⊆ clm({k/u}). So that, clm({k/u}) 6= clm({m/v}). Also, (M, τ) is M-R1. So, there is
disjoint open m-sets G,K such that {k/u} ⊆ G and {m/v} ⊆ K. Hence (M, τ) is M-T2.

Corollary 4.5. An M-TS (M, τ) is M-T2 ⇐⇒ it is both M-R1 and M-T0.

Proof. It is consequence of that of Theorem 4.4.

Theorem 4.6. Every M-regular(M-R2) space is M-Ri, i = 0, 1.

Proof. For i = 1, consider two distinct M-singletons {k/u}, {m/v} ⊆ M with clm{k/u} 6= clm({m/v}), then
either {k/u} 6⊆ clm({m/v}) or {m/v} 6⊆ clm({k/u}). Without loss of generality, suppose that {k/u} 6⊆
clm({m/v}), where clm({m/v}) is a closed m-set with {k/u} 6⊆ clm({m/v}). Since (M, τ) is M-regular, there
are disjoint open m-sets G,K with {k/u} ⊆ G and {m/v} ⊆ clm({m/v}) ⊆ K. Hence (M, τ) is M-R1. The
proof for i = 0 is analogous.

Based on Theorems 3.18 and 4.6, we conclude the next result.

Corollary 4.7. M-R2 =⇒M-R1 =⇒M-R0.

The next example explains that the reverse of Theorem 4.6 does not necessarily hold.

Example 4.8. From Example 3.19, we demonstrated that (M, τ∞) is M-R0 but it is not M-R1 and so, it is
not M-regular (or M-R2).

Definition 4.9. An M-TS (M, τ) is named whole M-regular (or WM-regular) iff for any {k/u} ⊆ M and
any closed whole sub m-set F of M with {k/u} 6⊆ F, there are disjoint open m-sets G,H such that {k/u} ⊆
G, F ⊆ H.

Note. Evidently, every M-regular space is WM-regular. However, the converse is not necessarily hold. In
fact, not every sub m-set of M is a whole sub m-set.

Theorem 4.10. A compact M-space (M, τ) is M-R1 ⇐⇒ it is WM-regular.

Proof.

Necessity. Assume that (M, τ) is a compact M-R1 space. To show that (M, τ) is WM-regular, suppose
that H is a closed whole sub m-set in (M, τ) and {k/u} ⊆ M with {k/u} 6⊆ H. Now for all {m/v} ⊆
H, clm({m/v}) ⊆ H. Since {k/u} 6⊆ H, then {k/u} 6⊆ clm({m/v}) and so, clm({k/u}) 6= clm({m/v}). Since
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(M, τ) is M-R1, then for any {m/v} ⊆ H, there are disjoint open m-sets K{m/v}, G{m/v} such that {k/u} ⊆
K{m/v} and {m/v} ⊆ G{m/v}. So that A = {G

{m/v}
i : {m/v} ⊆ H, i ∈ J} is an open cover of H. By Theorem

2.19, H is a compact m-set, so there is a finite subclass {G
{m/v}
1 ,G{m/v}

2 , . . . ,G{m/v}
n } of A that covers H.

Consider corresponding sub-class {K
{m/v}
1 ,K{m/v}

2 , . . . ,K{m/v}
n } of {K

{m/v}
i : {m/v} ⊆ H}. It is clear that,

P = ∩ni=1Ki and Q = ∪ni=1Gi are open m-sets and P is disjoint from Q because P ⊆ Ki for all i, which is
disjoint from the corresponding Gi, with {k/u} ⊆ P, H ⊆ Q. Therefore, (M, τ) is WM-regular. The proof
of the converse follows from Theorem 4.6.

5. Conclusion

M-topology represents the extension of an ordinary topology into the context of m-sets. This article
provides and analyzes some novel separation properties termed M-R0 and M-R1 in M-topological spaces,
investigating certain properties and characterizing them with some illustrative examples. The intercon-
nections between these classes and other M-separation properties are explored. It is demonstrated that
M-R0 and M-R1 are special instances of M-regularity. Additionally, in the context of compact M-spaces,
it is shown that M-R1 is equivalent to WM-regularity. Finally, the hereditary property of these classes is
explored.

As a future work, we intend to discuss the current separation axioms using the other generalizations
of open m-sets. Additionally, we plan to extend the characterizations of these classes to the contexts of
fuzzy (soft) m-sets settings and look at the possible applications of them.
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