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Abstract
The main objective of this article is to find the general solution to some special cases of the fractional recursive equation

Ψn+1 =
αΨn−1Ψn−5

Ψn−3(β+ δΨnΨn−1Ψn−4Ψn−5)
, n = 0, 1, 2, . . . ,

where α,β and δ are arbitrary real numbers. Furthermore, the solution’s qualitative behavior is explored, such as local and
global stability. For some situations, we have discovered periodic solutions. We also offered numerical examples to demonstrate
our results.

Keywords: Solutions expressions of difference equation, local and global stability, periodic solution.

2020 MSC: 39A10.

©2024 All rights reserved.

1. Introduction

Difference equations, often known as discrete dynamical systems, are one of the most important
scientific topics. The study of the qualitative features of rational difference equations has recently attracted
a lot of interest (see, for example, [1, 3, 6, 7, 15, 26, 30]). The study of rational difference equations of order
larger than one is both demanding and gratifying because the results for rational difference equations
serve as prototypes for the creation of the basic theory of the global behavior of nonlinear difference
equations of order higher than one. However, no efficient general approaches for dealing with the global
behavior of rational difference equations of order greater than one have been developed yet. As a result,
the study of rational difference equations is important. So, many disciplines of science and technology
have recently seen applications of discrete dynamical systems and difference equations.

Investigating the behavior of solutions to a system of nonlinear differential equations and discussing
the local asymptotic stability of their equilibrium points is particularly intriguing (see, for example, [2,
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8, 20, 23, 28, 32]). The technique of determining the general form of the solution for special cases of the
equation has been the subject of numerous investigations. Many publications have been written about the
systems and behavior of rational difference equations (for more details, check out the references).

Abo-Zeid and Kamal [1] solved and studied the global behavior of all admissible solutions of the two
difference equations:

χn+1 =
χnχn−2

χn−1 − χn−2
, χn+1 =

χnχn−2

−χn−1 + χn−2
.

Aljoufi et al. [5] obtained the forms of the eighteenth-order difference equation:

Wn+1 =
Wn−17

±1±Wn−2Wn−5Wn−8Wn−11Wn−14Wn−17
,

and investigated the stability,boundedness and the periodic character of these solutions. Alshareef et al.
[6] examined the dynamics behavior and periodicity character and gave the general form of the solution
of some special cases of the difference equation:

Vn+1 = ξVn−8 +
εV2
n−8

µVn−8 + κVn−17
.

El-Metwally and Alharthi [14] studied the qualitative properties of the solutions for nonlinear difference
equation:

yn+1 =
α+α0y

r
n +α1y

r
n−1 + · · ·+αkyrn−k

β+β0yrn +β1y
r
n−1 + · · ·+βkyrn−k

.

Elsayed and Al-Rakhami investigated the qualitative behavior of the critical point and found the solution
for a rational recursive sequence in [19]

Ψn+1 = αΨn−2 +
βΨn−2Ψn−3

γΨn−3 + δΨn−6
.

In [22], Folly-Gbetoula et al. studied the solution of the rational difference equation:

un+6 =
un

An +Bnunun+2un+4
.

Abdul Khaliq and Elsayed [31] investigated the asymptotic behavior of the solutions of the following
difference equation:

ωn+1 =
ωn−2ωn−7

ωn−4 (±1±ωn−2ωn−7)
,

and gave the solution of some special cases of the difference equation. It is very interesting to investigate
the behavior of solutions of a system of nonlinear difference equations. Tollu et al. [39] solved and studied
the next system:

xn =
α

1 + xn−1yn
, yn =

β

1 + xn−1yn
.

The goal of this paper is to find a general solution to some special cases of the fractional recursive
equation:

Ψn+1 =
αΨn−1Ψn−5

Ψn−3(β+ δΨnΨn−1Ψn−4Ψn−5)
, n = 0, 1, 2, . . . , (1.1)

where α,β, and δ are arbitrary real numbers.
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2. The behavior of equilibrium points

In this section, we will find the fixed point and study its behavior. To find the critical points of Eq.
(1.1), we can write

−
Ψ =

α
−

Ψ2

−
Ψ(β+ δ

−

Ψ4)

.

Then, we have
−

Ψ2(β+ δ
−

Ψ4) = α
−

Ψ2 ⇒
−

Ψ2(β+ δ
−

Ψ4 −α) = 0.

Thus, Eq. (1.1) has two fixed points which are

−
Ψ = 0 and

−
Ψ =

4

√
α−β

δ
, δ 6= 0,

α−β

δ
> 0.

Assume ϕ : (0,∞)5 → (0,∞) be a C1 function defined by

ϕ(u, v,w, s, t) =
αvt

w (β+ δuvst)
. (2.1)

In consequence,

∂ϕ

∂u
=

−αδv2st2

w (β+ δuvst)2 ,
∂ϕ

∂v
=

αβt

w (β+ δuvst)2 ,
∂ϕ

∂w
=

−αvt

w2 (β+ δuvst)
,

∂ϕ

∂s
=

−αδuv2t2

w (β+ δuvst)2 ,
∂ϕ

∂t
=

αβv

w (β+ δuvst)2 .
(2.2)

First, at
−
Ψ = 0, we see that

∂ϕ

∂u
(
−
Ψ,

−
Ψ,

−
Ψ,

−
Ψ,

−

Ψ) = 0 = γ1,
∂ϕ

∂v
(
−
Ψ,

−
Ψ,

−
Ψ,

−
Ψ,

−

Ψ) =
α

β
= γ2,

∂ϕ

∂w
(
−
Ψ,

−
Ψ,

−
Ψ,

−
Ψ,

−

Ψ) = −
α

β
= γ3,

∂ϕ

∂s
(
−
Ψ,

−
Ψ,

−
Ψ,

−
Ψ,

−

Ψ) = 0 = γ4,
∂ϕ

∂t
(
−
Ψ,

−
Ψ,

−
Ψ,

−
Ψ,

−

Ψ) =
α

β
= γ5.

(2.3)

The linearized equation of Eq. (1.1) about
−
Ψ = 0 is

Zn+1 − γ1Zn − γ2Zn−1 − γ3Zn−3 − γ4Zn−4 − γ5Zn−5 = 0.

Hence,
Zn+1 −

α

β
Zn−1 +

α

β
Zn−3 −

α

β
Zn−5 = 0.

Theorem 2.1. The fixed point
−
Ψ = 0 is locally asymptotically stable if 3α < β.

Proof. By using the values in Eq. (2.3) and by Lemma 1 in [30], it can be ensured that equation (1.1) is
asymptotically stable if

|γ1|+ |γ2|+ |γ3|+ |γ4|+ |γ5| < 1,

so, ∣∣∣∣αβ
∣∣∣∣+ ∣∣∣∣−αβ

∣∣∣∣+ ∣∣∣∣αβ
∣∣∣∣ < 1,

therefore,
3α < β.
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Second, at
−
Ψ = 4

√
α−β
δ , we see that

∂ϕ

∂u
(
−
Ψ,

−
Ψ,

−
Ψ,

−
Ψ,

−

Ψ) = −
(α−β)

α
= γ1,

∂ϕ

∂v
(
−
Ψ,

−
Ψ,

−
Ψ,

−
Ψ,

−

Ψ) =
β

α
= γ2,

∂ϕ

∂w
(
−
Ψ,

−
Ψ,

−
Ψ,

−
Ψ,

−

Ψ) = −1 = γ3,

∂ϕ

∂s
(
−
Ψ,

−
Ψ,

−
Ψ,

−
Ψ,

−

Ψ) = −
(α−β)

α
= γ4,

∂ϕ

∂t
(
−
Ψ,

−
Ψ,

−
Ψ,

−
Ψ,

−

Ψ) =
β

α
= γ5.

The linearized equation of Eq. (1.1) about
−
Ψ = 4

√
α−β
δ is

Zn+1 − γ1Zn − γ2Zn−1 − γ3Zn−3 − γ4Zn−4 − γ5Zn−5 = 0.

Hence,

Zn+1 +
(α−β)

α
Zn −

β

α
Zn−1 +Zn−3 +

(α−β)

α
Zn−4 −

β

α
Zn−5 = 0.

Theorem 2.2. The fixed point
−
Ψ = 4

√
α−β
δ is not locally asymptotically stable.

Proof. From Lemma 1 in [30], it follows that
−
Ψ is asymptotically stable if

|γ1|+ |γ2|+ |γ3|+ |γ4|+ |γ5| < 1,

so, ∣∣∣∣−(α−β)

α

∣∣∣∣+ ∣∣∣∣βα
∣∣∣∣+ |−1|+

∣∣∣∣−(α−β)

α

∣∣∣∣+ ∣∣∣∣βα
∣∣∣∣ < 1,

it follows that the fixed point
−
Ψ = 4

√
α−β
δ is not locally asymptotically stable.

Theorem 2.3. The equilibrium point
−
Ψ = 0 of Eq. (1.1) is a global attractor if α 6= 0.

Proof. Let [a1,a2] be an interval of real numbers and ϕ : [a1,a2]
5 → [a1,a2] is a continuous function

defined by Eq. (2.1). Then, we note that from Eq. (2.2) the function ϕ(u, v,w, s, t) is increasing in v and t
and is decreasing in u,w, and s. Assume that whenever (B,b) is a solution of the system

B = ϕ(b,B,b,b,B), b = ϕ(B,b,B,B,b),

then, we have

B =
αB2

b(β+ δB2b2)
=⇒ αB2 = Bb(β+ δB2b2), (2.4)

b =
αb2

B(β+ δb2B2)
=⇒ αb2 = bB(β+ δb2B2). (2.5)

Substrating Eq. (2.4) from Eq. (2.5) we obtain

α(B2 − b2) = Bb(β+ δB2b2 −β− δb2B2).

In consequence, B = b if α 6= 0. It follows by Theorem 1 in [30], the equilibrium point
−
Ψ = 0 of Eq. (1.1) is

a global attractor. Therefore, the proof is complete.

3. General solution for special cases

In this section, we will find the general solution for some special cases of Eq. (1.1).
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3.1. Case 1
In this subsection, we will find the solution of Eq. (1.1) when α = β = δ = 1, so Eq. (1.1) becomes

Ψn+1 =
Ψn−1Ψn−5

Ψn−3(1 +ΨnΨn−1Ψn−4Ψn−5)
, n = 0, 1, 2, . . . , (3.1)

where the initial conditions Ψ−5,Ψ−4,Ψ−3,Ψ−2,Ψ−1, and Ψ0 are positive real numbers.

Theorem 3.1. Suppose that {Ψn}
∞
n=−5 be a solution of Eq. (3.1) . Thus for n = 0, 1, 2, . . .,

Ψ8n−5 = τ

n−1∏
i=0

(
(1 + (8i)ηλµτ) (1 + (8i+ 2)ηλµτ)

(1 + (8i+ 1)ηλµτ) (1 + (8i+ 3)ηλµτ)

)
,

Ψ8n−4 = µ

n−1∏
i=0

(
(1 + (8i+ 1)ηλµτ) (1 + (8i+ 3)ηλµτ)
(1 + (8i+ 2)ηλµτ) (1 + (8i+ 4)ηλµτ)

)
,

Ψ8n−3 = ζ

n−1∏
i=0

(
(1 + (8i+ 2)ηλµτ) (1 + (8i+ 4)ηλµτ)
(1 + (8i+ 3)ηλµτ) (1 + (8i+ 5)ηλµτ)

)
,

Ψ8n−2 = σ

n−1∏
i=0

(
(1 + (8i+ 3)ηλµτ) (1 + (8i+ 5)ηλµτ)
(1 + (8i+ 4)ηλµτ) (1 + (8i+ 6)ηλµτ)

)
,

Ψ8n−1 = λ

n−1∏
i=0

(
(1 + (8i+ 4)ηλµτ) (1 + (8i+ 6)ηλµτ)
(1 + (8i+ 5)ηλµτ) (1 + (8i+ 7)ηλµτ)

)
,

Ψ8n = η

n−1∏
i=0

(
(1 + (8i+ 5)ηλµτ) (1 + (8i+ 7)ηλµτ)
(1 + (8i+ 6)ηλµτ) (1 + (8i+ 8)ηλµτ)

)
,

Ψ8n+1 =
λτ

ζ (1 + ηλµτ)

n−1∏
i=0

(
(1 + (8i+ 6)ηλµτ) (1 + (8i+ 8)ηλµτ)
(1 + (8i+ 7)ηλµτ) (1 + (8i+ 9)ηλµτ)

)
,

Ψ8n+2 =
ηµ (1 + ηλµτ)

σ (1 + 2ηλµτ)

n−1∏
i=0

(
(1 + (8i+ 7)ηλµτ) (1 + (8i+ 9)ηλµτ)
(1 + (8i+ 8)ηλµτ) (1 + (8i+ 10)ηλµτ)

)
,

where Ψ−5 = τ,Ψ−4 = µ,Ψ−3 = ζ,Ψ−2 = σ,Ψ−1 = λ, and Ψ0 = η.

Proof. By using mathematical induction, we will prove that the solution is true. First, for n = 0, the result
holds. Second, we suppose that n > 0 and our assumption holds for n− 1, that is

Ψ8n−13 = τ

n−2∏
i=0

(
(1 + (8i)ηλµτ) (1 + (8i+ 2)ηλµτ)

(1 + (8i+ 1)ηλµτ) (1 + (8i+ 3)ηλµτ)

)
,

Ψ8n−12 = µ

n−2∏
i=0

(
(1 + (8i+ 1)ηλµτ) (1 + (8i+ 3)ηλµτ)
(1 + (8i+ 2)ηλµτ) (1 + (8i+ 4)ηλµτ)

)
,

Ψ8n−11 = ζ

n−2∏
i=0

(
(1 + (8i+ 2)ηλµτ) (1 + (8i+ 4)ηλµτ)
(1 + (8i+ 3)ηλµτ) (1 + (8i+ 5)ηλµτ)

)
,

Ψ8n−10 = σ

n−2∏
i=0

(
(1 + (8i+ 3)ηλµτ) (1 + (8i+ 5)ηλµτ)
(1 + (8i+ 4)ηλµτ) (1 + (8i+ 6)ηλµτ)

)
,

Ψ8n−9 = λ

n−2∏
i=0

(
(1 + (8i+ 4)ηλµτ) (1 + (8i+ 6)ηλµτ)
(1 + (8i+ 5)ηλµτ) (1 + (8i+ 7)ηλµτ)

)
,
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Ψ8n−8 = η

n−2∏
i=0

(
(1 + (8i+ 5)ηλµτ) (1 + (8i+ 7)ηλµτ)
(1 + (8i+ 6)ηλµτ) (1 + (8i+ 8)ηλµτ)

)
,

Ψ8n−7 =
λτ

ζ (1 + ηλµτ)

n−2∏
i=0

(
(1 + (8i+ 6)ηλµτ) (1 + (8i+ 8)ηλµτ)
(1 + (8i+ 7)ηλµτ) (1 + (8i+ 9)ηλµτ)

)
,

Ψ8n−6 =
ηµ (1 + ηλµτ)

σ (1 + 2ηλµτ)

n−2∏
i=0

(
(1 + (8i+ 7)ηλµτ) (1 + (8i+ 9)ηλµτ)
(1 + (8i+ 8)ηλµτ) (1 + (8i+ 10)ηλµτ)

)
.

Now, we prove that the results hold for n. From Eq. (3.1), it follows that

Ψ8n−5 =
Ψ8n−7Ψ8n−11

Ψ8n−9(1 +Ψ8n−6Ψ8n−7Ψ8n−10Ψn−11)
,

=


λτ

ζ(1+ηλµτ)

n−2∏
i=0

(
(1+(8i+6)ηλµτ)(1+(8i+8)ηλµτ)
(1+(8i+7)ηλµτ)(1+(8i+9)ηλµτ)

)
ζ

n−2∏
i=0

(
(1+(8i+2)ηλµτ)(1+(8i+4)ηλµτ)
(1+(8i+3)ηλµτ)(1+(8i+5)ηλµτ)

)


λ

n−2∏
i=0

(
(1+(8i+4)ηλµτ)(1+(8i+6)ηλµτ)
(1+(8i+5)ηλµτ)(1+(8i+7)ηλµτ)

)



1 + ηµ(1+ηλµτ)
σ(1+2ηλµτ)

n−2∏
i=0

(
(1+(8i+7)ηλµτ)(1+(8i+9)ηλµτ)
(1+(8i+8)ηλµτ)(1+(8i+10)ηλµτ)

)
λτ

ζ(1+ηλµτ)

n−2∏
i=0

(
(1+(8i+6)ηλµτ)(1+(8i+8)ηλµτ)
(1+(8i+7)ηλµτ)(1+(8i+9)ηλµτ)

)
σ

n−2∏
i=0

(
(1+(8i+3)ηλµτ)(1+(8i+5)ηλµτ)
(1+(8i+4)ηλµτ)(1+(8i+6)ηλµτ)

)
ζ

n−2∏
i=0

(
(1+(8i+2)ηλµτ)(1+(8i+4)ηλµτ)
(1+(8i+3)ηλµτ)(1+(8i+5)ηλµτ)

)



,

Ψ8n−5 =

τ
(1+ηλµτ)

n−2∏
i=0

(
(1+(8i+2)ηλµτ)(1+(8i+8)ηλµτ)
(1+(8i+3)ηλµτ)(1+(8i+9)ηλµτ)

)
[

1 + ηλµτ
(1+2ηλµτ)

n−2∏
i=0

(
(1+(8i+2)ηλµτ)
(1+(8i+10)ηλµτ)

) ] ,

Ψ8n−5 =

τ
(1+ηλµτ)

n−2∏
i=0

(
(1+(8i+2)ηλµτ)(1+(8i+8)ηλµτ)
(1+(8i+3)ηλµτ)(1+(8i+9)ηλµτ)

)
[
1 + ηλµτ

(1+(8n−6)ηλµτ)

] ,

Ψ8n−5 =

τ
(1+ηλµτ)

n−2∏
i=0

(
(1+(8i+2)ηλµτ)(1+(8i+8)ηλµτ)
(1+(8i+3)ηλµτ)(1+(8i+9)ηλµτ)

)
[
(1+(8n−5)ηλµτ)
(1+(8n−6)ηλµτ)

] ,

Ψ8n−5 =
τ

(1 + ηλµτ)

[
(1 + (8n− 6)ηλµτ)
(1 + (8n− 5)ηλµτ)

]n−2∏
i=0

(
(1 + (8i+ 2)ηλµτ) (1 + (8i+ 8)ηλµτ)
(1 + (8i+ 3)ηλµτ) (1 + (8i+ 9)ηλµτ)

)
.

Hence, we get

Ψ8n−5 = τ

n−1∏
i=0

(
(1 + (8i)ηλµτ) (1 + (8i+ 2)ηλµτ)

(1 + (8i+ 1)ηλµτ) (1 + (8i+ 3)ηλµτ)

)
.
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Similarly, from Eq. (3.1), we have

Ψ8n−4 =
Ψ8n−6Ψ8n−10

Ψ8n−8(1 +Ψ8n−5Ψ8n−6Ψ8n−9Ψn−10)
,

=


ηµ(1+ηλµτ)
σ(1+2ηλµτ)

n−2∏
i=0

(
(1+(8i+7)ηλµτ)(1+(8i+9)ηλµτ)
(1+(8i+8)ηλµτ)(1+(8i+10)ηλµτ)

)
σ

n−2∏
i=0

(
(1+(8i+3)ηλµτ)(1+(8i+5)ηλµτ)
(1+(8i+4)ηλµτ)(1+(8i+6)ηλµτ)

)


η

n−2∏
i=0

(
(1+(8i+5)ηλµτ)(1+(8i+7)ηλµτ)
(1+(8i+6)ηλµτ)(1+(8i+8)ηλµτ)

)



1 + τ

n−1∏
i=0

(
(1+(8i)ηλµτ)(1+(8i+2)ηλµτ)

(1+(8i+1)ηλµτ)(1+(8i+3)ηλµτ)

)
ηµ(1+ηλµτ)
σ(1+2ηλµτ)

n−2∏
i=0

(
(1+(8i+7)ηλµτ)(1+(8i+9)ηλµτ)
(1+(8i+8)ηλµτ)(1+(8i+10)ηλµτ)

)
λ

n−2∏
i=0

(
(1+(8i+4)ηλµτ)(1+(8i+6)ηλµτ)
(1+(8i+5)ηλµτ)(1+(8i+7)ηλµτ)

)
σ

n−2∏
i=0

(
(1+(8i+3)ηλµτ)(1+(8i+5)ηλµτ)
(1+(8i+4)ηλµτ)(1+(8i+6)ηλµτ)

)



,

Ψ8n−4 =

µ(1+ηλµτ)
(1+2ηλµτ)

n−2∏
i=0

(
(1+(8i+3)ηλµτ)(1+(8i+9)ηλµτ)
(1+(8i+4)ηλµτ)(1+(8i+10)ηλµτ)

)


1 + ηλµτ
(1+3ηλµτ)

n−1∏
i=1

(
(1+(8i)ηλµτ)(1+(8i+2)ηλµτ)

(1+(8i+1)ηλµτ)(1+(8i+3)ηλµτ)

)
n−2∏
i=0

(
(1+(8i+3)ηλµτ)(1+(8i+9)ηλµτ)
(1+(8i+8)ηλµτ)(1+(8i+10)ηλµτ)

)


,

Ψ8n−4 =

µ(1+ηλµτ)
(1+2ηλµτ)

n−2∏
i=0

(
(1+(8i+3)ηλµτ)(1+(8i+9)ηλµτ)
(1+(8i+4)ηλµτ)(1+(8i+10)ηλµτ)

)
[
1 + ηλµτ

(1+(8n−5)ηλµτ)

] ,

Ψ8n−4 =
µ (1 + ηλµτ)

(1 + 2ηλµτ)

[
(1 + (8n− 5)ηλµτ)
(1 + (8n− 4)ηλµτ)

]n−2∏
i=0

(
(1 + (8i+ 3)ηλµτ) (1 + (8i+ 9)ηλµτ)
(1 + (8i+ 4)ηλµτ) (1 + (8i+ 10)ηλµτ)

)
.

So, we obtain

Ψ8n−4 = µ

n−1∏
i=0

(
(1 + (8i+ 1)ηλµτ) (1 + (8i+ 3)ηλµτ)
(1 + (8i+ 2)ηλµτ) (1 + (8i+ 4)ηλµτ)

)
.

Other expressions can be investigated in the same way. The proof has been completed.

3.2. Case 2

In this subsection, we will find the solution of Eq. (1.1) when α = β = 1 and δ = −1, so the Eq. (1.1)
becomes

Ψn+1 =
Ψn−1Ψn−5

Ψn−3(1 −ΨnΨn−1Ψn−4Ψn−5)
, n = 0, 1, 2, . . . , (3.2)

where the initial conditions Ψ−5,Ψ−4,Ψ−3,Ψ−2,Ψ−1, and Ψ0 are positive real numbers and (Ψ0Ψ−1Ψ−4Ψ−5
/∈
{1
i : i = 1, 2, 3, . . .

}
).
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Theorem 3.2. Suppose that {Ψn}
∞
n=−5 be a solution of Eq. (3.2) . Thus for n = 0, 1, 2, . . .,

Ψ8n−5 = τ

n−1∏
i=0

(
(1 − (8i)ηλµτ) (1 − (8i+ 2)ηλµτ)

(1 − (8i+ 1)ηλµτ) (1 − (8i+ 3)ηλµτ)

)
,

Ψ8n−4 = µ

n−1∏
i=0

(
(1 − (8i+ 1)ηλµτ) (1 − (8i+ 3)ηλµτ)
(1 − (8i+ 2)ηλµτ) (1 − (8i+ 4)ηλµτ)

)
,

Ψ8n−3 = ζ

n−1∏
i=0

(
(1 − (8i+ 2)ηλµτ) (1 − (8i+ 4)ηλµτ)
(1 − (8i+ 3)ηλµτ) (1 − (8i+ 5)ηλµτ)

)
,

Ψ8n−2 = σ

n−1∏
i=0

(
(1 − (8i+ 3)ηλµτ) (1 − (8i+ 5)ηλµτ)
(1 − (8i+ 4)ηλµτ) (1 − (8i+ 6)ηλµτ)

)
,

Ψ8n−1 = λ

n−1∏
i=0

(
(1 − (8i+ 4)ηλµτ) (1 − (8i+ 6)ηλµτ)
(1 − (8i+ 5)ηλµτ) (1 − (8i+ 7)ηλµτ)

)
,

Ψ8n = η

n−1∏
i=0

(
(1 − (8i+ 5)ηλµτ) (1 − (8i+ 7)ηλµτ)
(1 − (8i+ 6)ηλµτ) (1 − (8i+ 8)ηλµτ)

)
,

Ψ8n+1 =
λτ

ζ (1 − ηλµτ)

n−1∏
i=0

(
(1 − (8i+ 6)ηλµτ) (1 − (8i+ 8)ηλµτ)
(1 − (8i+ 7)ηλµτ) (1 − (8i+ 9)ηλµτ)

)
,

Ψ8n+2 =
ηµ (1 − ηλµτ)

σ (1 − 2ηλµτ)

n−1∏
i=0

(
(1 − (8i+ 7)ηλµτ) (1 − (8i+ 9)ηλµτ)
(1 − (8i+ 8)ηλµτ) (1 − (8i+ 10)ηλµτ)

)
,

where Ψ−5 = τ,Ψ−4 = µ,Ψ−3 = ζ,Ψ−2 = σ,Ψ−1 = λ, and Ψ0 = η.

Proof. We can use the same steps used to prove Theorem 3.2.

3.3. Case 3
In this subsection, we will find the solution of Eq. (1.1) when α = 1,β = −1, and δ = 1, so the Eq.

(1.1) becomes

Ψn+1 =
Ψn−1Ψn−5

Ψn−3(−1 +ΨnΨn−1Ψn−4Ψn−5)
, n = 0, 1, 2, . . . , (3.3)

where the initial conditions Ψ−5,Ψ−4,Ψ−3,Ψ−2,Ψ−1, and Ψ0 are nonzero positive real numbers and
(Ψ0Ψ−1Ψ−4Ψ−5 6= 1).

Theorem 3.3. Suppose that {Ψn}
∞
n=−5 be a solution of Eq. (3.3) . Thus Eq. (3.3) has an unbounded solution and

for n = 0, 1, 2, . . .,

Ψ8n−5 =
τ

(−1 + ηλµτ)2n , Ψ8n−4 = µ (−1 + ηλµτ)2n ,

Ψ8n−3 =
ζ

(−1 + ηλµτ)2n , Ψ8n−2 = σ (−1 + ηλµτ)2n ,

Ψ8n−1 =
λ

(−1 + ηλµτ)2n , Ψ8n = η (−1 + ηλµτ)2n ,

Ψ8n+1 =
λτ

ζ (−1 + ηλµτ)2n+1 , Ψ8n+2 =
ηµ (−1 + ηλµτ)2n+1

σ
,

where Ψ−5 = τ,Ψ−4 = µ,Ψ−3 = ζ,Ψ−2 = σ,Ψ−1 = λ, and Ψ0 = η.
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Proof. By using mathematical induction, we will prove that the solution is true. First, for n = 0 the result
holds. Second, we suppose that n > 0 and our assumption holds for n− 1, that is

Ψ8n−13 =
τ

(−1 + ηλµτ)2n−2 , Ψ8n−12 = µ (−1 + ηλµτ)2n−2 ,

Ψ8n−11 =
ζ

(−1 + ηλµτ)2n−2 , Ψ8n−10 = σ (−1 + ηλµτ)2n−2 ,

Ψ8n−9 =
λ

(−1 + ηλµτ)2n−2 , Ψ8n−8 = η (−1 + ηλµτ)2n−2 ,

Ψ8n−7 =
λτ

ζ (−1 + ηλµτ)2n−1 , Ψ8n−6 =
ηµ (−1 + ηλµτ)2n−1

σ
.

Now, from Eq. (3.3) it follows that

Ψ8n−5 =
Ψ8n−7Ψ8n−11

Ψ8n−9(−1 +Ψ8n−6Ψ8n−7Ψ8n−10Ψn−11)

=

λτ

ζ(−1+ηλµτ)2n−1
ζ

(−1+ηλµτ)2n−2(
λ

(−1+ηλµτ)2n−2

) −1 + ηµ(−1+ηλµτ)2n−1

σ
λτ

ζ(−1+ηλµτ)2n−1

σ (−1 + ηλµτ)2n−2 ζ

(−1+ηλµτ)2n−2

 =
τ

(−1 + ηλµτ)2n−1
1

(−1 + ηλµτ)
.

So, we have
Ψ8n−5 =

τ

(−1 + ηλµτ)2n .

Similarly,

Ψ8n−4 =
Ψ8n−6Ψ8n−10

Ψ8n−8(−1 +Ψ8n−5Ψ8n−6Ψ8n−9Ψn−10)

=
ηµ(−1+ηλµτ)2n−1

σ σ (−1 + ηλµτ)2n−2

(
η (−1 + ηλµτ)2n−2

) −1 + τ

(−1+ηλµτ)2n
ηµ(−1+ηλµτ)2n−1

σ

λ

(−1+ηλµτ)2n−2σ (−1 + ηλµτ)2n−2

 =
µ (−1 + ηλµτ)2n−1(

1−ηλµτ+ηλµτ
(−1+ηλµτ)

) .

Thus, we get
Ψ8n−4 = µ (−1 + ηλµτ)2n .

Also,

Ψ8n−3 =
Ψ8n−5Ψ8n−9

Ψ8n−7(−1 +Ψ8n−4Ψ8n−5Ψ8n−8Ψn−9)

=

τ

(−1+ηλµτ)2n
λ

(−1+ηλµτ)2n−2(
λτ

ζ(−1+ηλµτ)2n−1

) −1 + µ (−1 + ηλµτ)2n τ

(−1+ηλµτ)2n

η (−1 + ηλµτ)2n−2 λ

(−1+ηλµτ)2n−2

 =

1
(−1+ηλµτ)2n

1
(−1+ηλµτ)2n−2

1
ζ(−1+ηλµτ)2n−2

.

Hence, we obtain

Ψ8n−3 =
ζ

(−1 + ηλµτ)2n .

Similarly, by using the same method, we can investigate other relations.

Theorem 3.4. Equation (3.3) has a periodic solution of period eight iff ηλµτ = 2 and {Ψn}
∞
n=−5 will take the form{

τ,µ, ζ,σ, λ,η, λτζ , ηµσ , τ,µ, ζ,σ, λ,η, λτζ , ηµσ , . . .
}

.
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Proof. First, assume that there exists a prime period eight solution

τ,µ, ζ,σ, λ,η,
λτ

ζ
,
ηµ

σ
, τ,µ, ζ,σ, λ,η,

λτ

ζ
,
ηµ

σ
, . . .

of Eq. (3.3); from the form of solution of Eq. (3.3), we can see that

τ =
τ

(−1 + ηλµτ)2n , µ = µ (−1 + ηλµτ)2n , ζ =
ζ

(−1 + ηλµτ)2n , σ = σ (−1 + ηλµτ)2n ,

λ =
λ

(−1 + ηλµτ)2n , η = η (−1 + ηλµτ)2n ,
λτ

ζ
=

λτ

ζ (−1 + ηλµτ)2n+1 ,
ηµ

σ
=
ηµ (−1 + ηλµτ)2n+1

σ
,

this means that
(−1 + ηλµτ)2n = 1.

Thus,
ηλµτ = 2.

Second, suppose that ηλµτ = 2. Then, we see from the form of the solution of Eq. (3.3) that

Ψ8n−5 = τ, Ψ8n−4 = µ, Ψ8n−3 = ζ, Ψ8n−2 = σ, Ψ8n−1 = λ, Ψ8n = η, Ψ8n+1 =
λτ

ζ
, Ψ8n+2 =

ηµ

σ
.

Thus, we have a periodic solution of period eight and the proof is complete.

3.4. Case 4
In this subsection, we will find the solution of Eq. (1.1) when α = 1,β = −1 and δ = −1, so the Eq.

(1.1) becomes

Ψn+1 =
Ψn−1Ψn−5

Ψn−3(−1 −ΨnΨn−1Ψn−4Ψn−5)
, n = 0, 1, 2, . . . , (3.4)

where the initial conditions Ψ−5,Ψ−4,Ψ−3,Ψ−2,Ψ−1, and Ψ0 are nonzero positive real numbers and
(Ψ0Ψ−1Ψ−4Ψ−5 6= −1).

Theorem 3.5. Suppose that {Ψn}
∞
n=−5 be a solution of Eq. (3.4) . Then Eq. (3.4) has an unbounded solution and

for n = 0, 1, 2, . . .,

Ψ8n−5 =
τ

(−1 − ηλµτ)2n , Ψ8n−4 = µ (−1 − ηλµτ)2n ,

Ψ8n−3 =
ζ

(−1 − ηλµτ)2n , Ψ8n−2 = σ (−1 − ηλµτ)2n ,

Ψ8n−1 =
λ

(−1 − ηλµτ)2n , Ψ8n = η (−1 − ηλµτ)2n ,

Ψ8n+1 =
λτ

ζ (−1 − ηλµτ)2n+1 , Ψ8n+2 =
ηµ (−1 − ηλµτ)2n+1

σ
,

where Ψ−5 = τ,Ψ−4 = µ,Ψ−3 = ζ,Ψ−2 = σ,Ψ−1 = λ, and Ψ0 = η.

Proof. We can use the same steps used to prove Theorem 3.4.

Theorem 3.6. Equation (3.4) has a periodic solution of period eight iff ηλµτ = −2 and {Ψn}
∞
n=−5 will take the

form
{
τ,µ, ζ,σ, λ,η, λτζ , ηµσ , τ,µ, ζ,σ, λ,η, λτζ , ηµσ , . . .

}
.

Proof. The proof will be the same as the proof of Theorem 3.5.

4. Numerical examples

In this section, we provide some of the numerical results to demonstrate the solution behavior of Eq.
(1.1) for our prior results.
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Example 4.1. In numerical simulation, we assume that for Eq. (3.1) the initial values are Ψ−5 = 1.2,Ψ−4 =
5.5,Ψ−3 = 3.4,Ψ−2 = 6.8,Ψ−1 = 1.9, and Ψ0 = 7.7. Then the solution appears in Figure 1.
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8

n

Ψ
(n

)

Figure 1: Plotting the solution of the difference equation Ψn+1 = Ψn−1Ψn−5
Ψn−3(1+ΨnΨn−1Ψn−4Ψn−5)

.

Example 4.2. Numerically, we take the initial values are Ψ−5 = 0.5,Ψ−4 = 0.21,Ψ−3 = 0.42,Ψ−2 =
0.85,Ψ−1 = 0.65, and Ψ0 = 0.12, the results of Eq. (3.2) are shown in Figure 2.
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Figure 2: Plotting the solution of the difference equation Ψn+1 = Ψn−1Ψn−5
Ψn−3(1−ΨnΨn−1Ψn−4Ψn−5)

.

Example 4.3. Figures 3 and 4 depict the behavior of Eq. (3.3), with Figure 3 indicating that the solution
is unbounded where the initial conditions are Ψ−5 = 0.8,Ψ−4 = 0.9,Ψ−3 = 1.5,Ψ−2 = −4,Ψ−1 = 1.8, and
Ψ0 = 0.4, and Figure 4 indicating that the solution is periodic when the initial values are Ψ−5 = 1/2,Ψ−4 =
5,Ψ−3 = 3,Ψ−2 = −2.5,Ψ−1 = 2, and Ψ0 = 2/5 in Eq. (3.3) are set to Ψ0Ψ−1Ψ−4Ψ−5 = 2.
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Figure 3: Unbounded solution of the difference equation Ψn+1 = Ψn−1Ψn−5
Ψn−3(−1+ΨnΨn−1Ψn−4Ψn−5)

.
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Figure 4: Periodic solution of the difference equation Ψn+1 = Ψn−1Ψn−5
Ψn−3(−1+ΨnΨn−1Ψn−4Ψn−5)

.

Example 4.4. For Eq. (3.4) the initial conditions are set as follows: Ψ−5 = −1.1,Ψ−4 = 0.8,Ψ−3 = 0.3,Ψ−2 =
−2,Ψ−1 = 1.3, and Ψ0 = 0.1. And Ψ−5 = 1/3,Ψ−4 = −2,Ψ−3 = 4.5,Ψ−2 = −2.5,Ψ−1 = 8, and Ψ0 = 3/8,
and the results are shown in Figures 5 and 6.
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Figure 5: Unbounded solution of the difference equation Ψn+1 = Ψn−1Ψn−5
Ψn−3(−1−ΨnΨn−1Ψn−4Ψn−5)

.
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Figure 6: Periodic solution of the difference equation Ψn+1 = Ψn−1Ψn−5
Ψn−3(−1−ΨnΨn−1Ψn−4Ψn−5)

.

5. Conclusion

In this article, we have found the general form of the solutions of rational difference equations and
we investigated the existence of positive equilibrium points. In Section 2, we investigated the solution’s
qualitative behavior, such as local and global stability. In Section 3, we found the solution’s expressions to
some special cases of the fractional recursive equation (1.1). In Cases 3 and 4, we had a periodic solution
of period eight iff ηλµτ = 2 and ηλµτ = −2, respectively. Finally, some illustrative examples are provided
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to support our theoretical discussion. As future work, we can use the parameters α,β, and δ as a sequence
or form a system of the same equation in multiple dimensions.
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