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Abstract

The concept of Pythagorean fuzzy sets was introduced by Yager in 2013. It is a generalization of the concepts of fuzzy
sets and intuitionistic fuzzy sets. The aim of this study was to apply the concept of Pythagorean fuzzy sets to clarify in KU-
algebras. The notion of Pythagorean fuzzy KU-subalgebras of KU-algebras is introduced. Then, we give some fundamental
properties of Pythagorean fuzzy KU-subalgebras in KU-algebras. Finally, we investigate the relationships between the image
and the preimage of Pythagorean fuzzy KU-subalgebras under a homomorphism of KU-algebras.
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1. Introduction

Two important classes of algebraic structures are BCK-algebras and BCI-algebras, which were intro-
duced by Ise’ki [11, 12] in which the class of BCI-algebras is the general class of BCK-algebras. Afterwards,
Hu and Li [9, 10] defined an algebraic structure that generalizes to BCI-algebras named BCH-algebras.
Later, there were mathematicians who used the above algebraic structure to widely study various proper-
ties; for example in BCK-algebras, Hamidi [8] investigated the concept of superhyper BCK-algebras, which
is a generalization of BCK-algebras. In BCI-algebras, Chaida [5] examined commutative BCI-algebras as
semilattices with certain involutions in each of their sections. In BCH-algebras, Muangkarn et al. [23]
used the concept of endomorphisms and bi-endomorphisms as a model to create tri-endomorphisms on
BCH-algebras. For the reader requiring more details, a wider literature is available, e.g., [3, 4, 13, 14, 30].

In 2009, Prabpayak and Leerawat [24] introduced a new algebra which was called KU-algebras and
studied congruences on KU-algebras. Subsequently, they discussed relationships between quotient KU-
algebras and isomorphisms of KU-algebras see also [25]. Mostafa et al. [22] who applied the coding
theory to KU-algebras and obtained some interesting properties. Then, the concept of a hyper structure
KU-algebra was introduced and some related results were provided by Mostafa et al. [21]. Subsequently,
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Koam et al. [16] defined an extension of KU-algebras and called it an extended KU-algebra; they dis-
cussed the relations between extended KU-algebras and KU-algebras. In 2023, Manivasan and Kalidass
[17] introduced BMBJ-neutrosophic sets and subalgebras as a generalization of neutrosophic sets, and
examined their applications and related features to KU-algebras.

Fuzzy sets were introduced by Zadeh [32] in 1965 as a mapping from a nonempty set X to the unit
interval [0, 1]. This mapping denotes the degree of membership of each element in a set X. Then, the
concepts of fuzzy KU-ideals, interval-valued fuzzy KU-ideals and anti-fuzzy KU-ideals in KU-algebras
were introduced and some of their properties were investigated in a series of reports by Mostafa et al.
(see [18–20]). In addition, Gulistan et al. [6, 7] presented the concepts of (∈,∈ ∨qk)-fuzzy KU-ideals
and (α,β)-fuzzy KU-ideals of KU-algebras which are generalizations of fuzzy KU-ideals in KU-algebras.
Subsequently, Senapati [26] introduced and investigated the notion of T -fuzzy KU-ideals of KU-algebras
by using the t-norm T . As a generalization of fuzzy sets, Atanassov [2] made known the concept of
intuitionistic fuzzy sets consisting of the degree of membership and the degree of non-membership of
an element in an universe set. Senapati and Shum [28, 29] introduced the notions of intuitionistic fuzzy
bi-normed KU-ideals and intuitionistic bi-normed KU-subalgebras of KU-algebras and discussed some
of its properties under the homomorphism. Later, Senapati et al. [27] considered the characterizations
of cubic intuitionistic KU-subalgebras and cubic intuitionistic KU-ideals of KU-algebras. Simultaneously,
the notions of intuitionistic Q-fuzzy KU-ideals of KU-algebras, upper and lower-level cuts of Q-fuzzy sets
and some axioms were surveyed by Alkouri et al. [1].

In 2013, Yager [31] suggested the concept of Pythagorean fuzzy sets, which is the sum of squares of
the degree of membership and non-membership within the unit interval [0, 1]. This notion generalizes
the fuzzy sets and the intuitionistic fuzzy sets. The purpose of this paper is to apply the concept of
Pythagorean fuzzy sets to solve problems in KU-algebras. Next, we introduce the notion of Pythagorean
fuzzy KU-subsalgebras and consider some of their properties. Then, we examine the connections be-
tween the image and the preimage of Pythagorean fuzzy KU-subalgebras under a homomorphism of
KU-algebras.

2. Preliminaries

Firstly, we recall some of the basis definitions and properties, which are necessary for this paper. For
any nonempty set X, a mapping µ : X → [0, 1] is called a fuzzy set [32] of X. Let µ and λ be any two
fuzzy sets of a nonempty set X. Then the fuzzy sets µ ∩ λ and µ ∪ λ of X are defined by (µ ∩ λ)(x) =
min{µ(x), λ(x)} and (µ∪ λ)(x) = max{µ(x), λ(x)}, for all x ∈ X, respectively. The complement of µ, denoted
by µc, is a fuzzy set in X as defined by µc(x) = 1 − µ(x), for all x ∈ X. Furthermore, the set U(µ, t) = {x ∈
X | µ(x) > t} is called an upper-level set of µ, and the set L(µ, t) = {x ∈ X | µ(x) 6 t} is called a lower-level
set of µ where t ∈ [0, 1].

Definition 2.1 ([2]). An intuitionistic fuzzy set A on an universe set X is given by:

A = {〈x,µA(x), λA(x)〉 | x ∈ X} ,

where µA : X → [0, 1] and λA : X → [0, 1] are called the degree of membership and the degree of non-
membership, respectively, of the element x ∈ X in the set A such that µA and λA satisfy the following
axiom: 0 6 µA(x) + λA(x) 6 1, for all x ∈ X.

Definition 2.2 ([31]). A Pythagorean fuzzy set P in a nonempty set X is defined by the object:

P = {〈x,µP(x), λP(x)〉 | x ∈ X} ,

where µP(x) ∈ [0, 1] denotes the degree of membership and λP(x) ∈ [0, 1] denotes the degree of non-
membership of each x ∈ X to the set P with the condition that 0 6 (µP(x))

2 + (λP(x))
2 6 1.
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We observe that every intuitionistic fuzzy set on a nonempty set X is also a Pythagorean fuzzy set
in a set X. For convenience, we will use the symbol P = (µP, λP) in place of the Pythagorean fuzzy set
P = {〈x,µP(x), λP(x)〉 | x ∈ X}.

Let P = (µP, λP) and Q = (µQ, λQ) be any two Pythagorean fuzzy sets on a nonempty et X. Then:

(i) P∩Q = {〈x, (µP ∩ µQ)(x), (λP ∪ λQ)(x)〉 | x ∈ X};
(ii) P∪Q = {〈x, (µP ∪ µQ)(x), (λP ∩ λQ)(x)〉 | x ∈ X}.

Definition 2.3 ([24]). An algebra (X, ∗, 0) of type (2, 0) is called a KU-algebra if it satisfies the following
properties: for every x,y, z ∈ X,

(i) (x ∗ y) ∗ [(y ∗ z) ∗ (x ∗ z)] = 0;
(ii) 0 ∗ x = x;

(iii) x ∗ 0 = x;
(iv) x ∗ y = 0 = y ∗ x implies x = y.

In a KU-algebra (X, ∗, 0), it obtains that x ∗ x = 0, for all x ∈ X (see, [24]). Throughout this paper, we
shall use a KU-algebra X instead of the KU-algebra (X, ∗, 0).

Definition 2.4 ([24]). Let T be a nonempty subset of a KU-algebra X. Then, T is said to be a KU-subalgebra
of X if x ∗ y ∈ T , for all x,y ∈ T .

Example 2.5. Let X = {0,a,b, c} be a set with the multiplication ∗ on X is defined by the following table:

∗ 0 a b c

0 0 a b c

a 0 0 0 b

b 0 b 0 a

c 0 0 0 0

It turns out that (X, ∗, 0) is a KU-algebra (see, [24]). We see that the set A = {0,a,b} is a KU-subalgebra of
X. At the same time, the set B = {a,b} is not a KU-subalgebra of X.

3. Pythagorean fuzzy KU-subalgebras of KU-algebras

In this section, we introduce the concept of Pythagorean fuzzy KU-subalgebras in KU-algebras, and
we suggest necessary and sufficient conditions to characterize the Pythagorean fuzzy KU-subalgebras in
KU-algebras.

Definition 3.1. Let X be a KU-algebra. A Pythagorean fuzzy set P = (µP, λP) on X is called a Pythagorean
fuzzy KU-subalgebra of X if it satisfies the following axioms:

(i) µP(x ∗ y) > min{µP(x),µP(y)};
(ii) λP(x ∗ y) 6 max{λP(x), λP(y)},

for all x,y ∈ X.

Example 3.2. Let X = {0,a,b, c,d} be a set with the binary operation ∗ on X defined by:

∗ 0 a b c

0 0 a b c

a 0 0 0 b

b 0 b 0 a

c 0 0 0 0



S. Meesri, T. Jodnok, W. Nakkhasen, J. Math. Computer Sci., 35 (2024), 16–24 19

Then, (X, ∗, 0) is a KU-algebra (see, [15]). Next, we define a Pythagorean fuzzy set P = (µP, λP) on X as
follows:

P 0 a b c

µP 0.8 0.4 0.8 0.4
λP 0.3 0.3 0.6 0.9

By mindful calculations, we obtain that P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of X.

Proposition 3.3. Let X be a KU-algebra, and P = (µP, λP) be a Pythagorean fuzzy set on X. Then P = (µP, λP)
is a Pythagorean fuzzy KU-subalgebra of X if and only if the following conditions hold:

(i) µP(0) > µP(x) and λP(0) 6 λP(x), for all x ∈ X;
(ii) µP(x ∗ (0 ∗ y)) > min{µP(x),µP(y)} and λP(x ∗ (0 ∗ y)) 6 max{λP(x), λP(y)}, for all x,y ∈ X.

Proof. Assume that P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of X. Let x ∈ X. Then, we have

µP(0) = µP(x ∗ x) > min{µP(x),µP(x)} = µP(x)

and
λP(0) = λP(x ∗ x) 6 max{λP(x), λP(x)} = λP(x).

Thus (i) holds. In addition, for any x,y ∈ X, we get

µP(x ∗ (0 ∗ y)) > min{µP(x),µP(0 ∗ y)} > min{µP(x), min{µP(0),µP(y)}} = min{µP(x),µP(y)}

and

λP(x ∗ (0 ∗ y)) 6 max{λP(x), λP(0 ∗ y)} 6 max{λP(x), max{λP(0), λP(y)}} = max{λP(x), λP(y)}.

So, (ii) is obtained. Conversely, assume that (i) and (ii) are true. Let x,y ∈ X. Then, it follows

µP(x ∗ y) = µP(x ∗ (0 ∗ y)) > min{µP(x),µP(y)}

and
λP(x ∗ y) = λP(x ∗ (0 ∗ y)) 6 max{λP(x), λP(y)}.

This means that P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of X.

Proposition 3.4. The intersection of Pythagorean fuzzy KU-subalgebras of a KU-algebra X is also a Pythagorean
fuzzy KU-subalgebra of X.

Proof. Let P = (µP, λP) and Q = (µQ, λQ) be any two Pythagorean fuzzy KU-subalgebras of a KU-algebra
X. Let x,y ∈ X. Then, we have

(µP ∩ µQ)(x ∗ y) = min{µP(x ∗ y),µQ(x ∗ y)}
> min{min{µP(x),µP(y)}, min{µQ(x),µQ(y)}}
= min{min{µP(x),µQ(x)}, min{µP(y),µQ(y)}}
= min{(µP ∩ µQ)(x), (µP ∩ µQ)(y)}

and

(λP ∪ λQ)(x ∗ y) = max{λP(x ∗ y), λQ(x ∗ y)}
6 max{max{λP(x), λP(y)}, max{λQ(x), λQ(y)}}
= max{max{λP(x), λQ(x)}, max{λP(y), λQ(y)}}
= max{(λP ∪ λQ)(x), (λP ∪ λQ)(y)}.

Therefore, P∩Q is a Pythagorean fuzzy KU-subalgebra of X.
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On the other hand, the union of Pythagorean fuzzy KU-subalgebras of a KU-algebra X may not be a
Pythagorean fuzzy KU-subalgebra of X as shown by the following example.

Example 3.5. Let X = {0,a,b, c,d}. Define the binary operation ∗ on X as follows:

∗ 0 a b c d

0 0 a b c d

a 0 0 b c c

b 0 0 0 a d

c 0 0 0 0 0
d 0 0 0 0 0

Then, (X, ∗, 0) is a KU-algebra (see, [19]). The Pythagorean fuzzy sets P = (µP, λP) and Q = (µQ, λQ) on X
are defined by:

P 0 a b c d

µP 0.9 0.8 0.7 0.4 0.2
λP 0.3 0.4 0.6 0.7 0.8

and
Q 0 a b c d

µQ 0.8 0.3 0.5 0.3 0.7
λQ 0.4 0.9 0.7 0.9 0.5

By routine calculations, we obtain P = (µP, λP) and Q = (µQ, λQ), which are Pythagorean fuzzy KU-
subalgebras of X. Next, we consider the Pythagorean fuzzy set P ∪ Q = (µP ∪ µQ, λP ∩ λQ) on X as the
following results:

P∪Q 0 a b c d

µP ∪ µQ 0.9 0.8 0.7 0.4 0.7
λP ∩ λQ 0.3 0.4 0.6 0.7 0.5

We can see that (µP ∪ µQ)(a ∗ d) < min{(µP ∪ µQ)(a), (µP ∪ µQ)(d)} and (λP ∩ λQ)(a ∗ d) > max{(λP ∩
λQ)(a), (λP ∩ λQ(d))}. This shows that P∪Q is not a Pythagorean fuzzy KU-subalgebra of X.

Theorem 3.6. Let X be a KU-algebra and P = (µP, λP) be a Pythagorean fuzzy set on X. Then P = (µP, λP) is a
Pythagorean fuzzy KU-subalgebra of X if and only if for all s, t ∈ [0, 1], the nonempty sets U(µP, t) and L(λP, s)
are KU-subalgebras of X.

Proof. Assume that P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of X. Let s, t ∈ [0, 1] such that
U(µP, t) 6= ∅ and L(λP, s) 6= ∅. Let x,y ∈ U(µP, t). Then µP(x) > t and µP(y) > t. We obtain that
µP(x ∗ y) > min{µP(x),µP(y)} > t. It follows that x ∗ y ∈ U(µP, t). Hence, U(µP, t) is a KU-subalgebra
of X. Similarly, we can show that L(λP, s) is also a KU-subalgebra of X. Conversely, assume that for
any s, t ∈ [0, 1], the nonempty sets U(µP, t) and L(λP, s) are KU-subalgebras of X. Suppose that there
exist a,b ∈ X such that µP(a ∗ b) < min{µP(a),µP(b)}. Take t = 1

2 {µP(a ∗ b) + min{µP(a),µP(b)}}. It
turns out that µP(a ∗ b) < t < min{µP(a),µP(b)}. Thus, µP(a) > t,µP(b) > t and µP(a ∗ b) < t.
This means that a,b ∈ U(µP, t) and a ∗ b 6∈ U(µP, t). So, U(µP, t) 6= ∅. By the given assumption, we
have U(µP, t) is a KU-subalgebra of X. Hence, a ∗ b ∈ U(µP, t), which is a contradiction. Therefore,
µP(x ∗ y) > min{µP(x),µP(y)}, for all x,y ∈ X. For the case λP(x ∗ y) 6 max{λP(x), λP(y)}, for all x,y ∈ X,
we can provide a similar proof. Consequently, P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of
X.

Theorem 3.7. Let X be a KU-algebra. Then P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of X if and only
if Pc = (λcP,µcP) is a Pythagorean fuzzy KU-subalgebra of X.

Proof. Assume that P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of X. Let x,y ∈ X. Then, we have

λcP(x ∗ y) = 1 − λP(x ∗ y) > 1 − max{λP(x), λP(y)} = min{1 − λP(x), 1 − λP(y)} = min{λcP(x), λ
c
P(x)}
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and

µcP(x ∗ y) = 1 − µP(x ∗ y) 6 1 − min{µP(x),µP(y)} = max{1 − µP(x), 1 − µP(y)} = max{µcP(x),µ
c
P(x)}.

Hence, Pc = (λcP,µcP) is a Pythagorean fuzzy KU-subalgebra of X.
Conversely, assume that Pc = (λcP,µcP) is a Pythagorean fuzzy KU-subalgebra of X. Let x,y ∈ X. Now,

we consider

1 − µP(x ∗ y) = µcP(x ∗ y) 6 max{µcP(x),µ
c
P(y)} = max{1 − µP(x), 1 − µP(y)} = 1 − min{µP(x),µP(y)}

and

1 − λP(x ∗ y) = λcP(x ∗ y) > min{λcP(x), λ
c
P(y)} = min{1 − λP(x), 1 − λP(y)} = 1 − max{λP(x), λP(y)}.

It follows that µP(x ∗ y) > min{µP(x),µP(y)} and λP(x ∗ y) 6 max{λP(x), λP(y)}. Therefore, P = (µP, λP)
is a Pythagorean fuzzy KU-subalgebra of X.

The following theorem comes directly from Theorem 3.7.

Theorem 3.8. Let P = (µP, λP) be a Pythagorean fuzzy set on a KU-algebra X. Then P = (µP, λP) is a
Pythagorean fuzzy KU-subalgebra of X if only if Pµ = (µP,µcP) and Pλ = (λcP, λP) are Pythagorean fuzzy KU-
subalgebras of X.

Let X be a KU-algebra and P = (µP, λP) be any Pythagorean fuzzy set over X. We define

XµP
:= {x ∈ X | µP(x) = µP(0)} and XλP := {x ∈ X | λP(x) = λP(0)}.

Theorem 3.9. Let X be a KU-algebra. If P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of X, then XµP
and

XλP are KU-subalgebras of X.

Proof. Assume that P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of X. Let x,y ∈ XµP
. Then,

µP(x) = µP(0) = µP(y). So, µP(x ∗ y) > min{µP(x),µP(y)} = µP(0). Otherwise, µP(0) > µP(x ∗ y)
always. It turns out that µP(x ∗ y) = µP(0), it implies x ∗ y ∈ XµP

. Hence, XµP
is a KU-subalgebra of

X. Next, let a,b ∈ XλP . Then, λP(a) = λP(0) = λP(b). Thus, λP(a ∗ b) 6 max{λP(a), λP(b)} = λP(0).
Since λP(0) 6 λP(a ∗ b), we have λP(a ∗ b) = λP(0). This means that a ∗ b ∈ XλP . Therefore, XλP is a
KU-subalgebra of X.

4. Homomorphism on pythagorean fuzzy KU-subalgebras

In this section, we investigate some properties of Pythagorean fuzzy KU-subalgebras in KU-algebras
under a homomorphism. A mapping f : X→ Y of KU-algebras is called a homomorphism [25] if f(x ∗ y) =
f(x) ∗ f(y), for all x,y ∈ X. If a homomorphism f is onto, then f is called an epimorphism. We note that if
f : X→ Y is a homomorphism of KU-algebras, then f(0) = 0.

Let X and Y be any two nonempty sets, f : X → Y be a function and P = (µP, λP) be a Pythagorean
fuzzy set in X. Define the Pythagorean fuzzy set f(P) = {〈y,µf(P)(y), λf(P)(y)〉 | y ∈ Y} in Y by,

µf(P)(y) =

 sup
x∈f−1(y)

, if f−1(y) 6= ∅,

0, otherwise,
and λf(P)(y) =

 inf
x∈f−1(y)

, if f−1(y) 6= ∅,

1, otherwise.

We call f(P) the image of P under f. On one hand, for any Pythagorean fuzzy set Q = (µQ, λQ) over f(X),
we define the preimage of Q under f denoted by

f−1(Q) =
{〈
x,µf−1(Q)(x), λf−1(Q)(x)

〉
| x ∈ X

}
,
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where µf−1(Q)(x) = µ(f(x)) and λf−1(Q) = λ(f(x)), for all x ∈ X.
Let P = (µP, λP) be a Pythagorean fuzzy set in a nonempty set X. We say that P has sup-inf property,

if for any subset T of X, there exists a0 ∈ T such that µP(a0) = sup
t∈T

µP(t) and λP(a0) = inf
t∈T

λP(t).

Let f : X → Y be a mapping of KU-algebras and P = (µP, λP) be a Pythagorean fuzzy set in Y. The
Pythagorean fuzzy Pf = (µfP, λfP) in X is defined by µfP(x) = µP(f(x)) and λfP(x) = λP(f(x)), for all x ∈ X.

Theorem 4.1. Let X and Y be KU-algebras and f : X → Y be a homomorphism. If Q = (µQ, λQ) is a Pythagorean
fuzzy KU-subalgebra of f(X), then the preimage f−1(Q) = (µf−1(Q), λf−1(Q)) of Q under f is a Pythagorean fuzzy
KU-algebra of X.

Proof. Assume that Q = (µQ, λQ) is a Pythagorean fuzzy KU-subalgebra of f(X). Let x,y ∈ X. Then, we
have

µf−1(Q)(x ∗ y) = µQ(f(x ∗ y)) = µQ(f(x) ∗ f(y)) > min{µQ(f(x)),µQ(f(y))} = min{µf−1(Q)(x),µf−1(Q)(y)}

and

λf−1(Q)(x ∗ y) = λQ(f(x ∗ y)) = λQ(f(x) ∗ f(y)) 6 max{λQ(f(x)), λQ(f(y))} = max{λf−1(Q)(x), λf−1(Q)(y)}.

Hence, f−1(Q) = (µf−1(Q), λf−1(Q)) is a Pythagorean fuzzy KU-subalgebra of X.

Theorem 4.2. Let f : X → Y be a homomorphism of KU-algebras, P = (µP, λP) be a Pythagorean fuzzy set in X,
and f(P) = (µf(P), λf(P)) be the image of P under f. If P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of X
with sup-inf property, then f(P) = (µf(P), λf(P)) is a Pythagorean fuzzy KU-algebra of f(X).

Proof. Assume that P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of X, and it has sup-inf property.
Let x,y ∈ f(X). Then, there exist a0 ∈ f−1(x) and b0 ∈ f−1(y) such that

µP(a0) = sup
t∈f−1(x)

µP(t), λP(a0) = inf
t∈f−1(x)

λP(t), µP(b0) = sup
t∈f−1(y)

µP(t), and λP(b0) = inf
t∈f−1(y)

λP(t).

It turns out that

µf(P)(x ∗ y) = sup
t∈f−1(x∗y)

µP(t) > µP(a0 ∗ b0)

> min{µP(a0),µP(b0)}

= min

{
sup

t∈f−1(x)

µP(t), sup
t∈f−1(y)

µP(t)

}
= min{µf(P)(x),µf(P)(y)}

and

λf(P)(x ∗ y) = inf
t∈f−1(x∗y)

λP(t) 6 λP(a0 ∗ b0)

6 max{λP(a0), λP(b0)}

= max
{

inf
t∈f−1(x)

λP(t), inf
t∈f−1(y)

λP(t)

}
= max{λf(P)(x), λf(P)(y)}.

Therefore, f(P) = (µf(P), λf(P)) is a Pythagorean fuzzy KU-subalgebra of f(X).

Theorem 4.3. Let f : X → Y be a homomorphism of KU-algebras, and let P = (µP, λP) be a Pythagorean fuzzy
set in Y. If P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of Y, then Pf = (µfP, λfP) is a Pythagorean fuzzy
KU-subalgebra of X.
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Proof. Assume that P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of Y. Let x,y ∈ X. Then, we have

µfP(x ∗ y) = µP(f(x ∗ y)) = µP(f(x) ∗ f(y)) > min{µP(f(x)),µP(f(y))} = min{µfP(x),µ
f
P(y)}

and

λfP(x ∗ y) = λP(f(x ∗ y)) = λP(f(x) ∗ f(y)) 6 max{λP(f(x)), λP(f(y))} = max{λfP(x), λ
f
P(y)}.

Hence, Pf = (µfP, λfP) is a Pythagorean fuzzy KU-subalgebra of X.

If f is an epimorphism, then we achieve the converse of Theorem 4.3 as shown in the following
theorem.

Theorem 4.4. Let f : X → Y be an epimorphism of KU-algebras, and let P = (µP, λP) be a Pythagorean fuzzy
set in Y. If Pf = (µfP, λfP) is a Pythagorean fuzzy KU-subalgebra of X, then P = (µP, λP) is a Pythagorean fuzzy
KU-subalgebra of Y.

Proof. Assume that Pf = (µfP, λfP) is a Pythagorean fuzzy KU-subalgebra of X. Let x,y ∈ Y. Then, there
exist a,b ∈ X such that f(a) = x and f(b) = y. Thus, we have

µP(x ∗ y) = µP(f(a) ∗ f(b)) = µP(f(a ∗ b))
= µfP(a ∗ b)
> min{µfP(a),µ

f
P(b)}

= min{µP(f(a)),µP(f(b))} = min{µP(x),µP(y)}

and

λP(x ∗ y) = λP(f(a) ∗ f(b)) = λP(f(a ∗ b))
= λfP(a ∗ b)
6 max{λfP(a), λ

f
P(b)}

= max{λP(f(a)), λP(f(b))} = max{λP(x), λP(y)}.

Consequently, P = (µP, λP) is a Pythagorean fuzzy KU-subalgebra of Y.

5. Conclusions

In this article, we applied the concept of Pythagorean fuzzy sets to study KU-algebras. The concept of
Pythagorean fuzzy KU-subalgebras of KU-algebras was introduced. Then, we showed that the intersec-
tion of Pythagorean fuzzy KU-subalgebras is also a Pythagorean fuzzy KU-subalgebra, while the union of
Pythagorean fuzzy KU-subalgebras need not to be a Pythagorean fuzzy KU-subalgebra as shown in Ex-
ample 3.5. Finally, we indicated that the connections between the image and the preimage of Pythagorean
fuzzy KU-subalgebras on a homomorphism of KU-algebras. Future studies will be able to investigate
the concepts of Pythagorean fuzzy KU-ideals and Pythagorean fuzzy KU-filters of KU-algebras or other
concepts in many algebraic structures can be determined by the Pythagorean fuzzy sets.
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