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Abstract
Classifying educational data into a particular category remains challenging due to the massive and extensive number of

variables within the dataset. This paper emphasizes a new algorithm for variational inclusion problems with the classification
of pre-service mathematics teachers’ performance in their method courses through a mathematics teacher education program as
its application. First, we propose the modified Mann-Tseng forward-backward splitting algorithm based on inertial technique to
speed up the convergence of the algorithm. Then, we prove the weak convergence theorem, we compare and demonstrate the
efficacy and applicability of our classification schemes in extreme learning machine (ELM) with other machine learning methods;
support vector machine (SVM), logistic regression, boosted trees. Moreover, we compare our algorithm with other algorithms in
the same ELM. The application is based on the genuine educational data provided in this paper.
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1. Introduction

Mathematics teachers who perceive that their pedagogical practices positively impact student learning
and achievement are likelier to implement new teaching strategies and take instructional risks [24, 25, 34].
Pre-service teachers enter their teacher education programs with strong beliefs based on experiences as
students and interactions with their teachers. In mathematics, where pre-service mathematics teachers
frequently have traditional experiences as students, they may enter teacher education programs with
a limited understanding of the subject. In order to effectively establish a reform-based environment
as teachers, traditionally-minded pre-service mathematics teachers must modify their beliefs regarding
mathematics education [9].
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However, to educate individuals who will be able to access, examine, and utilize information in the
future, it is essential for modern education to provide a high-quality and continuous education. This
circumstance necessitates the integration of technologies into instructional environments so that students
can manage and construct their own learning processes [16, 21]. Teachers must view technology as an
instrument for enhancing the instructional processes of a specific subject, such as mathematics, and not
only as a subject of general technology to be taught [21].

Method courses in a teacher education program can help pre-service mathematics teachers acquire
the knowledge and abilities necessary to be effective teachers [38]. Method courses in a mathematics
teacher education program are designed to provide pre-service teachers with the pedagogical knowledge
and skills required to teach mathematics effectively [38]. The emphasis of these courses is on the teach-
ing strategies, methodologies, and best practices for teaching mathematics at different grade levels. By
providing a solid foundation in both the content and pedagogy of mathematics, these courses can help
pre-service mathematics teachers feel more capable and confident in their roles as teachers. Moreover,
method courses can assist them in creating effective lesson plans, employing technology effectively in the
classroom, and assessing student progress in a meaningful manner [21, 41, 44].

We hypothesize that the sophistication of teaching mathematics in the modern world necessitates
concentrating on pre-service mathematics teachers’ performance in method courses. In the digital era,
a mathematics teacher’s performance in method courses conceivably incorporates mathematical disposi-
tions, self-efficacy for teaching mathematics, and technology-integrated competency.

In this paper, mathematical disposition refers to an individual’s mathematical attitudes, beliefs, and
affective responses [22]. Pre-service mathematics teachers’ mathematical disposition can be influenced
and shaped throughout their teacher education program. By promoting positive attitudes, beliefs, and
emotional responses towards mathematics, teacher education programs can contribute to improving the
academic performance of pre-service mathematics teachers [8].

Furthermore, self-efficacy for teaching mathematics refers to the confidence of pre-service mathematics
teachers in their capacity to teach the subject effectively [11, 12]. Self-efficacy for teaching mathematics
can be influenced and nurtured through targeted support and experiences provided in teacher education
programs. By fostering pre-service teachers’ belief in their teaching abilities and providing opportunities
to develop and refine their skills, programs can positively impact both the self-efficacy of pre-service
teachers and their subsequent academic performance [19].

Also, technology-integrated competency, which refer to the competency to allow students to engage in
work on complicated mathematics problems using technology, can have a significant impact on the aca-
demic performance of pre-service mathematics teachers in method courses. Technology-integrated com-
petency can empower pre-service mathematics teachers to create dynamic, engaging, and personalized
learning experiences [42]. By leveraging technology effectively, they can enhance student engagement,
provide individualized support, and make mathematics more accessible and relevant [1].

The educational field has recently been more interested in applying data classification strategies [5].
Classification is a technique for distinguishing the category of provided data elements, also known as
targets/labels or categories. It studies discovering new and potentially helpful information or signifi-
cant outcomes from data. Utilizing various categorization techniques, it also endeavors to discover new
trends and patterns in datasets. Specifically, educational data classification is now an effective method
for identifying concealed patterns in educational data, predicting students’ academic performance, deter-
mining teacher competency, and improving the learning and teaching policy plan [5, 17]. In this paper,
we focused on pre-service mathematics teachers’ information as our educational data for classification
to identify latent patterns in their performance in method courses using a modified forward-backward
splitting algorithm.

Throughout this article, denote by H a real Hilbert space with inner product 〈·, ·〉 and associated norm
‖ · ‖. Let N be the set of nonnegative integers. The problem of identifying a point x ∈ H such that

0 ∈ (F+G)x, (1.1)
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is called the variational inclusion problem (shortly, VIP), where F : H → H is a single valued mapping
and G : H → 2H is a multivalued mapping. The VIP (1.1) was known to play a key role in nonlinear
analysis involving well-known mathematical models such as composite minimization problems, vari-
ational inequality problems, split feasibility problems, and convex programming, with applications in
machine learning, signal and image recovery, and more (see [26, 31, 36]). To solve the VIP (1.1), several
splitting algorithms have been created and refined; one of the most prominent splitting algorithms is
the forward-backward splitting method (see [23, 30] for more information). Chen and Rockafellar [13]
used this method in 1997 to obtain a weak convergence result. Later, Tseng [43] created a modification
of the forward-backward splitting method, known as the forward-backward-forward method or Tseng’s
method. This approach makes use of an adaptive line-search rule and relaxes the assumptions of [13] in
order to prove weak convergence. Before that in 1964, the inertial extrapolation technique was proposed
by Polyak [32] to speed up the convergence of iterative algorithms which is called the heavy ball method.
Padcharoen et al. [27] presented a splitting method in 2021 for solving the VIP (1.1) in H, which was de-
veloped from Tseng’s method with the inertial extrapolation technique. Weak convergence of this method
was established under usual assumptions. This method also solved the problems of image deblurring
and image recovery.

Tseng [43] introduced the following Tseng’s splitting algorithm:
x0, x1 ∈ H,
yn = JGµn(I− µnF)xn,
xn+1 = PC(yn − µn(Fyn − Fxn)),

(1.2)

where µn is chosen to be the largest µ ∈ {σ,σl,σl2, ...} satisfying µ‖Fyn − Fxn‖ 6 κ‖xn − yn‖, σ > 0,
l ∈ (0, 1), and κ ∈ (0, 1). It was proved that the sequence {xn} generated by (1.2) converges weakly to an
element in (F+G)−1(0).

Padcharoen et al. [27] used the inertial technique with Tseng’s splitting algorithm, which they called
the modification of Tseng’s algorithm. Their algorithm is of the form

x0, x1 ∈ H,
ρn = xn + δn(xn − xn−1),
yn = JGµn(I− µnF)ρn,
xn+1 = yn − µn(Fyn − Fρn),

(1.3)

where {µn} ⊂ [a,b] ⊂ (0, 1
`) and {δn} ⊂ [0, δ] ⊂ [0, 1). The stepsizes {µn} are depending on the Lipschitz

constant `.
Recently, Peeyada et al. [31] used the idea of the inertial technique with Mann iteration process and

forward-backward algorithm for getting weak convergence for the VIP (1.1) in H, which is called the
inertial Mann forward-backward splitting algorithm (IMFBSA):

x0, x1 ∈ H,
ρn = xn + δn(xn − xn−1),
yn = ρn + ηn(xn − ρn),
xn+1 = JGµn(I− µnF)yn,

where {ηn ⊂ (0, 1)}, {µn} ⊂ (0, 2β), and {δn} ⊂ [0,∞) satisfy the condition such that

(C1) 0 < lim inf
n→∞ µn 6 lim sup

n→∞ µn and (C2)
∞∑
n=1

δn‖xn − xn−1‖ <∞.
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This method also solved the signal recovery problem and the data classification problem using the Wis-
consin original breast cancer data set as a training set. For some recent results on several algorithms for
the VIP (1.1) and related problems, see [14, 18].

In this paper, we present a modified Mann-Tseng forward-backward splitting algorithm for solving
problem (1.1) and prove the weak convergence theorem under mild conditions in a real Hilbert space. We
apply our main result to solve data classification problem to predict pre-service mathematics teachers’
performance. We then compare the performance of our algorithm with Tseng, modified Tseng, and
IMFBSA algorithms.

2. Preliminaries

In this section, before we prove our optimization algorithm in Section 3, we give some necessary
definitions and lemmas. We denote weak and strong convergence as ⇀ and→, respectively.

Definition 2.1. Let H be a Hilbert space. A mapping F : H → H is said to be `-Lipschitz continuous if
there is ` > 0 such that

‖Fx− Fy‖ 6 `‖x− y‖

for all x,y ∈ H.

Definition 2.2. Let H be a Hilbert space. Let G : H→ 2H be a multivalued mapping. Then G is said to be

(i) monotone if for all (x,u), (y, v) ∈ graph(G) (the graph of mapping G),

〈u− v, x− y〉 > 0,

(ii) maximal monotone if for every (x,u) ∈ H×H, 〈u− v, x− y〉 > 0 for all (y, v) ∈ graph(G) if and
only if (x,u) ∈ graph(G).

Lemma 2.3 ([6]). Let H be a Hilbert space. Let F : H→ H be a mapping and G : H→ 2H be a maximal monotone
mapping. If Tµ := (I+ µG)−1 (I− µF) and µ > 0, then Fix(Tµ) = (F+G)−1(0), where Fix(Tµ) is the set of the
fixed point of the mapping Tµ.

Lemma 2.4 ([10]). Let H be a Hilbert space. If G : H→ 2H is a maximal monotone mapping and F : H→ H is a
Lipschitz continuous and monotone mapping, then the mapping F+G is maximal monotone.

Lemma 2.5 ([4]). Let {an} and {bn} be nonnegative sequences of real numbers satisfying
∞∑
n=1

bn < ∞ and

an+1 6 an + bn. Then, {an} is a convergent sequence.

Lemma 2.6 ([6, Opial]). Let Ψ be a nonempty set of a Hilbert space H and {xn} be a sequence in H. Suppose the
following assertions hold.

(i) For every x ∈ Ψ, the sequence {‖xn − x‖} converges.
(ii) Every weak sequential cluster point of {xn} belongs to Ψ.

Then {xn} converges weakly to a point in Ψ.

3. Main results

To study the convergence analysis, consider the following conditions.
(C1) G : H→ 2H is maximal monotone mapping.
(C2) F : H→ H is `-Lipschitz continuous and monotone mapping.
(C3) Ψ := (F+G)−1 (0) is nonempty.
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Algorithm 1
Initialization: Select arbitrary elements x0,x1 ∈ H. Given {ηn} ⊂ [0, 1]. Let {µn} ⊂ (0, 1

` ) and {δn} ⊂ [0,∞) satisfies the condition such
that

0 < lim inf
n→∞ µn 6 lim sup

n→∞ µn <
1
`

and
∞∑
n=1

δn‖xn−xn−1‖ <∞.

Iterative Steps: Construct {xn} by using the following steps:
Step 1. Set

ρn = xn+ δn(xn−xn−1) and zn = ρn+ηn(xn−ρn).

Step 2. Compute

yn = JGµn
(I−µnF)zn.

If zn = yn then stop and zn ∈ Ψ. Otherwise, go to the next step.
Step 3. Evaluate

xn+1 = yn+µn(Fzn− Fyn).

Replace n by n+ 1 and then repeat Step 1.

Remark 3.1. Let F : H→ H be a mapping and the item (C1) holds. According to Lemma 2.3, if zn = yn in
Algorithm 1, then zn ∈ Ψ.

We are now ready for the main convergence theorem.

Theorem 3.2. Let the sequence {xn} generated due to Algorithm 1 and the items (C1) − (C3) are satisfied. Then,
{xn} converges weakly to a solution of Ψ.

Proof. Let $ ∈ Ψ. From 0 < lim inf
n→∞ µn 6 lim sup

n→∞ µn <
1
`

, there are n0 ∈ N,µ > 0 and µ̄ < 1
` such that

µ 6 µn 6 µ̄ for all n > n0. Next, we prove all following claims.

Claim 1. For any n ∈N,

〈yn −$,yn − zn + µn(Fzn − Fyn)〉 6 0.

By using the definition of yn, we have

(I− µnF)zn ∈ (I+ µnG)yn.

Thus, we can write

gn =
1
µn

(zn − yn − µnFzn) ,

where gn ∈ Gyn. Since F+G is maximal monotone, we obtain

〈yn −$, Fyn + gn〉 > 0,

implying that

〈yn −$,yn − zn + µn(Fzn − Fyn)〉 6 0.

Claim 2. For each n > n0,

‖xn+1 −$‖2 + (1 − (µ̄`)2)‖zn − yn‖2 6 ‖zn −$‖2.
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From (1.3), we have

‖xn+1 −$‖2 = ‖yn −$+ µn(Fzn − Fyn)‖2

= ‖(yn − zn) + (zn −$)‖2 + µ2
n‖Fzn − Fyn‖2 + 2µn〈yn −$, Fzn − Fyn〉

= ‖yn − zn‖2 + ‖zn −$‖2 + µ2
n‖Fzn − Fyn‖2 + 2〈yn − zn, zn −$〉

+ 2µn〈yn −$, Fzn − Fyn〉
= ‖zn −$‖2 − ‖yn − zn‖2 + µ2

n‖Fzn − Fyn‖2 + 2〈yn − zn,yn −$〉
+ 2µn〈yn −$, Fzn − Fyn〉

= ‖zn −$‖2 − ‖yn − zn‖2 + µ2
n‖Fzn − Fyn‖2 + 2〈yn −$,yn − zn + µn(Fzn − Fyn)〉.

Using Claim 1, we get

‖xn+1 −$‖2 6 ‖zn −$‖2 − ‖yn − zn‖2 + µ2
n‖Fzn − Fyn‖2.

This follows from the Lipschitz continuity of F that, for all n > n0,

‖xn+1 −$‖2 6 ‖zn −$‖2 − ‖yn − zn‖2 + (µ̄`)2‖zn − yn‖2.

Thus, Claim 2 is established.

Claim 3. lim
n→∞ ‖xn −$‖ = lim

n→∞ ‖zn −$‖.
Indeed, since the definitions of zn and ρn, and using Claim 2, we have, for all n > n0,

‖xn+1 −$‖ 6 ‖zn −$‖
= ‖ηn(xn −$) + (1 − ηn)(ρn −$)‖
6 ηn‖xn −$‖+ (1 − ηn)‖xn −$+ δn(xn − xn−1)‖
6 ‖xn −$‖+ (1 − ηn)δn‖xn − xn−1‖
6 ‖xn −$‖+ δn‖xn − xn−1‖.

Applying this to Lemma 2.5 with
∞∑
n=1

δn‖xn − xn−1‖ <∞, we derive the sequence {‖xn −$‖} converges

and hence lim
n→∞ ‖xn −$‖ = lim

n→∞ ‖zn −$‖. In particular, {xn} is bounded and also {zn}.

Claim 4. lim
n→∞ ‖xn − yn‖ = 0.

By Claim 2, Claim 3 and µ̄ < 1
` , we obtain

lim
n→∞ ‖zn − yn‖ = 0. (3.1)

Since the definitions of zn and ρn, and using lim
n→∞ δn‖xn − xn−1‖ = 0, we have

‖zn − xn‖ = (1 − ηn)‖ρn − xn‖ 6 ‖ρn − xn‖ = δn‖xn − xn−1‖ → 0 as n→∞.

This together with (3.1) implies that

lim
n→∞ ‖xn − yn‖ = 0.

Claim 5. Every weak sequential cluster point of {xn} belongs to Ψ.
Let x∗ be a weak sequential cluster point of {xn}. Then xnk ⇀ x∗ as k → ∞ for some subsequence {xnk}

of {xn}. This implies by Claim 4 that ynk ⇀ x∗ as k → ∞. Next, we show that x∗ ∈ Ψ. Let (v,u) ∈
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graph (F+G), that is, u− Fv ∈ Gv. It implies by the definition of yn that 1
µnk

(znk − ynk − µnkFznk) ∈
Gynk . By the maximal monotonicity of G, we have〈

v− ynk ,u− Fv−
1
µnk

(znk − ynk − µnkFznk)

〉
> 0.

Thus, by the monotonicity of F, we get

〈v− ynk ,u〉 >
〈
v− ynk , Fv+

1
µnk

(znk − ynk − µnkFznk)

〉
= 〈v− ynk , Fv− Fynk〉+ 〈v− ynk , Fynk − Fznk〉+

1
µnk
〈v− ynk , znk − ynk〉

> 〈v− ynk , Fynk − Fznk〉+
1
µnk
〈v− ynk , znk − ynk〉 .

This follows from the Lipschitz continuity of F and (3.1) that

〈v− x∗,u〉 = lim
k→∞ 〈v− ynk ,u〉 > 0,

which, together with the maximal monotonicity of F+G, we get that 0 ∈ (F+G) x∗. Therefore, x∗ ∈ Ψ.
Finally, by Lemma 2.6, we can conclude that {xn} converges weakly to a solution of Ψ.

4. Application to data classification problem

In this section, we focus on extreme learning machine (ELM) [20] for data classification problems
to classify pre-service mathematics teachers’ academic performance in method courses including seven
levels–1-Poor; 2-Below Average; 3-Average; 4-Above Average; 5-Good; 6-Very Good; 7-Excellent. However,
none of the pre-service teachers performs at a poor or below-average level. Thus, there are five classess
remaining for classification.

ELM for data classification of this problem by defined as follows: The training dataset is defined by
U := {(xk, tk) : xk ∈ Rn, tk ∈ Rm,k = 1, 2, ...,N} and N is distinct samples, xk is an input training data,
and tk is a target. The following output function of single-hidden layer feed forward neural networks
(SLFNs) is computed

Ok =

M∑
i=1

ωiA(gixk + hi),

where M is hidden nodes, A is activation function, ωi is the optimal output weight at the i-th hidden
node, gi is parameter weight at the i-th hidden node, and hi is bias. The hidden layer output matrix P is
generated as follows:

P =

 A(g1x1 + h1) . . . A(gMx1 + hM)
...

. . .
...

A(g1xN + h1) . . . A(gMxN + hM)

 .

To solve ELM is to find optimal output weight ω = [ωT1 , ...,ωTM]T such that Pω = T, where T =
[tT1 , ..., tTN]

T is the training target data. We can write the solution ω in the from ω = P†T, where P† is
the Moore-Penrose generalized inverse of P does not exist. The regularization of least square problem is
considered for good model fitting. This problem can determine as the following convex minimization
problem:

min
ω∈Rn

{
1
2
‖Pω− T‖2

2 + σ‖ω‖1},

where σ is a regularization parameter. This problem is called the least absolute shrinkage and selection
operator (LASSO) [40].
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The classification evaluation, such as accuracy, precision, recall, and F1-score [2] were used to evaluate
the performance of the algorithm, shown in (4.1)-(4.4).

Precision =
tp

tp+ fp
× 100, (4.1)

Recall =
tp

tp+ fn
× 100, (4.2)

F1-score =
2× Precision× Recall
Precision+ Recall

× 100, (4.3)

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
× 100%, (4.4)

where these matrices give True Positive (tp), True Negative (tn), False Positive (fp), and False Negative
(fn).

The multi-class cross-entropy loss function is used in multi-class classification. By computing the
following average:

Loss = −

N∑
i=1

yi log ŷi,

where ŷi is the i-th scalar value in the model output, yi is the corresponding target value, and N is the
number of scalar values in the model output.

This data contains 63-instance educational dataset containing 30 attributes relating to mathematical
disposition, self-efficacy for teaching mathematics, and technology-integrated competency. Before starting
data training, the overview of the data is shown in the Table 1.

Table 1: The overview of pre-service mathematics teachers’ academic performance dataset.

Attribute Name Mean Max Min SD CV
1. Positive Attitude 4.3333 5 3 0.6476 14.9441
2. Persistence and Resilience 3.1429 5 1 0.9648 30.6988
3. Curiosity and Inquisitiveness 3.7460 5 2 0.8224 21.9548
4. Confidence and Self-efficacy 2.4762 5 1 1.1196 45.2138
5. Perceived Relevance and Application 4.4286 5 2 0.6890 15.5570
6. Openness to Multiple Approaches 3.9048 5 1 0.9108 23.3245
7. Appreciation of Beauty and Creativity 2.4762 5 1 1.1620 46.9267
8. Growth Mindset 4.5873 5 3 0.5575 12.1507
9. Connections and Application 1.8730 3 1 0.7723 41.2354
10. Reflectiveness and Metacognition 2.6984 4 1 0.8545 31.6665
11. Confidence in Content Knowledge 4.6667 5 3 0.5388 11.5461
12. Pedagogical Confidence 3.0476 5 1 0.9057 29.7180
13. Belief in Teaching Efficacy 2.3810 5 1 1.0988 46.1498
14. Adaptability and Flexibility 3.8253 5 2 0.8336 21.7903
15. Collaboration and Professional Development 2.5397 5 1 1.1046 43.4942
16. Enthusiasm 4.270 5 3 0.7230 16.9336
17. Flexibility and Differentiation 2.4127 5 1 0.9777 40.5245
18. Problem-Solving Orientation 3.8413 5 2 0.8837 23.0043
19. Reflective Practice 2.6667 5 1 0.9672 36.2702
20. Belief in the Value of Mathematics Education 2.9524 5 1 1.2627 42.7697
21. Technological Skills 3.7778 5 1 1.1974 31.6951
22. Integration of Technology 4.0317 5 3 0.7177 17.8014
23. Adapting Instruction 4.1587 5 3 0.7663 18.4274
24. Collaboration and Communication 2.7778 5 1 1.1701 42.1242
25. Digital Citizenship and Safety 4.2698 5 3 0.6275 14.6960
26. Continuous Learning and Growth 4.3492 5 3 0.6515 14.9801
27. Curriculum Alignment 3.8413 5 2 0.9539 24.8323
28. Student-Centered Approach 3.2381 5 1 1.1460 35.3918
29. Adaptability and Troubleshooting Skills 3.4603 5 1 0.9474 27.3794
30. Ethical and Responsible Use 4.2857 5 2 0.8118 18.9415
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For finding this result is therefore performed without excluding the most relevant feature from the
dataset. Equations (4.1)-(4.4) gives the mathematical representations of the metrics used for results evalu-
ation of Table 2 provide a breakdown of the first results based on the metrics used to evaluate the model.
We compared support vector machine (SVM), logistic regression, boosted trees, and our algorithm (ELM)
with a smooth data balancing technique selected. The dataset was divided into 80:20 ratios for training
and testing by cross-validation with a 5-fold.

Table 2: Comparative analysis of each algorithm.

Algorithm Precision Recall F1-score Accuracy
SVM 52.63 53.33 52.98 73.00
Logistic Regression 44.4 68.10 53.75 61.90
Boosted Trees 32.35 48.10 38.68 33.30
Our Algorithm (ELM) 53.57 51.67 52.60 78.00

From Table 2, the result shows that the Our Algorithm (ELM) perform better than SVM, Logistic
Regression, and Boosted Trees. Besides, the Boosted Trees is the worst classifier for this data.

We set the following parameters for each algorithm:

Table 3: Chosen parameters of each algorithm.

Tseng Modified Tseng IMFBSA Our Algorithm
µn - 1.999

2(max(eigenvalue(AT×A)))
1.999

2(max(eigenvalue(AT×A)))
1.999

2(max(eigenvalue(AT×A)))

δn - 1
‖xn−xn−1‖5+n5

1010

‖xn−xn−1‖3+n3+1010
1010

‖xn−xn−1‖5+n5+1010

ηn - - 1
2n2+1

9n
100n+1

µ 0.7 - - -
δ 0.9 - - -
τ 0.9 - - -
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Figure 1: Confusion Matrix.

From Figure 1 shows the confusion matrix of algorithm predictions. True class is on the y-axis and
predicted class is on the x-axis. Darker shading indicates higher values.

For comparison, We set sigmoid as an activation function, hidden nodes M = 100 and regularization
parameter λ = 0.2, we obtain the results, as seen in Table 4.

Table 4: The performance of each algorithm.

Algorithm Iteration No. Training Time Precision Recall F1-score Accuracy (%)
Tseng 834 1.1111 54.17 45.00 49.16 76.00
Modified Tseng 81 0.0033 48.57 45.00 46.72 76.00
IMFBSA 33 0.0016 55.00 45.00 49.50 76.00
Our Algorithm 48 0.0063 53.57 51.67 52.60 78.00

Table 4 shows that our algorithm obtained the highest performance accuracy.
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Figure 2: Accuracy and Loss plots of the iteration.

From Figure 2, we can see that the Training Loss and Validation Loss decrease. The Validation Loss
value is lower than the Training Loss. On the contrary, when considering the Accuracy graph, it will be
found that the Training Accuracy and Validation Accuracy will increase.

We utilized a modified forward-backward splitting algorithm to a 63-instance educational dataset
containing 30 attributes relating to mathematical disposition, self-efficacy for teaching mathematics, and
technology-integrated competency—the classification accuracy obtained by our proposed machine learn-
ing algorithm. Consequently, 78.00% of the dataset was correctly classified with more accurately than
other methods.

5. Conclusion and discussion

This study presents a new method grounded in machine learning algorithms for predicting pre-service
mathematics teachers’ academic performance levels in method courses, using their data pertaining to
various aspects as the source data. The classification accuracy achieved by our proposed machine learning
algorithm was applied to a 63-instance educational dataset containing 30 attributes using a modified
forward-backward splitting algorithm. As a result, 78.0% of the dataset was classified accurately, which
is more accurate to the performance of other methods.

Calculated and compared performances of a modified forward-backward splitting algorithm to pre-
dict the academic performance levels, it revealed that attributes relating to mathematical disposition,
self-efficacy for teaching mathematics, and technology-integrated competency acquired throughout the
teacher education program were potentially employed to predict pre-service mathematics teachers’ aca-
demic achievement in method courses.

Mathematical disposition, self-efficacy for teaching mathematics, and technology-integrated compe-
tency can affect pre-service mathematics teachers’ academic performance in method courses for several
reasons. Firstly, they affect pre-service teachers’ motivation and engagement in teaching mathematics. A
positive mathematical disposition can enhance pre-service mathematics teachers’ motivation and engage-
ment with the subject [15]. When they have a genuine interest and enthusiasm for mathematics, they
are more likely to put in the effort to understand the content profoundly and seek out learning oppor-
tunities [15]. This motivation and engagement can improve their performance in mathematics method
courses [38]. Moreover, pre-service mathematics teachers with high self-efficacy are more likely to exhibit
enthusiasm and passion for teaching mathematics [37]. With high self-efficacy of pre-service mathe-
matics teachers, they genuinely believe in the value and importance of mathematics education [35, 39].
When students perceive their teacher’s passion and dedication, it can contribute to increased interest
and engagement, ultimately impacting their performance when teaching in method courses. Addition-
ally, by embracing technology-integrated competencies, pre-service mathematics teachers can leverage
the power of technology to create engaging and compelling learning experiences [29]. Technology al-
lows pre-service mathematics teachers to connect and collaborate with colleagues, educators, and experts
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worldwide through online communities [21]. These collaborative opportunities provide inspiration, fresh
perspectives, and a sense of belonging to a broader community of passionate mathematics teachers.

Secondly, mathematical disposition, self-efficacy for teaching mathematics, and technology-integrated
competency can expand pre-service mathematics teachers’ instructional choices and strategies. The math-
ematical disposition of pre-service mathematics teachers can also influence their instructional choices and
strategies used in their method courses [28]. Pre-service mathematics teachers who appreciate the beauty
and utility of mathematics are more likely to employ innovative and effective teaching strategies, make
connections between diverse topics, and present mathematical concepts meaningfully [3]. Moreover, self-
efficacious pre-service mathematics teachers are more likely to believe that they can meet the diverse
needs of their students [7, 45]. They have confidence in their ability to adapt their teaching strategies,
differentiate instruction, and provide appropriate support to students with varying levels of mathemati-
cal proficiency. This adaptability can enhance their effectiveness as teachers and positively impact their
academic performance in method courses. Also, technology integration allows pre-service mathematics
teachers to leverage various digital tools to enhance their instructional strategies. By effectively utilizing
technology, they can create more engaging and interactive lessons catering to different learning styles,
positively improving their performance in method courses [33].

Thirdly, pre-service mathematics teachers perform well in mathematics method courses because they
are able to foster a positive classroom environment and encourage student engagement. Pre-service math-
ematics teachers’ mathematical disposition can affect the classroom climate they create and their interac-
tions with students [15]. Their positive attitudes and beliefs about mathematics are more likely to nurture
a supportive and inclusive learning environment. Furthermore, self-efficacy for teaching mathematics
influences the capacity of pre-service teachers to effectively manage their classrooms [37]. A conducive
learning environment is created when pre-service mathematics teachers have confidence in their ability
to establish a positive and structured learning environment, maintain student engagement, and address
discipline issues, effectively. Integrating technology in mathematics instruction can also help pre-service
mathematics teachers create learning experiences that are more relevant and captivating for students [33].
Adaptive learning platforms and educational mathematics software can make abstract mathematical con-
cepts more concrete and accessible. When students are actively engaged in the learning process, their
motivation and academic performance tend to improve [33]. This situation directly impact to pre-service
mathematics teachers’ performance in mathematics method courses.

In conclusion, different teacher education programs and institutions may have varying expectations
for performance. A good performance in method courses for pre-service mathematics teachers may
require a combination of strong content knowledge, effective pedagogical strategies, well-designed lesson
plans, assessment skills, and classroom management. However, according to the result of this paper,
this combination was affected by attributes relating to mathematical disposition, self-efficacy for teaching
mathematics, and technology-integrated competency. The result can be applied by mathematics teacher
educators to predict their students’ performance and refine the mathematics teacher education curriculum
to focus on mathematical disposition, self-efficacy for teaching mathematics, and technology-integrated
competency.
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