Online: ISSN 2008-949X

Journal of Mathematics and Computer Science

Journal Homepage: www.isr-publications.com/jmcs

Pythagorean fuzzy KU-subalgebras of KU-algebras

Check for updates

Surasak Meesri^a, Teerapan Jodnok^b, Warud Nakkhasen^{a,*}

^aDepartment of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand. ^bDivision of Mathematics, Faculty of Science and Technology, Surindra Rajabhat University, Surin 32000, Thailand.

Abstract

The concept of Pythagorean fuzzy sets was introduced by Yager in 2013. It is a generalization of the concepts of fuzzy sets and intuitionistic fuzzy sets. The aim of this study was to apply the concept of Pythagorean fuzzy sets to clarify in KU-algebras. The notion of Pythagorean fuzzy KU-subalgebras of KU-algebras is introduced. Then, we give some fundamental properties of Pythagorean fuzzy KU-subalgebras in KU-algebras. Finally, we investigate the relationships between the image and the preimage of Pythagorean fuzzy KU-subalgebras under a homomorphism of KU-algebras.

Keywords: KU-subalgebra, Pythagorean fuzzy set, Pythagorean fuzzy KU-subalgebra.

2020 MSC: 08A72, 08A30.

©2024 All rights reserved.

1. Introduction

Two important classes of algebraic structures are BCK-algebras and BCI-algebras, which were introduced by Ise'ki [11, 12] in which the class of BCI-algebras is the general class of BCK-algebras. Afterwards, Hu and Li [9, 10] defined an algebraic structure that generalizes to BCI-algebras named BCH-algebras. Later, there were mathematicians who used the above algebraic structure to widely study various properties; for example in BCK-algebras, Hamidi [8] investigated the concept of superhyper BCK-algebras, which is a generalization of BCK-algebras. In BCI-algebras, Chaida [5] examined commutative BCI-algebras as semilattices with certain involutions in each of their sections. In BCH-algebras, Muangkarn et al. [23] used the concept of endomorphisms and bi-endomorphisms as a model to create tri-endomorphisms on BCH-algebras. For the reader requiring more details, a wider literature is available, e.g., [3, 4, 13, 14, 30].

In 2009, Prabpayak and Leerawat [24] introduced a new algebra which was called KU-algebras and studied congruences on KU-algebras. Subsequently, they discussed relationships between quotient KU-algebras and isomorphisms of KU-algebras see also [25]. Mostafa et al. [22] who applied the coding theory to KU-algebras and obtained some interesting properties. Then, the concept of a hyper structure KU-algebra was introduced and some related results were provided by Mostafa et al. [21]. Subsequently,

*Corresponding author

doi: 10.22436/jmcs.035.01.02

Received: 2023-10-11 Revised: 2024-03-03 Accepted: 2024-03-18

Email addresses: 62010213073@msu.ac.th (Surasak Meesri), teerapan.jo@srru.ac.th (Teerapan Jodnok), warud.n@msu.ac.th (Warud Nakkhasen)

17

Koam et al. [16] defined an extension of KU-algebras and called it an extended KU-algebra; they discussed the relations between extended KU-algebras and KU-algebras. In 2023, Manivasan and Kalidass [17] introduced BMBJ-neutrosophic sets and subalgebras as a generalization of neutrosophic sets, and examined their applications and related features to KU-algebras.

Fuzzy sets were introduced by Zadeh [32] in 1965 as a mapping from a nonempty set X to the unit interval [0, 1]. This mapping denotes the degree of membership of each element in a set X. Then, the concepts of fuzzy KU-ideals, interval-valued fuzzy KU-ideals and anti-fuzzy KU-ideals in KU-algebras were introduced and some of their properties were investigated in a series of reports by Mostafa et al. (see [18–20]). In addition, Gulistan et al. [6, 7] presented the concepts of $(\in, \in \lor q_k)$ -fuzzy KU-ideals and (α, β) -fuzzy KU-ideals of KU-algebras which are generalizations of fuzzy KU-ideals in KU-algebras. Subsequently, Senapati [26] introduced and investigated the notion of T-fuzzy KU-ideals of KU-algebras by using the t-norm T. As a generalization of fuzzy sets, Atanassov [2] made known the concept of intuitionistic fuzzy sets consisting of the degree of membership and the degree of non-membership of an element in an universe set. Senapati and Shum [28, 29] introduced the notions of intuitionistic fuzzy bi-normed KU-ideals and intuitionistic bi-normed KU-subalgebras of KU-algebras and discussed some of its properties under the homomorphism. Later, Senapati et al. [27] considered the characterizations of cubic intuitionistic Q-fuzzy KU-ideals of KU-algebras, upper and lower-level cuts of Q-fuzzy sets and some axioms were surveyed by Alkouri et al. [1].

In 2013, Yager [31] suggested the concept of Pythagorean fuzzy sets, which is the sum of squares of the degree of membership and non-membership within the unit interval [0, 1]. This notion generalizes the fuzzy sets and the intuitionistic fuzzy sets. The purpose of this paper is to apply the concept of Pythagorean fuzzy sets to solve problems in KU-algebras. Next, we introduce the notion of Pythagorean fuzzy KU-subsalgebras and consider some of their properties. Then, we examine the connections between the image and the preimage of Pythagorean fuzzy KU-subalgebras under a homomorphism of KU-algebras.

2. Preliminaries

Firstly, we recall some of the basis definitions and properties, which are necessary for this paper. For any nonempty set X, a mapping $\mu : X \to [0,1]$ is called a *fuzzy set* [32] of X. Let μ and λ be any two fuzzy sets of a nonempty set X. Then the fuzzy sets $\mu \cap \lambda$ and $\mu \cup \lambda$ of X are defined by $(\mu \cap \lambda)(x) = \min\{\mu(x), \lambda(x)\}$ and $(\mu \cup \lambda)(x) = \max\{\mu(x), \lambda(x)\}$, for all $x \in X$, respectively. The *complement* of μ , denoted by μ^c , is a fuzzy set in X as defined by $\mu^c(x) = 1 - \mu(x)$, for all $x \in X$. Furthermore, the set $U(\mu, t) = \{x \in X \mid \mu(x) \leq t\}$ is called an *upper-level set* of μ , and the set $L(\mu, t) = \{x \in X \mid \mu(x) \leq t\}$ is called a *lower-level set* of μ where $t \in [0, 1]$.

Definition 2.1 ([2]). An *intuitionistic fuzzy set* A on an universe set X is given by:

$$\mathcal{A} = \{ \langle \mathbf{x}, \boldsymbol{\mu}_{\mathcal{A}}(\mathbf{x}), \boldsymbol{\lambda}_{\mathcal{A}}(\mathbf{x}) \rangle \mid \mathbf{x} \in \mathbf{X} \},\$$

where $\mu_{\mathcal{A}} : X \to [0,1]$ and $\lambda_{\mathcal{A}} : X \to [0,1]$ are called the degree of membership and the degree of nonmembership, respectively, of the element $x \in X$ in the set \mathcal{A} such that $\mu_{\mathcal{A}}$ and $\lambda_{\mathcal{A}}$ satisfy the following axiom: $0 \leq \mu_{\mathcal{A}}(x) + \lambda_{\mathcal{A}}(x) \leq 1$, for all $x \in X$.

Definition 2.2 ([31]). A *Pythagorean fuzzy set* \mathcal{P} in a nonempty set X is defined by the object:

$$\mathcal{P} = \{ \langle \mathbf{x}, \boldsymbol{\mu}_{\mathcal{P}}(\mathbf{x}), \boldsymbol{\lambda}_{\mathcal{P}}(\mathbf{x}) \rangle \mid \mathbf{x} \in \mathbf{X} \},\$$

where $\mu_{\mathcal{P}}(x) \in [0,1]$ denotes the degree of membership and $\lambda_{\mathcal{P}}(x) \in [0,1]$ denotes the degree of nonmembership of each $x \in X$ to the set \mathcal{P} with the condition that $0 \leq (\mu_{\mathcal{P}}(x))^2 + (\lambda_{\mathcal{P}}(x))^2 \leq 1$. We observe that every intuitionistic fuzzy set on a nonempty set X is also a Pythagorean fuzzy set in a set X. For convenience, we will use the symbol $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ in place of the Pythagorean fuzzy set $\mathcal{P} = \{\langle x, \mu_{\mathcal{P}}(x), \lambda_{\mathcal{P}}(x) \rangle \mid x \in X\}.$

Let $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ and $\mathcal{Q} = (\mu_{\mathcal{Q}}, \lambda_{\mathcal{Q}})$ be any two Pythagorean fuzzy sets on a nonempty et X. Then:

- (i) $\mathcal{P} \cap \Omega = \{ \langle \mathbf{x}, (\mu_{\mathcal{P}} \cap \mu_{\Omega})(\mathbf{x}), (\lambda_{\mathcal{P}} \cup \lambda_{\Omega})(\mathbf{x}) \rangle \mid \mathbf{x} \in X \};$
- (ii) $\mathfrak{P} \cup \mathfrak{Q} = \{ \langle \mathbf{x}, (\mu_{\mathfrak{P}} \cup \mu_{\mathfrak{Q}})(\mathbf{x}), (\lambda_{\mathfrak{P}} \cap \lambda_{\mathfrak{Q}})(\mathbf{x}) \rangle \mid \mathbf{x} \in X \}.$

Definition 2.3 ([24]). An algebra (X, *, 0) of type (2, 0) is called a *KU-algebra* if it satisfies the following properties: for every $x, y, z \in X$,

- (i) (x * y) * [(y * z) * (x * z)] = 0;
- (ii) 0 * x = x;
- (iii) x * 0 = x;
- (iv) x * y = 0 = y * x implies x = y.

In a KU-algebra (X, *, 0), it obtains that x * x = 0, for all $x \in X$ (see, [24]). Throughout this paper, we shall use a KU-algebra X instead of the KU-algebra (X, *, 0).

Definition 2.4 ([24]). Let T be a nonempty subset of a KU-algebra X. Then, T is said to be a *KU-subalgebra* of X if $x * y \in T$, for all $x, y \in T$.

Example 2.5. Let $X = \{0, a, b, c\}$ be a set with the multiplication * on X is defined by the following table:

*		a		с
0	0	a	b	С
a b	0	a 0 b	0	b
b	0	b	0	a
с	0	0	0	0

It turns out that (X, *, 0) is a KU-algebra (see, [24]). We see that the set $A = \{0, a, b\}$ is a KU-subalgebra of X. At the same time, the set $B = \{a, b\}$ is not a KU-subalgebra of X.

3. Pythagorean fuzzy KU-subalgebras of KU-algebras

In this section, we introduce the concept of Pythagorean fuzzy KU-subalgebras in KU-algebras, and we suggest necessary and sufficient conditions to characterize the Pythagorean fuzzy KU-subalgebras in KU-algebras.

Definition 3.1. Let X be a KU-algebra. A Pythagorean fuzzy set $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ on X is called a *Pythagorean fuzzy KU-subalgebra* of X if it satisfies the following axioms:

(i) $\mu_{\mathcal{P}}(x * y) \ge \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\};$

(ii) $\lambda_{\mathcal{P}}(x * y) \leq \max\{\lambda_{\mathcal{P}}(x), \lambda_{\mathcal{P}}(y)\},\$

for all $x, y \in X$.

Example 3.2. Let $X = \{0, a, b, c, d\}$ be a set with the binary operation * on X defined by:

*	0	a	b	с
0	0	a 0	b	c
a b	0	0	0	b
	0	b	0	a
с	0	0	0	0

Then, (X, *, 0) is a KU-algebra (see, [15]). Next, we define a Pythagorean fuzzy set $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ on X as follows:

$$\begin{array}{c|cccc} \mathcal{P} & 0 & a & b & c \\ \hline \mu_{\mathcal{P}} & 0.8 & 0.4 & 0.8 & 0.4 \\ \lambda_{\mathcal{P}} & 0.3 & 0.3 & 0.6 & 0.9 \end{array}$$

By mindful calculations, we obtain that $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X.

Proposition 3.3. Let X be a KU-algebra, and $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ be a Pythagorean fuzzy set on X. Then $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X if and only if the following conditions hold:

(i) $\mu_{\mathcal{P}}(0) \ge \mu_{\mathcal{P}}(x)$ and $\lambda_{\mathcal{P}}(0) \le \lambda_{\mathcal{P}}(x)$, for all $x \in X$;

(ii) $\mu_{\mathcal{P}}(x * (0 * y)) \ge \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\} \text{ and } \lambda_{\mathcal{P}}(x * (0 * y)) \le \max\{\lambda_{\mathcal{P}}(x), \lambda_{\mathcal{P}}(y)\}, \text{ for all } x, y \in X.$

Proof. Assume that $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X. Let $x \in X$. Then, we have

$$\mu_{\mathcal{P}}(0) = \mu_{\mathcal{P}}(x * x) \ge \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(x)\} = \mu_{\mathcal{P}}(x)$$

and

 $\lambda_{\mathfrak{P}}(0)=\lambda_{\mathfrak{P}}(x\ast x)\leqslant max\{\lambda_{\mathfrak{P}}(x),\lambda_{\mathfrak{P}}(x)\}=\lambda_{\mathfrak{P}}(x).$

Thus (i) holds. In addition, for any $x, y \in X$, we get

$$\mu_{\mathcal{P}}(x \ast (0 \ast y)) \ge \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(0 \ast y)\} \ge \min\{\mu_{\mathcal{P}}(x), \min\{\mu_{\mathcal{P}}(0), \mu_{\mathcal{P}}(y)\}\} = \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\}$$

and

$$\lambda_{\mathcal{P}}(x \ast (0 \ast y)) \leqslant \max\{\lambda_{\mathcal{P}}(x), \lambda_{\mathcal{P}}(0 \ast y)\} \leqslant \max\{\lambda_{\mathcal{P}}(x), \max\{\lambda_{\mathcal{P}}(0), \lambda_{\mathcal{P}}(y)\}\} = \max\{\lambda_{\mathcal{P}}(x), \lambda_{\mathcal{P}}(y)\}.$$

So, (ii) is obtained. Conversely, assume that (i) and (ii) are true. Let $x, y \in X$. Then, it follows

 $\mu_{\mathcal{P}}(x * y) = \mu_{\mathcal{P}}(x * (0 * y)) \ge \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\}$

and

$$\lambda_{\mathcal{P}}(x \ast y) = \lambda_{\mathcal{P}}(x \ast (0 \ast y)) \leqslant max\{\lambda_{\mathcal{P}}(x), \lambda_{\mathcal{P}}(y)\}$$

This means that $\mathfrak{P}=(\mu_{\mathfrak{P}},\lambda_{\mathfrak{P}})$ is a Pythagorean fuzzy KU-subalgebra of X.

Proposition 3.4. *The intersection of Pythagorean fuzzy KU-subalgebras of a KU-algebra X is also a Pythagorean fuzzy KU-subalgebra of X.*

Proof. Let $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ and $\mathcal{Q} = (\mu_{\mathcal{Q}}, \lambda_{\mathcal{Q}})$ be any two Pythagorean fuzzy KU-subalgebras of a KU-algebra X. Let $x, y \in X$. Then, we have

$$\begin{split} (\mu_{\mathcal{P}} \cap \mu_{\Omega})(x * y) &= \min\{\mu_{\mathcal{P}}(x * y), \mu_{\Omega}(x * y)\}\\ &\geqslant \min\{\min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\}, \min\{\mu_{\Omega}(x), \mu_{\Omega}(y)\}\}\\ &= \min\{\min\{\mu_{\mathcal{P}}(x), \mu_{\Omega}(x)\}, \min\{\mu_{\mathcal{P}}(y), \mu_{\Omega}(y)\}\}\\ &= \min\{(\mu_{\mathcal{P}} \cap \mu_{\Omega})(x), (\mu_{\mathcal{P}} \cap \mu_{\Omega})(y)\} \end{split}$$

and

$$\begin{split} (\lambda_{\mathcal{P}} \cup \lambda_{\Omega})(x * y) &= \max\{\lambda_{\mathcal{P}}(x * y), \lambda_{\Omega}(x * y)\} \\ &\leqslant \max\{\max\{\lambda_{\mathcal{P}}(x), \lambda_{\mathcal{P}}(y)\}, \max\{\lambda_{\Omega}(x), \lambda_{\Omega}(y)\}\} \\ &= \max\{\max\{\lambda_{\mathcal{P}}(x), \lambda_{\Omega}(x)\}, \max\{\lambda_{\mathcal{P}}(y), \lambda_{\Omega}(y)\}\} \\ &= \max\{(\lambda_{\mathcal{P}} \cup \lambda_{\Omega})(x), (\lambda_{\mathcal{P}} \cup \lambda_{\Omega})(y)\}. \end{split}$$

Therefore, $\mathcal{P} \cap \mathcal{Q}$ is a Pythagorean fuzzy KU-subalgebra of X.

On the other hand, the union of Pythagorean fuzzy KU-subalgebras of a KU-algebra X may not be a Pythagorean fuzzy KU-subalgebra of X as shown by the following example.

Example 3.5. Let $X = \{0, a, b, c, d\}$. Define the binary operation * on X as follows:

*	0	a	b	с	d
0	0	a	b	С	d
a	0	0	b	c c a 0 0	с
b	0	0	0	a	d
с	0	0	0	0	0
d	0	0	0	0	0

Then, (X, *, 0) is a KU-algebra (see, [19]). The Pythagorean fuzzy sets $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ and $\mathcal{Q} = (\mu_{\Omega}, \lambda_{\Omega})$ on X are defined by:

Р	0	a	b	с	d		Q	0	a	b	с	d
$\mu_{\mathcal{P}}$	0.9	0.8	0.7	0.4	0.2	and	μ	0.8	0.3	0.5	0.3	0.7
$\lambda_{\mathcal{P}}$	0.3	0.4	0.6	0.7	0.8		λ_{Q}	0.4	0.9	0.7	0.9	0.5

By routine calculations, we obtain $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ and $\Omega = (\mu_{\Omega}, \lambda_{\Omega})$, which are Pythagorean fuzzy KUsubalgebras of X. Next, we consider the Pythagorean fuzzy set $\mathcal{P} \cup \Omega = (\mu_{\mathcal{P}} \cup \mu_{\Omega}, \lambda_{\mathcal{P}} \cap \lambda_{\Omega})$ on X as the following results:

$\mathcal{P}\cup \mathcal{Q}$	0	a	b	с	d
$\mu_{\mathcal{P}} \cup \mu_{\mathbb{Q}}$	0.9	0.8	0.7	0.4	0.7
$\begin{array}{c} \mu_{\mathcal{P}} \cup \mu_{\mathbb{Q}} \\ \lambda_{\mathcal{P}} \cap \lambda_{\mathbb{Q}} \end{array}$	0.3	0.4	0.6	0.7	0.5

We can see that $(\mu_{\mathcal{P}} \cup \mu_{\Omega})(a * d) < \min\{(\mu_{\mathcal{P}} \cup \mu_{\Omega})(a), (\mu_{\mathcal{P}} \cup \mu_{\Omega})(d)\}$ and $(\lambda_{\mathcal{P}} \cap \lambda_{\Omega})(a * d) > \max\{(\lambda_{\mathcal{P}} \cap \lambda_{\Omega})(a), (\lambda_{\mathcal{P}} \cap \lambda_{\Omega}(d))\}$. This shows that $\mathcal{P} \cup \Omega$ is not a Pythagorean fuzzy KU-subalgebra of X.

Theorem 3.6. Let X be a KU-algebra and $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ be a Pythagorean fuzzy set on X. Then $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X if and only if for all $s, t \in [0, 1]$, the nonempty sets $U(\mu_{\mathcal{P}}, t)$ and $L(\lambda_{\mathcal{P}}, s)$ are KU-subalgebras of X.

Proof. Assume that $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X. Let $s, t \in [0, 1]$ such that $U(\mu_{\mathcal{P}}, t) \neq \emptyset$ and $L(\lambda_{\mathcal{P}}, s) \neq \emptyset$. Let $x, y \in U(\mu_{\mathcal{P}}, t)$. Then $\mu_{\mathcal{P}}(x) \ge t$ and $\mu_{\mathcal{P}}(y) \ge t$. We obtain that $\mu_{\mathcal{P}}(x * y) \ge \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\} \ge t$. It follows that $x * y \in U(\mu_{\mathcal{P}}, t)$. Hence, $U(\mu_{\mathcal{P}}, t)$ is a KU-subalgebra of X. Similarly, we can show that $L(\lambda_{\mathcal{P}}, s)$ is also a KU-subalgebra of X. Conversely, assume that for any $s, t \in [0, 1]$, the nonempty sets $U(\mu_{\mathcal{P}}, t)$ and $L(\lambda_{\mathcal{P}}, s)$ are KU-subalgebras of X. Suppose that there exist $a, b \in X$ such that $\mu_{\mathcal{P}}(a * b) < \min\{\mu_{\mathcal{P}}(a), \mu_{\mathcal{P}}(b)\}$. Take $t = \frac{1}{2}\{\mu_{\mathcal{P}}(a * b) + \min\{\mu_{\mathcal{P}}(a), \mu_{\mathcal{P}}(b)\}\}$. It turns out that $\mu_{\mathcal{P}}(a * b) < t < \min\{\mu_{\mathcal{P}}(a), \mu_{\mathcal{P}}(b)\}$. Thus, $\mu_{\mathcal{P}}(a) > t, \mu_{\mathcal{P}}(b) > t$ and $\mu_{\mathcal{P}}(a * b) < t$. This means that $a, b \in U(\mu_{\mathcal{P}}, t)$ and $a * b \notin U(\mu_{\mathcal{P}}, t)$. So, $U(\mu_{\mathcal{P}}, t) \neq \emptyset$. By the given assumption, we have $U(\mu_{\mathcal{P}}, t)$ is a KU-subalgebra of X. Hence, $a * b \in U(\mu_{\mathcal{P}}, t)$, which is a contradiction. Therefore, $\mu_{\mathcal{P}}(x * y) \ge \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\}$, for all $x, y \in X$. For the case $\lambda_{\mathcal{P}}(x * y) \le \max\{\lambda_{\mathcal{P}}(x), \lambda_{\mathcal{P}}(y)\}$, for all $x, y \in X$, we can provide a similar proof. Consequently, $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X.

Theorem 3.7. Let X be a KU-algebra. Then $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X if and only if $\mathcal{P}^{c} = (\lambda_{\mathcal{P}}^{c}, \mu_{\mathcal{P}}^{c})$ is a Pythagorean fuzzy KU-subalgebra of X.

Proof. Assume that $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X. Let $x, y \in X$. Then, we have

$$\lambda_{\mathcal{P}}^{c}(x * y) = 1 - \lambda_{\mathcal{P}}(x * y) \ge 1 - \max\{\lambda_{\mathcal{P}}(x), \lambda_{\mathcal{P}}(y)\} = \min\{1 - \lambda_{\mathcal{P}}(x), 1 - \lambda_{\mathcal{P}}(y)\} = \min\{\lambda_{\mathcal{P}}^{c}(x), \lambda_{\mathcal{P}}^{c}(x)\}$$

and

$$\mu_{\mathcal{P}}^{\mathsf{c}}(x \ast y) = 1 - \mu_{\mathcal{P}}(x \ast y) \leqslant 1 - \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\} = \max\{1 - \mu_{\mathcal{P}}(x), 1 - \mu_{\mathcal{P}}(y)\} = \max\{\mu_{\mathcal{P}}^{\mathsf{c}}(x), \mu_{\mathcal{P}}^{\mathsf{c}}(x)\}$$

Hence, $\mathcal{P}^{c} = (\lambda_{\mathcal{P}}^{c}, \mu_{\mathcal{P}}^{c})$ is a Pythagorean fuzzy KU-subalgebra of X.

Conversely, assume that $\mathcal{P}^c = (\lambda_{\mathcal{P}}^c, \mu_{\mathcal{P}}^c)$ is a Pythagorean fuzzy KU-subalgebra of X. Let $x, y \in X$. Now, we consider

$$1 - \mu_{\mathcal{P}}(x * y) = \mu_{\mathcal{P}}^{c}(x * y) \leqslant \max\{\mu_{\mathcal{P}}^{c}(x), \mu_{\mathcal{P}}^{c}(y)\} = \max\{1 - \mu_{\mathcal{P}}(x), 1 - \mu_{\mathcal{P}}(y)\} = 1 - \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\}$$

and

$$1-\lambda_{\mathcal{P}}(x*y) = \lambda_{\mathcal{P}}^{c}(x*y) \geqslant \min\{\lambda_{\mathcal{P}}^{c}(x),\lambda_{\mathcal{P}}^{c}(y)\} = \min\{1-\lambda_{\mathcal{P}}(x),1-\lambda_{\mathcal{P}}(y)\} = 1-\max\{\lambda_{\mathcal{P}}(x),\lambda_{\mathcal{P}}(y)\}.$$

It follows that $\mu_{\mathcal{P}}(x * y) \ge \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\}$ and $\lambda_{\mathcal{P}}(x * y) \le \max\{\lambda_{\mathcal{P}}(x), \lambda_{\mathcal{P}}(y)\}$. Therefore, $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X.

The following theorem comes directly from Theorem 3.7.

Theorem 3.8. Let $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ be a Pythagorean fuzzy set on a KU-algebra X. Then $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X if only if $\mathcal{P}^{\mu} = (\mu_{\mathcal{P}}, \mu_{\mathcal{P}}^{c})$ and $\mathcal{P}^{\lambda} = (\lambda_{\mathcal{P}}^{c}, \lambda_{\mathcal{P}})$ are Pythagorean fuzzy KU-subalgebras of X.

Let X be a KU-algebra and $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ be any Pythagorean fuzzy set over X. We define

$$X_{\mu_{\mathcal{P}}} := \{ x \in X \mid \mu_{\mathcal{P}}(x) = \mu_{\mathcal{P}}(0) \} \text{ and } X_{\lambda_{\mathcal{P}}} := \{ x \in X \mid \lambda_{\mathcal{P}}(x) = \lambda_{\mathcal{P}}(0) \}.$$

Theorem 3.9. Let X be a KU-algebra. If $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X, then $X_{\mu_{\mathcal{P}}}$ and $X_{\lambda_{\mathcal{P}}}$ are KU-subalgebras of X.

Proof. Assume that $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X. Let $x, y \in X_{\mu_{\mathcal{P}}}$. Then, $\mu_{\mathcal{P}}(x) = \mu_{\mathcal{P}}(0) = \mu_{\mathcal{P}}(y)$. So, $\mu_{\mathcal{P}}(x * y) \ge \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\} = \mu_{\mathcal{P}}(0)$. Otherwise, $\mu_{\mathcal{P}}(0) \ge \mu_{\mathcal{P}}(x * y)$ always. It turns out that $\mu_{\mathcal{P}}(x * y) = \mu_{\mathcal{P}}(0)$, it implies $x * y \in X_{\mu_{\mathcal{P}}}$. Hence, $X_{\mu_{\mathcal{P}}}$ is a KU-subalgebra of X. Next, let $a, b \in X_{\lambda_{\mathcal{P}}}$. Then, $\lambda_{\mathcal{P}}(a) = \lambda_{\mathcal{P}}(0) = \lambda_{\mathcal{P}}(b)$. Thus, $\lambda_{\mathcal{P}}(a * b) \le \max\{\lambda_{\mathcal{P}}(a), \lambda_{\mathcal{P}}(b)\} = \lambda_{\mathcal{P}}(0)$. Since $\lambda_{\mathcal{P}}(0) \le \lambda_{\mathcal{P}}(a * b)$, we have $\lambda_{\mathcal{P}}(a * b) = \lambda_{\mathcal{P}}(0)$. This means that $a * b \in X_{\lambda_{\mathcal{P}}}$. Therefore, $X_{\lambda_{\mathcal{P}}}$ is a KU-subalgebra of X.

4. Homomorphism on pythagorean fuzzy KU-subalgebras

In this section, we investigate some properties of Pythagorean fuzzy KU-subalgebras in KU-algebras under a homomorphism. A mapping $f : X \to Y$ of KU-algebras is called a *homomorphism* [25] if f(x * y) = f(x) * f(y), for all $x, y \in X$. If a homomorphism f is onto, then f is called an epimorphism. We note that if $f : X \to Y$ is a homomorphism of KU-algebras, then f(0) = 0.

Let X and Y be any two nonempty sets, $f : X \to Y$ be a function and $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ be a Pythagorean fuzzy set in X. Define the Pythagorean fuzzy set $f(\mathcal{P}) = \{\langle y, \mu_{f(\mathcal{P})}(y), \lambda_{f(\mathcal{P})}(y) \rangle \mid y \in Y\}$ in Y by,

$$\mu_{f(\mathcal{P})}(y) = \begin{cases} \sup_{x \in f^{-1}(y)}, & \text{if } f^{-1}(y) \neq \emptyset, \\ x \in f^{-1}(y), & \text{otherwise,} \end{cases} \quad \text{and} \quad \lambda_{f(\mathcal{P})}(y) = \begin{cases} \inf_{x \in f^{-1}(y)}, & \text{if } f^{-1}(y) \neq \emptyset, \\ 1, & \text{otherwise.} \end{cases}$$

We call $f(\mathcal{P})$ the *image of* \mathcal{P} *under* f. On one hand, for any Pythagorean fuzzy set $\Omega = (\mu_{\Omega}, \lambda_{\Omega})$ over f(X), we define the *preimage of* Ω *under* f denoted by

$$f^{-1}(\mathfrak{Q}) = \left\{ \left\langle x, \mu_{f^{-1}(\mathfrak{Q})}(x), \lambda_{f^{-1}(\mathfrak{Q})}(x) \right\rangle \mid x \in X \right\},\$$

where $\mu_{f^{-1}(\Omega)}(x) = \mu(f(x))$ and $\lambda_{f^{-1}(\Omega)} = \lambda(f(x))$, for all $x \in X$.

Let $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ be a Pythagorean fuzzy set in a nonempty set X. We say that \mathcal{P} has *sup-inf property*, if for any subset T of X, there exists $a_0 \in T$ such that $\mu_{\mathcal{P}}(a_0) = \sup_{\mathbf{p}} \mu_{\mathcal{P}}(t)$ and $\lambda_{\mathcal{P}}(a_0) = \inf_{t \in T} \lambda_{\mathcal{P}}(t)$.

 $t \in T$

Let $f : X \to Y$ be a mapping of KU-algebras and $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ be a Pythagorean fuzzy set in Y. The Pythagorean fuzzy $\mathcal{P}^{f} = (\mu_{\mathcal{P}}^{f}, \lambda_{\mathcal{P}}^{f})$ in X is defined by $\mu_{\mathcal{P}}^{f}(x) = \mu_{\mathcal{P}}(f(x))$ and $\lambda_{\mathcal{P}}^{f}(x) = \lambda_{\mathcal{P}}(f(x))$, for all $x \in X$.

Theorem 4.1. Let X and Y be KU-algebras and $f: X \to Y$ be a homomorphism. If $\Omega = (\mu_{\Omega}, \lambda_{\Omega})$ is a Pythagorean fuzzy KU-subalgebra of f(X), then the preimage $f^{-1}(\Omega) = (\mu_{f^{-1}(\Omega)}, \lambda_{f^{-1}(\Omega)})$ of Ω under f is a Pythagorean fuzzy KU-algebra of X.

Proof. Assume that $\Omega = (\mu_{\Omega}, \lambda_{\Omega})$ is a Pythagorean fuzzy KU-subalgebra of f(X). Let $x, y \in X$. Then, we have

$$\mu_{f^{-1}(Q)}(x * y) = \mu_{Q}(f(x * y)) = \mu_{Q}(f(x) * f(y)) \ge \min\{\mu_{Q}(f(x)), \mu_{Q}(f(y))\} = \min\{\mu_{f^{-1}(Q)}(x), \mu_{f^{-1}(Q)}(y)\} = \min\{\mu_{f^{-1}(Q)}(y), \mu_{f^{-1}(Q)$$

and

$$\lambda_{f^{-1}(\mathfrak{Q})}(x \ast y) = \lambda_{\mathfrak{Q}}(f(x \ast y)) = \lambda_{\mathfrak{Q}}(f(x) \ast f(y)) \leqslant \max\{\lambda_{\mathfrak{Q}}(f(x)), \lambda_{\mathfrak{Q}}(f(y))\} = \max\{\lambda_{f^{-1}(\mathfrak{Q})}(x), \lambda_{f^{-1}(\mathfrak{Q})}(y)\}.$$

Hence, $f^{-1}(\Omega) = (\mu_{f^{-1}(\Omega)}, \lambda_{f^{-1}(\Omega)})$ is a Pythagorean fuzzy KU-subalgebra of X.

Theorem 4.2. Let $f : X \to Y$ be a homomorphism of KU-algebras, $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ be a Pythagorean fuzzy set in X, and $f(\mathcal{P}) = (\mu_{f(\mathcal{P})}, \lambda_{f(\mathcal{P})})$ be the image of \mathcal{P} under f. If $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X with sup-inf property, then $f(\mathcal{P}) = (\mu_{f(\mathcal{P})}, \lambda_{f(\mathcal{P})})$ is a Pythagorean fuzzy KU-algebra of f(X).

Proof. Assume that $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of X, and it has sup-inf property. Let $x, y \in f(X)$. Then, there exist $a_0 \in f^{-1}(x)$ and $b_0 \in f^{-1}(y)$ such that

$$\mu_{\mathcal{P}}(\mathfrak{a}_{0}) = \sup_{t \in f^{-1}(\mathbf{x})} \mu_{\mathcal{P}}(t), \ \lambda_{\mathcal{P}}(\mathfrak{a}_{0}) = \inf_{t \in f^{-1}(\mathbf{x})} \lambda_{\mathcal{P}}(t), \ \mu_{\mathcal{P}}(\mathfrak{b}_{0}) = \sup_{t \in f^{-1}(\mathbf{y})} \mu_{\mathcal{P}}(t), \ \text{and} \ \lambda_{\mathcal{P}}(\mathfrak{b}_{0}) = \inf_{t \in f^{-1}(\mathbf{y})} \lambda_{\mathcal{P}}(t).$$

It turns out that

$$\begin{split} \mu_{f(\mathcal{P})}(x*y) &= \sup_{t \in f^{-1}(x*y)} \mu_{\mathcal{P}}(t) \geqslant \mu_{\mathcal{P}}(a_{0}*b_{0}) \\ &\geqslant \min\{\mu_{\mathcal{P}}(a_{0}), \mu_{\mathcal{P}}(b_{0})\} \\ &= \min\left\{\sup_{t \in f^{-1}(x)} \mu_{\mathcal{P}}(t), \sup_{t \in f^{-1}(y)} \mu_{\mathcal{P}}(t)\right\} = \min\{\mu_{f(\mathcal{P})}(x), \mu_{f(\mathcal{P})}(y)\} \end{split}$$

and

$$\begin{split} \lambda_{f(\mathcal{P})}(x*y) &= \inf_{t \in f^{-1}(x*y)} \lambda_{\mathcal{P}}(t) \leqslant \lambda_{\mathcal{P}}(a_{0}*b_{0}) \\ &\leqslant \max\{\lambda_{\mathcal{P}}(a_{0}), \lambda_{\mathcal{P}}(b_{0})\} \\ &= \max\left\{\inf_{t \in f^{-1}(x)} \lambda_{\mathcal{P}}(t), \inf_{t \in f^{-1}(y)} \lambda_{\mathcal{P}}(t)\right\} = \max\{\lambda_{f(\mathcal{P})}(x), \lambda_{f(\mathcal{P})}(y)\}. \end{split}$$

Therefore, $f(\mathcal{P}) = (\mu_{f(\mathcal{P})}, \lambda_{f(\mathcal{P})})$ is a Pythagorean fuzzy KU-subalgebra of f(X).

Theorem 4.3. Let $f : X \to Y$ be a homomorphism of KU-algebras, and let $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ be a Pythagorean fuzzy set in Y. If $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of Y, then $\mathcal{P}^{f} = (\mu_{\mathcal{P}}^{f}, \lambda_{\mathcal{P}}^{f})$ is a Pythagorean fuzzy KU-subalgebra of X.

Proof. Assume that $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of Y. Let $x, y \in X$. Then, we have

$$\mu_{\mathcal{P}}^{\dagger}(x \ast y) = \mu_{\mathcal{P}}(f(x \ast y)) = \mu_{\mathcal{P}}(f(x) \ast f(y)) \ge \min\{\mu_{\mathcal{P}}(f(x)), \mu_{\mathcal{P}}(f(y))\} = \min\{\mu_{\mathcal{P}}^{\dagger}(x), \mu_{\mathcal{P}}^{\dagger}(y)\}$$

and

$$\lambda_{\mathcal{P}}^{f}(x \ast y) = \lambda_{\mathcal{P}}(f(x \ast y)) = \lambda_{\mathcal{P}}(f(x) \ast f(y)) \leqslant \max\{\lambda_{\mathcal{P}}(f(x)), \lambda_{\mathcal{P}}(f(y))\} = \max\{\lambda_{\mathcal{P}}^{f}(x), \lambda_{\mathcal{P}}^{f}(y)\}$$

Hence, $\mathfrak{P}^f=(\mu_{\mathfrak{P}}^f,\lambda_{\mathfrak{P}}^f)$ is a Pythagorean fuzzy KU-subalgebra of X.

If f is an epimorphism, then we achieve the converse of Theorem 4.3 as shown in the following theorem.

Theorem 4.4. Let $f : X \to Y$ be an epimorphism of KU-algebras, and let $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ be a Pythagorean fuzzy set in Y. If $\mathcal{P}^f = (\mu_{\mathcal{P}}^f, \lambda_{\mathcal{P}}^f)$ is a Pythagorean fuzzy KU-subalgebra of X, then $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of Y.

Proof. Assume that $\mathfrak{P}^{f} = (\mu_{\mathfrak{P}}^{f}, \lambda_{\mathfrak{P}}^{f})$ is a Pythagorean fuzzy KU-subalgebra of X. Let $x, y \in Y$. Then, there exist $a, b \in X$ such that f(a) = x and f(b) = y. Thus, we have

$$\begin{split} \mu_{\mathcal{P}}(x * y) &= \mu_{\mathcal{P}}(f(a) * f(b)) = \mu_{\mathcal{P}}(f(a * b)) \\ &= \mu_{\mathcal{P}}^{f}(a * b) \\ &\geq \min\{\mu_{\mathcal{P}}^{f}(a), \mu_{\mathcal{P}}^{f}(b)\} \\ &= \min\{\mu_{\mathcal{P}}(f(a)), \mu_{\mathcal{P}}(f(b))\} = \min\{\mu_{\mathcal{P}}(x), \mu_{\mathcal{P}}(y)\} \end{split}$$

and

$$\begin{split} \lambda_{\mathcal{P}}(\mathbf{x} \ast \mathbf{y}) &= \lambda_{\mathcal{P}}(\mathbf{f}(\mathbf{a}) \ast \mathbf{f}(\mathbf{b})) = \lambda_{\mathcal{P}}(\mathbf{f}(\mathbf{a} \ast \mathbf{b})) \\ &= \lambda_{\mathcal{P}}^{\mathbf{f}}(\mathbf{a} \ast \mathbf{b}) \\ &\leqslant \max\{\lambda_{\mathcal{P}}^{\mathbf{f}}(\mathbf{a}), \lambda_{\mathcal{P}}^{\mathbf{f}}(\mathbf{b})\} \\ &= \max\{\lambda_{\mathcal{P}}(\mathbf{f}(\mathbf{a})), \lambda_{\mathcal{P}}(\mathbf{f}(\mathbf{b}))\} = \max\{\lambda_{\mathcal{P}}(\mathbf{x}), \lambda_{\mathcal{P}}(\mathbf{y})\}. \end{split}$$

Consequently, $\mathcal{P} = (\mu_{\mathcal{P}}, \lambda_{\mathcal{P}})$ is a Pythagorean fuzzy KU-subalgebra of Y.

5. Conclusions

In this article, we applied the concept of Pythagorean fuzzy sets to study KU-algebras. The concept of Pythagorean fuzzy KU-subalgebras of KU-algebras was introduced. Then, we showed that the intersection of Pythagorean fuzzy KU-subalgebras is also a Pythagorean fuzzy KU-subalgebra, while the union of Pythagorean fuzzy KU-subalgebras need not to be a Pythagorean fuzzy KU-subalgebra as shown in Example 3.5. Finally, we indicated that the connections between the image and the preimage of Pythagorean fuzzy KU-subalgebras on a homomorphism of KU-algebras. Future studies will be able to investigate the concepts of Pythagorean fuzzy KU-ideals and Pythagorean fuzzy KU-filters of KU-algebras or other concepts in many algebraic structures can be determined by the Pythagorean fuzzy sets.

Acknowledgment

This research project was financially supported by Mahasarakham University.

References

- A. Alkouri, M. O. Massádeh, A. A. Fora, A study intuitionistic Q-fuzzy ideals of KU-algebras, J. Math. Comput. Sci., 10 (2020), 681–691. 1
- [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96. 1, 2.1
- [3] S. M. Bawazeer, S. A. Bashammakh, Derivertion of BCH-algebras and its fixed set, Far East J. Math. Sci., 96 (2015), 1029–1048. 1
- [4] A. Borumand Saeid, A. Namdar, Smarandache BCH-Algebras, World Appl. Sci. J., 7 (2009), 77-83. 1
- [5] I. Chaida, A structure of BCI-algebras, Internat. J. Theoret. Phys., 53 (2014), 3391–3396. 1
- [6] M. Gulistan, M. Shahzad, S. Ahmed, On (α, β) -fuzzy KU-ideals of KU-algebras, Afr. Mat., **26** (2015), 651–661. 1
- [7] M. Gulistan, M. Shahzad, N. Yaqoob, $On \ (\in, \in \lor Q_K)$ -fuzzy KU-ideals of KU-algebras, Acta Univ. Apulensis Math. Inform., **39** (2014), 75–83. 1
- [8] M. Hamidi, On superhyper BCK-algebras, Neutrosophic Sets Syst., 53 (2023), 580–588. 1
- [9] Q. P. Hu, X. Li, On BCH-algebras, Math. Sem. Notes Kobe Univ., 11 (1983), 313–320. 1
- [10] Q. P. Hu, X. Li, On proper BCH-algebras, Math. Japon., 30 (1985), 659-661. 1
- [11] K. Iséki, On BCI-algebras, Math. Sem. Notes Kobe Univ., 8 (1980), 125-130. 1
- [12] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon., 23 (1978/79), 1–26. 1
- [13] Y. B. Jun, S. Z. Song, Codes based on BCK-algebras, Inform. Sci., 181 (2011), 5102–5109. 1
- [14] Y. B. Jun, X. L. Xin, On derivations of BCI-algebras, Inform. Sci., 159 (2004), 167–176. 1
- [15] F. F. Kareem, R. H. Elaf, On KU-semigroups, Int. J. Sci. Nat, 9 (2017), 79-84. 3.2
- [16] A. N. A. Koam, A. Haider, M. A. Ansari, On an extension of KU-algebras, AIMS Math., 6 (2021), 1249–1257. 1
- [17] S. Manivasan, P. Kalidass, Applications in KU-algebras based on BMBJ-neutrosophic Structures, Int. J. Neutrosophic Sci., 20 (2023), 223–231. 1
- [18] S. M. Mostafa, M. A. Abd-Elnaby, O. R. Elgendy, *Interval-valued fuzzy KU-ideals in KU-algebras*, Int. Math. Forum, 6 (2011), 3151–3159.
- [19] S. M. Mostafa, M. A. Abd-Elnaby , M. M. M. Yousef, *Fuzzy ideals of KU-algebras*, Int. Math. Forum, **6** (2011), 3139–3149. 3.5
- [20] S. M. Mostafa, M. A. Abd-Elnaby, M. M. M. Yousef, Anti-fuzzy KU ideals of KU-algebras, Int. J. Algebra Stat., 1 (2012), 92–99. 1
- [21] S. M. Mostafa, F. F. Kareem, B. Davvaz, *Hyper structure theory applied to KU-algebras*, J. Hyperstruct., **6** (2017), 82–95. 1
- [22] S. M. Mostafa, B. Youssef, H. A. Jad, Coding theory applied to KU-algebras, J. New Theory, 6 (2015), 43–53. 1
- [23] P. Muangkarn, C. Suanoom, J. Phuto, A. Iampan, *Tri-endomorphisms on BCH-algebras*, Int. J. Anal. Appl., 21 (2023), 1–5. 1
- [24] C. Prabpayak, U.Leerawat, On ideals and congurences in KU-algebras, Sci. Magna, 5 (2009), 54–57. 1, 2.3, 2, 2.4, 2.5
- [25] C. Prabpayak, U. Leerawat, On isomorphisms of KU-algebras, Sci. Magna, 5 (2009), 25-31. 1, 4
- [26] T. Senapati, T-fuzzy KU-ideals of KU-algebras, Afr. Mat., 29 (2018), 591-600. 1
- [27] T. Senapati, Y. B. Jun, K. P. Shum, Cubic intuitionistic structure of KU-algebras, Afr. Mat., 31 (2020), 237–248. 1
- [28] T. Senapati, K. P. Shum, Atanassov's intuitionistic fuzzy bi-normed KU-ideals of a KU-algebra, J. Intell. Fuzzy Syst., 30 (2016), 1169–1180. 1
- [29] T. Senapati, K. P. Shum, Atanassov's intuitionistic fuzzy bi-normed KU-subalgebras of a KU-algebra, Missouri J. Math. Sci., 29 (2017), 92–112. 1
- [30] X. L. Xin, Hyper BCI-algebras, Discuss. Math. Gen. Algebra Appl., 26 (2006), 5–19. 1
- [31] R. R. Yager, *Pythagorean fuzzy subsets*, In: 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), IEEE, (2013), 57–61. 1, 2.2
- [32] L. Zadeh, *Fuzzy sets*, Information and Control, 8 (1965), 338–353. 1, 2