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Abstract

In this paper, we present a detailed study of a class of fractional-order delay differential equations, highlighting that many
real-world problems exhibit multifaceted behaviors in their dynamical interpretations. To capture the aforementioned behavior
in a more realistic way, the use of piecewise derivatives of fractional orders has increasingly been applied. Given the significant
role of delay differential equations in modeling various real-world scenarios, this work specifically addresses a type of delay
differential equation with a proportional delay term. Employing piecewise fractional derivatives and Ulam-Hyers (U-H) type
stability analysis, we explore the qualitative theory of the analyzed problem. Utilizing fixed-point theory and techniques from
functional analysis, we aim to achieve the desired outcomes. To demonstrate our findings, several illustrative examples are
provided.
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1. Introduction

The use of mathematics and its applications in recent years has led to the development of a significant
scenario that has been designed to forecast the behavior of complicated physical problems. It has been
demonstrated in the past that mathematics plays a significant part in the process of solving difficulties
that arise in a variety of scientific subfields. In particular, the features of the differentiable functions
that are found in calculus are utilized to estimate the integer order derivatives of one quantity with
respect to another at a point that is located in its infinitesimal neighborhood. This helps to determine
the rate of change between the two quantities. As a consequence of this reality, the traditional derivative
over time is unable to adequately capture the dynamics of a phenomenon that is associated with long
memory. It is fair to apply the theory and properties of fractional calculus, which is the extension of
integer order derivative to arbitrary real numbers, in order to characterize the dynamics of memory
difficulties. In addition, the aforementioned field is applicable in a wide range of other scientific subfields,
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such as physics [12, 22], Biology [18, 20], Chemistry [23], and a variety of other fields [9]. At the same
time as integer order was being developed, the idea of any arbitrary order derivative was also being
developed. It has not been deemed the answer to problems that occur in the actual world due to the
fact that it is quite complicated. In later years, as technology continued to evolve and new definitions of
complex functions were developed, the field received the attention it deserved. The idea has currently
been effectively used to address a wide range of complex scientific problems. Numerous real-world
issues have been resolved by using fractional derivatives instead of integer order. The State-space model
with non-integer order derivatives for lithium-ion batteries is one example of these issues [21], the Caputo
fractional order derivative (CFD) model of Zika virus transmission dynamics [19], current empiricism, and
classical science are all examples of fractional-order modeling of electric circuits [28], etc. On the other
hand, the phrase ”fractional derivative” does not have a single, widely accepted definition. Numerous
definitions, such as the Riemann-Liouville (R-L) and Caputo definitions, can be found in the literature
[10], Caputo-Fabrizio definition [8], Atangana-Baleanu definition [7], etc. These ideas have recently been
used as the foundation for breaking down numerous mathematical problems. See, for instance [2, 15, 36]
and the references contained therein. For more sophisticated applications of dynamical systems studied
using fractional calculus, we refer to [4, 14, 24, 33].

The traditional idea of derivatives has primarily been put to use for the purpose of analyzing the
dynamics of real-world problems. On the other hand, dynamical issues can occasionally display multi
behaviors. This kind of situation is referred to as crossover behavior or multi-behavior phenomena. It
has been discovered that the basic fractional order derivative or the integer order derivative are unable to
adequately explain the crossover behavior of a physical phenomenon. These concepts are not adequately
explained by standard fractional order derivatives involving exponential, Mittag-Leffler, or power law
kernels. For instance, earthquakes, the swinging of a pendulum, and economic fluctuations in countries
with less developed economies all suffer sudden alterations in the state that their dynamics are in. The
use of piece-wise derivatives, as opposed to continuous derivatives, has been demonstrated to be the
most effective method of illustrating this crossover occurrence. In this context, the most recent inves-
tigation of the aforementioned derivative’s most important properties may be found in [3]. Fractional
derivatives also take into account the memory and genetic impacts, which are both crucial aspects to take
into account, when researching a range of dynamical challenges that arise in real-world situations. The
situation becomes more plausible in particular when fractional order derivatives are taken into account in
mathematical models of infectious disease transmission. Long-term memory effects associated with the
conventional fractional calculus approach make it difficult to solve problems involving long-term calcu-
lations. Additionally, the traditional fractional calculus’s mathematical tools can be used to characterize
the power-law long memory. In a few recent research, the idea of piecewise derivatives of fractional
orders has also been applied. For instance, piecewise fractional differential equations have been utilized
by several writers to explore dynamical systems. Unquestionably, these operators will be employed to
find answers to issues that demonstrate crossover behavior. Researchers’ perspectives on the matter are
quickly becoming more optimistic. This method is currently being used by many researchers in their
studies on models of infectious illnesses, such as the SARS-2 disease model for CAT-T cells, which was
studied by applying the previously mentioned idea in [31]. Using the notion described in [35], the COVID-
19 model has been the subject of research. Some recent qualitative research has focused on the existence
and uniqueness of solutions to use derivative of fractional order for studying system of nonlinear Cauchy
problems, according to the authors [27].

It is also very important to note that delay-type problems have received a lot of attention from re-
searchers working in fractional calculus. This is a significant subfield in the context of this sector. Many
scholars published large amount of research devoted to study solutions to delay-type problems (see
[5, 11, 30]). Additionally, a delay type problems have numerous applications in investigation of epidemi-
ological problems of infectious diseases. As we have already said, models utilizing ordinary fractional
order derivatives are subject to the following limitations: need a lot of storage space and result in ineffi-
cient operation. As a result of this, researchers have developed a short-memory fractional order modeling
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process in addition to short-memory fractional derivatives in order to overcome the problem. You can
get qualitative analysis of delay differential equations in [6, 29]. Fractional differential is currently com-
monly employed to describe many complex physical and mechanical phenomena. When the fractional
differential term is added to the integer-order dynamic system, the entire system will be altered. The
fractional differential term is a useful tool for characterizing the physical transformation process with
memory properties. These kinds of items, or dynamic features, are ubiquitous in the real system.

Inspired from the above discussion, we consider the given problem as
PC
0 DδθU(θ) = Φ(θ, U(θ), U(λθ), HU(θ)), θ ∈ [0, T],

U(0) = U0 +

∫T

0
Ψ(U(ξ))dξ,

(1.1)

where 0 < δ 6 1, 0 < λ < 1, Φ ∈ C[I×R3,R], Ψ ∈ C[I,R] and PC0Dδθ denotes piece-wise derivative describe
as:

PC
0 Dδθ =

{
dU
dθ , when θ ∈ [0, θ1],
C
0 Dδθ, when θ ∈ (θ1, T],

(1.2)

and H is a control function define as HU(θ) =
∫θ

0
(θ−ξ)δ−1

Γ(δ) U(ξ)dξ. Here it should be kept in mind that
a steady power supply and best performance, proportional delay involving insulators must be used to
maintain continuous electrical conductivity between the overhead wires and the train. In our considered
problem λ ∈ (0, 1) makes the problem well posed but if λ > 1, then the problem (1.1) becomes ill-posed.
Extending the nonlinear functional analysis tools, we can establish the mathematical analysis for such
problems. Fixed point theories which have already described for various spaces can be here extended
to deduce the results. Applications for integral boundary conditions can be found in many applied
domains, including population dynamics, chemical engineering, subterranean water flow, and blood flow
issues (see [32]).

To the best of our knowledge, the piecewise fractional order derivative with delay term has not been
used to investigate the problem we have presented. Establishing the qualitative analysis for such problems
is important from numerical and optimization point of views. Therefore, scientists are seeking to come up
with numerical answers to such problems. The system needs to be stable before a numerical solution can
be found. There are various types of stability, but the one that has been discussed here is very important
for the numerical aspect of differential equations. There is a plethora of material related to the stability
that was explored by [16, 17]. In order to address the problem of (1.1), we are particularly interested
in developing results in existence theory and U-H-type stability analysis. U-H stability for a problem
is studied around the best or exact solution of the problem. In order to get the results, we use fixed-
point theory and tools of nonlinear functional analysis. For stability analysis we follow the methodology
presented in [13, 25, 34]. Some examples will be given at the end to support our conclusion. The U-H
stability is important from the optimization and numerical perspectives for the piecewise fractional order
differentiations and proportional delay terms, where we need best approximate solution instead of exact
or analytical solution. Because in such nonlinear problems prior we do not know the exact solution or
impossible to find exact solution.

Here we state that differential equations with integral conditions and controllability terms have many
applications in modeling various process of electromagnetic theory, fluid mechanics, and hydro dynamics
[26]. Further problems with proportional delay terms are called pantographs equations which mainly are
used in modeling the phenomenon related to electrodynamics (see details in [1]).

2. Preliminaries

In this section of our manuscript, we review some key findings from [3, 10, 27, 35]. Let, J = [0, T], and
Ω = C(J,R), then for any U ∈ Ω the supremum norm ‖ · ‖ on Ω is defined as

‖U‖ = sup
θ∈J

|U(θ)|.
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Thus, Ω is a Banach space with the above norm defined on it. Also, we use J1 = [0, θ1], J2 = (θ1, T].

Definition 2.1. For a continuous function U, the R-L integral of fractional order with δ ∈ (0, 1] is defined
as:

RLIδU(θ) =

∫θ
0

(θ− ξ)δ−1

Γ(δ)
U(ξ)dξ, θ ∈ J.

Definition 2.2. For a continuous function U, the piecewise form of R-L fractional integral with δ ∈ (0, 1]
is defined as

PRLIδU(θ) =

{ ∫θ1
0 U(ξ)dξ, if θ ∈ J1,∫θ
θ1

(θ−ξ)δ−1U(ξ)
Γ(δ) dξ, if θ ∈ J2.

Definition 2.3. The CFD with δ(0 < δ 6 1) is defined as follows

CDδθ0
U(θ) =

∫θ
0

(θ− ξ)δ−1U′(ξ)
Γ(δ)

dξ.

Definition 2.4. For a continuous function U, the CFD in piecewise form is defined as

PCDδU(θ) =

{
dU
dθ , if θ ∈ J1,
CDδU(θ), if θ ∈ J2,

where PCDδ represents classical derivative on [0, θ1] and the CFD on J2.

Lemma 2.5. For Y ∈ L[0, T], assume Y(0) = 0, then solution of

PCDδU(θ) = Y(θ), with δ ∈ (0, 1],
U(0) = U0,

is given by

U(θ) =

{
U0 +

∫θ1
0 Y(ξ)dξ, if θ ∈ J1,

U(θ1) +
1
Γ(δ)

∫θ
θ1
(θ− ξ)δ−1Y(ξ)dξ, if θ ∈ J2.

3. Existence theory

This section of our paper will examine the existence theory’s consider problem (1.1). To achieve the
intended outcomes, the idea of fixed-point theory will be used. First, the necessary conditions will be
created for at least one possible solution to the issue. Then, a novel solution will be discussed using the
Banach principle. The integral form of the issue (1.1) is given as follows using Lemma 2.5:

U(θ) =

{
U(0) +

∫θ1
0 Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ, when θ ∈ J1,

U(θ1) +
∫θ
θ1

(θ−ξ)δ−1

Γ(δ) Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ, when θ ∈ J2,

=

{
U0 +

∫T
0 Ψ(U(ξ))dξ+

∫θ1
0 Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ, when θ ∈ J1,

U(θ1) +
∫θ
θ1

(θ−ξ)δ−1Φ(ξ,U(ξ),U(λξ),HU(ξ))
Γ(δ) dξ, when θ ∈ J2.

Let Ω be the space of continuous functions, define operator Z : Ω→ Ω by:

Z(U) =


U0 +

∫T

0
Ψ(U(ξ))dξ+

∫θ1

0
Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ,

U(θ1) +

∫θ
θ1

(θ− ξ)δ−1

Γ(δ)
Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ.

(3.1)
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Divide the above operator (3.1) into two sub operators as

Z1(U) =

{
U0 +

∫T
0 Ψ(U(ξ))dξ, when θ ∈ J1,

U(θ1), when θ ∈ J2,

and

Z2(U) =

{ ∫θ1
0 Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ, when θ ∈ J1,∫θ
θ1

(θ−ξ)δ−1

Γ(δ) Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ, when θ ∈ J2.

For further analysis, we need the following assumptions.

(A1) If there exist positive constants B, B1, B2, B3 such that:

‖Φ(θ, U, V, W)‖ 6 B1‖U‖+ B2‖V‖+ B3‖W‖+ B.

(A2) If there exist a positive constant G such that:

‖Ψ(U) −Ψ(V)‖ 6 G‖U − V‖.

Theorem 3.1. Under the assumptions (A1)-(A2), our proposed problem (1.1) has at least one solution if G′ =
Gθ1 < 1.

Proof. To prove the above statement, we just need to show the operator Z1 is a contraction and operator
Z2 is equi-continuous. For this define D = {U ∈ B : ‖U‖ 6 r} be closed, convex, and bounded subset of B.
Clearly, Z1 is continuous. Let U1, U2 ∈ D, then

‖Z1(U1) − Z1(U2)‖ =
{

Gθ1‖U1 − U2‖, θ ∈ J1,
0, θ ∈ J2, 6 G′‖U1 − U2‖, where G′ = Gθ1.

Hence, Z1 is a contraction. Now we show Z2 is equi-continuous. For this take, U ∈ D and consider

‖Z2(U)‖ = sup
θ∈[0,T]


∣∣∣∣ ∫θ1

0 Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ

∣∣∣∣, when θ ∈ J1,∣∣∣∣ ∫θθ1

(θ−ξ)δ−1

Γ(δ) Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ

∣∣∣∣, when θ ∈ J2,

6 sup
θ∈[0,T]

 (B1|U(θ)|+ B2|U(λθ)|+ B3|HU(θ)|+ B) θ1, when θ ∈ J1,(
B1|U(θ)|+ B2|U(λθ)|+ B3|HU(θ)|+ B

)
(θ−θ1)

δ

Γ(δ) , when θ ∈ J2,

6


(
θ1B1 + θ1B2 +

θ1Tδ
Γ(δ)B3|

)
‖U‖+ θ1B, when θ ∈ J1,(

(T−θ1)
δ

Γ(δ) B1 +
(T−θ1)

δ

Γ(δ) B2 +
(T−θ1)

δTδ

[Γ(δ)]2
B3

)
‖U‖+ B

(T−θ1)
δ

Γ(δ) , when θ ∈ J2,

6

{
B∗‖U‖+ C∗, when θ ∈ J1,
B′‖U‖+ C′, when θ ∈ J2, 6 M‖U‖+ N,

where

B∗ =
(
θ1B1 + θ1B2 +

θ1Tδ

Γ(δ)
B3

)
, C∗ = θ1B,

B′ =

(
(T − θ1)

δ

Γ(δ)
B1 +

(T − θ1)
δ

Γ(δ)
B2 +

(T − θ1)
δTδ

[Γ(δ)]2
B3

)
, C′ = B

(T − θ1)
δ

Γ(δ)
,

M = max{B∗, B′}, N = max{C∗, C′}.

Thus, Z2(U) is bounded. As Φ is continuous so is Z2(U). Further, let ξ1 < ξ2 ∈ J, then

‖Z2U(ξ2) − Z2U(ξ1)‖
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6 sup
{ξ1,ξ2∈J}


∣∣∣∣ ∫ξ2

0 Φ(ξ, U(ξ), U(λξ), HU(ξ) −
∫ξ1

0 Φ(ξ, U(ξ), U(λξ), HU(ξ))

∣∣∣∣dξ, when θ ∈ J1,

(θ−ξ)δ−1

Γ(δ)

∣∣∣∣ ∫ξ2
θ1
Φ(ξ, U(ξ), U(λξ), HU(ξ) −

∫ξ1
θ1
Φ(ξ, U(ξ), U(λξ), HU(ξ))

∣∣∣∣dξ, when θ ∈ J2,

6 sup
{ξ1,ξ2∈J}


∣∣∣∣Φ(ξ, U(ξ), U(λξ), HU(ξ)

∣∣∣∣(ξ2 − ξ1),

1
Γ(δ)

∣∣∣∣Φ(ξ, U(ξ), U(λξ), HU(ξ)

∣∣∣∣[(ξ2 − θ1)
δ − (ξ1 − θ1)

δ],

6 sup
{ξ1,ξ2∈J}

 (B1|U(θ)|+ B2|U(λθ)|+ B3|HU(θ)|+ B) (ξ2 − ξ1),
1
Γ(δ)

(
B1|U(θ)|+ B2|U(λθ)|+ B3|HU(θ)|+ B

)
[(ξ2 − θ1)

δ − (ξ1 − θ1)
δ],

6

{
M∗(ξ2 − ξ1),
N∗[(ξ2 − θ1)

δ − (ξ1 − θ1)
δ],

→ 0 as ξ1 → ξ2,

here,

M∗ =

([
B1 + B2 + B3

Tδ

Γ(δ)

]
r+ B

)
and

N∗ =
1
Γ(δ)

([
B1 + B2 + B3

Tδ

Γ(δ)

]
r+ B

)
.

As a result, Z2 is bounded and Z2 is equi-continuous. Hence, we conclude that the proposed problem has
at least one solution.

Assume the following assumption.

(A3) Let positive values C1, C2, C3 exist, such that

‖Φ(θ1, U1, V1, W1) −Φ(θ2, U2, V2, W2)‖ 6 C1‖U1 − U2‖+ C2‖V1 − V2‖+ C3‖W1 − W2‖.

Theorem 3.2. Let (A2)-(A3) hold and D∗ = max{D1, D2} < 1, where D1 =

[
G + C1 + C2 + C3

θδ1
δΓ(δ)

]
θ1 and

D2 =

[
C1 + C2 + C3

θδ1
δΓ(δ)

]
(T−θ1)

δ

δΓ(δ) , then proposed problem has a unique solution.

Proof.

|Z(U2) − Z(U1)|

=


∫T

0 |Ψ(U2(ξ)) −Ψ(U1(ξ)|dξ+
∫θ1

0

∣∣∣∣Φ(ξ, U2(ξ), U2(λξ), HU2(ξ)) −Φ(ξ, U1(ξ), U1(λξ), HU1(ξ))

∣∣∣∣dξ, when θ ∈ J1,∫θ
θ1

(θ−ξ)δ−1

Γ(δ)

∣∣∣∣Φ(ξ, U2(ξ), U2(λξ), HU2(ξ)) −Φ(ξ, U1(ξ), U1(λξ), HU1(ξ))

∣∣∣∣dξ, when θ ∈ J2,

6


[

G + C1 + C2 + C3
θδ1
δΓ(δ)

]
θ1‖U2 − U1‖,[

C1 + C2 + C3
θδ1
δΓ(δ)

]
(T−θ1)

δ

δΓ(δ) ‖U2 − U1‖,

6

{
D1‖U2 − U1‖,
D2‖U2 − U1‖,

6 D∗‖U2 − U1‖.
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4. U-H Stability

We shall create the necessary circumstances for U-H type stability in this part. This kind of stability is
crucial for a problem’s numerical solution. The fundamental query regarding an approximation is “under
what circumstances the approximation of a problem is nearly equal to the exact solution?” Ulam provided
a comprehensive response to this crucial subject in 1940’s (see [34]). Hyers and Rassiass expanded on the
previously mentioned stability and generalized it to become generalized U-H, U-H-Rassias stability (see
[13, 25]). You may read the definition and a discussion of the asserted stability in [16, 17]. Consider the
corresponding perturb problem of (1.2) as

PC
0 DδθU(θ) = Φ(θ, U(θ), U(λθ), HU(θ)) +ϕ(θ), θ ∈ I = [0, T],

U(0) = U0 +

∫T

0
Ψ(U(ξ))dξ.

(4.1)

Here, ϕ(θ) ∈ C([θ0, T],R) with property |ϕ(θ)| 6 ε, for ε > 0. Also for any solution, U ∈ B of perturb
problem (4.1) such that,

ZU(θ) = U(θ) +ϕ(θ).

The solution of above perturb problem is given by:

U(θ) =

{
U0 +

∫T
0 Ψ(U(ξ))dξ+

∫θ1
0 Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ+

∫θ1
0 ϕ(ξ)dξ, when θ ∈ J1,

U(θ1) +
∫θ
θ1

(θ−ξ)δ−1

Γ(δ) Φ(ξ, U(ξ), U(λξ), HU(ξ))dξ+
∫θ
θ1

(θ−ξ)δ−1

Γ(δ) ϕ(ξ)dξ, when θ ∈ J2.
(4.2)

From (4.2) and (3.1), we can write

‖ZU(θ) − U(θ)‖ 6

{
ε.θ1,
ε.(T−θ1)

δ

δΓ(δ) ,
6 Θ.ε, where Θ = max

{
ε.θ1,

ε.(T − θ1)
δ

δΓ(δ)

}
.

Theorem 4.1. The solution of system (1.2) is U-H and generalized U-H stable if D∗ < 1.

Proof. Let Ū(θ) ∈ B be any solution of problem (4.1) and U ∈ X represent unique solution to problem
(1.2), then

|U(θ) − Ū(θ)| = |U(θ) − ZŪ(θ)| 6 |U(θ) − ZU(θ)|+ |ZU(θ) − ZŪ(θ)| 6 Θε+ D∗|U(θ) − Ū(θ)| 6
Θε

1 − D∗
.

Hence, problem (1.2) is U-H and generalized U-H type stable. On the same way the remaining types of
the stated stability can be studied.

5. Illustrative examples

Here we demonstrate our results by some examples.

Example 5.1.

PC
0 D

1
2
θU(θ) = βU(θ) + γU(λθ) +

1
Γ( 1

2)

∫ 1

0
(1 − ξ)−

1
2 U(ξ)dξ, U(0) = U0 +

∫ 1

0
µU(ξ)dξ. (5.1)

From (5.1) we see that

Φ(θ, U(θ), U(λθ), HU(θ)) = βU(θ) + γU(λθ) +
1
Γ( 1

2)

∫ 1

0
(1 − ξ)−

1
2 U(ξ)dξ
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and
Ψ(U(θ)) = µU(θ).

Now, ‖Φ‖ 6 β‖U‖+ γ‖U‖+ 2
Γ( 1

2 )
‖U‖+ 0, hence Φ satisfied assumption (A1) with B = 0, B1 = β, B2 = γ,

and B3 = 2
Γ( 1

2 )
. Also, assumption (A2) is hold since ‖Ψ(U) −Ψ(V)‖ 6 µ‖U − V‖, and finally:

‖Φ(θ1, U1, V1, W1) −Φ(θ2, U2, V2, W2)‖ 6 β‖U1 − U2‖+ γ‖U1 − U2‖+
2
Γ( 1

2)
‖U1 − U2‖.

This means that assumption (A3) holds for C1 = β, C2 = γ, and C3 = 2
Γ( 1

2 )
. For multiple choices of

parameters “β, γ, and µ” the statements of Theorems 3.1, 3.2, and 4.1 obviously hold.

The considerations, also known as pantographs problems, are increasingly used to model various
processes in electrodynamics. Here it should be kept in mind that pantographs require direct contact
with overhead power lines to generate electricity for the running trains. Because of the train’s speed and
the outside weather, their usage environment is always changing. For details theory and applications, we
refer to [1].

Example 5.2. Consider a pantograph type problem involves trigonometric functions as{
PC
0 D0.9

θ U(θ) = 1
10 U(θ) + sin

(
U(λθ)

5

)
+ 1

50Γ(0.9)

∫1
0(1 − ξ)−0.1 cos(U(ξ))dξ,

U(0) = U0 +
1

10

∫1
0 U(ξ)dξ.

(5.2)

From (5.2), we see that

Φ (θ, U(θ), U(λθ), HU(θ)) =
1

10
U(θ) + sin

(
U(λθ)

5

)
+

1
50Γ(0.9)

∫ 1

0
(1 − ξ)−0.1 cos(U(ξ))dξ,

and

Ψ(U(θ)) =
U(θ)

10
.

Consider

‖Φ‖ = sup
θ∈[0,1]

{∣∣∣∣ 1
10

U(θ) + sin
(

U(λθ)

5

)
+

1
50Γ(0.9)

∫ 1

0
(1 − ξ)−0.1 cos(U(ξ))dξ

∣∣∣∣
}

,

6
1
10
‖U‖+ 1

5
‖U‖+ 1

50Γ(0.9)
‖U‖+ 0

and

‖Ψ(U) −Ψ(V)‖ = sup
θ∈[0,1]

{
1
10

|U − V|

}
6

1
10
‖U − V‖.

Thus, Φ Satisfies assumption (A1) with constants B = 0, B1 = 1
10 , B2 = 1

5 , and B3 = 1
50Γ(0.9) . Also, Ψ satis-

fies assumption (A2) with constant G = 1
10 = G′, hence all conditions of Theorem 3.1 hold. Consequently

problem (5.2) has at least one solution. For unique solution and stability consider:

|Φ (θ, U(θ), U(λθ), HU(θ)) −Φ (θ, V(θ), V(λθ), HV(θ)) | 6
1
10
‖U − V‖+ 1

5
‖U − V‖+ 1

50Γ(0.9)
‖U − V‖.

From above inequality assumption (A3) holds with constants C1 = 1
10 , C2 = 1

5 , and C3 = 1
50Γ(0.9) . Take

θ1 = 0.1, then

D1 =

[
G + C1 + C2 + C3

θδ1
δΓ(δ)

]
θ1 =

[
1
10

+
1
10

+
1
5
+

1
50Γ(0.9)

× (0.1)0.9

0.9Γ(0.9)

]
0.1 = 0.04028034,
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D2 =

[
C1 + C2 + C3

θδ1
δΓ(δ)

]
(T − θ1)

δ

δΓ(δ)
=

[
1
10

+
1
5
+

1
50Γ(0.9)

× 0.10.9

0.9Γ(0.9)

]
0.90.9

0.9Γ(0.9)
= 0.26552557.

As, D∗ = max{D1, D2} = 0.26552557 < 1, thus all the conditions of Theorems 3.2 and 4.1 hold. Conse-
quently, problem (5.2) has a unique solution and Ulam-Hyer’s type stable.

6. Conclusion and discussion

Recently problems under piecewise fractional order derivatives have been increasingly studied for
numerical purposes. But the area devoted to establish mathematical analysis for such problems is very
rarely considered. Also, problems with integral boundary conditions under piecewise derivatives of frac-
tional orders have been considered very rarely in recent literature. Therefore, it is important to investigate
the aforesaid area from different aspects of analysis including the existence theory and stability analysis.
Because the mentioned analysis is essential for optimizations and numerical analysis of those problems
involving piecewise fractional order differentiations and integrations. Therefore, we have considered a
class of nonlinear differential equations with piecewise derivative of fractional order and proportional
type delay terms. For the sake of existence theory and U-H type stability, we thoroughly investigated
a generalized fractional differential equation within the context of this study. Regarding the suggested
model, both proportional delay and controllability terms have been investigated. In the end, concrete
examples were used to support the results. In the future, the above analysis we have developed can be
extended to more complex and generalized systems with various kinds of delay terms and different kinds
of piecewise fractional order derivatives. Also we can extend for multiple delay problems like housefly
model where bi delay terms involved etc. We can study by the said analysis. We pointed out following.

• Dealing such problems it should be kept in mind the portioned delay terms must lies λ ∈ (0, 1) and
never greater than unity because if λ > 1, the problem becomes ill posed. Also for the controllability
term the control function should be specified and bounded.

• The dependency on nonlinearity dictates the complexity; more complex nonlinearities require addi-
tional assumptions and hypotheses for analysis.

• The proportional delay problems also called pantograph problems have significant applications in
electric locomotive and book land problems.

• Here the time domain we have divided into two interval and we have described the solutions in two
branches, where separately for each Branch we have deduced the existence theory using fixed point
approach. The complexities are those dealing two branch problems with fractional order integrals
terms. We have stated some growth assumptions through which we reduced the high nonlinearity
and in this way we obtained sufficient conditions for the existence theory.

• Here we have divided time domain into two pieces, and if divide in multiple sub intervals more
interesting behaviors of dynamics are possible to appear.

• If we consider some practical problems like logistic equation with proportional delay, this analysis
can be implemented there easily.

• If the value of contraction parameter D∗ is less than unity, system achieves stability otherwise will
be unstable in U-H sense. Hence the Lipchitz constant plays key role in this regards.
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