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Abstract
The purpose of this research is to develop a mathematical model to study the dynamics of human immunodeficiency virus

type-1 (HIV-1) infection with inflammatory cytokines. The model incorporates two modes of infection (viral and cellular), two
immune responses (antibody and cytotoxic T lymphocyte (CTL)) and two types of distributed-time delays. We demonstrate that
the model’s solutions are non-negative and eventually bounded, demonstrating the suggested model’s biological viability. We
find the equilibrium points of the model and get the sufficient conditions for their existence and stability. The Lyapunov approach
is utilized to investigate the global stability of the equilibria. We determine which parameters most affect the basic reproduction
number using sensitivity analysis. We reformulate our model by including the influence of three classes of antiretroviral drug
therapies. We determine a critical efficacy for each antiretroviral therapy, after which HIV-1 will be eradicated entirely if
treatment effectiveness surpasses this threshold. We also establish that the estimated treatment efficacy will be lower than what
is necessary to eliminate the virus entirely if the inflammatory cytokines and/or cellular infection are ignored. Moreover, we
show that time delay has an identical effect on virus elimination as antiretroviral therapy. It is also shown that, prolonging
time delays can successfully reduce the basic reproduction number and stop HIV-1 replication. According to our findings, time
delay, cellular infection, and inflammatory cytokines are crucial components of the HIV-1 model and should not be disregarded.
The study’s analytical and numerical findings advance our knowledge of HIV-1 dynamics and may help develop more effective
HIV-1 management plans.

Keywords: HIV-1, inflammatory cytokines, viral and cellular infections, immune response, time delay, global stability,
Lyapunov method.
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1. Introduction

Human immunodeficiency virus type-1 (HIV-1) infection is a fatal virus that raises the risk and sever-
ity of other infections and illnesses. The HIV-1 virus interacts with the immune system and primarily
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targets CD4+ T cells, often known as T cells, for infection [35]. As the condition worsens, the population
of CD4+ T cells in HIV-positive people gradually decreases. Generally speaking, the infection is said to
have progressed to the late stage, or acquired immune deficiency syndrome (AIDS), when the number
of CD4+ cells/mm3 falls below 200. It is challenging for the body to fight off infections and illnesses
when the immune system is compromised. The immune system consists of two main arms: antibody
immunity, which is composed of B cells that produce antibodies to neutralize HIV-1 particles; and cy-
totoxic T lymphocyte (CTL) immunity, which is primarily composed of CTLs specific to viral antigens
that kill infected cells. Antiretroviral medications have been used to treat HIV-1 patients for the past 20
years, and while there is currently no cure for AIDS, they have been proven to be effective in managing
the virus and restoring the body’s immune system [38]. HIV-1 may spread through three major channels.
First, there is sexual transmission; being sick is more likely when there are several partners or when there
is promiscuity. It will spread through intrauterine infection, delivery, nursing, and other methods after
mother-to-child transmission. The third kind of transmission involves sharing needles, sharing toiletries,
iatrogenic infections, and blood transfusions, among other methods [5].

Viral infection dynamics have been mathematically modeled, which has helped to clarify the intricate
relationship between immune response and viral infection. Mathematical models have been used to study
the dynamic characteristics of HIV-1 infection [40]. A fundamental model for HIV-1 dynamics inside the
host was developed by Nowak and Bangham [39], and it depicts the interactions between uninfected
CD4+T cells (T ), infected cells (T∗), and free HIV-1 particles (H). The model has now been expanded in
a number of ways, including the inclusion of the effects of the CTL response [6, 10, 39, 48, 56] and the
antibody response [11, 36, 45, 57, 58, 67]. Wodarz [59] studied a viral dynamics model that included both
CTL and antibody immunity as:

dT

dt
= α− ξTT − γ1TH, (1.1)

dT∗

dt
= γ1TH− ξT∗T

∗ − λT∗K, (1.2)

dH

dt
= βT∗ − ξHH−ψAH, (1.3)

dK

dt
= σT∗K− ξKK, (1.4)

dA

dt
= ρAH− ξAA, (1.5)

where T = T(t), T∗ = T∗(t), C = C(t), H = H(t), K = K(t), and A = A(t) are the concentrations of
uninfected CD4+T cells, infected CD4+T cells, free HIV-1 particles, CTLs, and antibodies at time t, re-
spectively. The production rate of uninfected CD4+T cells is denoted by α. The CD4+T cells infection rate
by free HIV-1 particles is indicated by γ1TH. This mode of infection is called virus-to-cell transmission (or
viral infection). The rate of free HIV-1 production from infected cells is represented by βT∗. The prolifer-
ation rates of CTLs and antibodies are denoted, respectively, by σT∗K and ρAH. The term λT∗K accounts
for the rate at which CTL immune cells kill the infected cells, while ψAH represents the neutralization
rate of the HIV-1 particles due to the antibodies. All compartments have natural death rates that are,
respectively, ξTT , ξT∗T∗, ξHH, ξKK, and ξAA.

The following significant characteristics can be taken into consideration while extending model (1.1)-
(1.5).

Time delay: There is an intracellular lag between the time a host cell becomes infected and the time that
HIV-1 particles are released. According to estimates, it takes around 0.9 days for HIV-1 to enter
a CD4+ T cell and start generating new HIV-1 particles [42]. Model (1.1)-(1.5) was expanded by
Yan and Wang [62] by adding a discrete time delay for the generation of infected cells. In [51] and
[22], two kinds of distributed time delays were added, delay in generation of infected cells, and
maturation delay of new virions.
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Cellular infection (or cell-to-cell transmission): Numerous studies have demonstrated that HIV-1 may
spread directly through the development of virological synapses from an infected cell to an unin-
fected cell. (see, e.g., [25, 27, 44]). Cellular infection can reduce the time it takes for HIV-1 particles
to produce by 0.9 times and enhance HIV-1 fitness by 3.9 times [19]. In [15, 20, 23, 32, 66], model
(1.1)-(1.5) was developed by including the cellular infection.

Pyroptosis: It is extremely inflammatory kind of programmed cell death brought on by an abortive HIV-1
infection. It has been observed that, pyroptosis accounts for 95% of the death of CD4+ T cells [12].
Inflammatory cytokines are released during pyroptosis and can lead to more cell death and attract
more CD4+ T cells to be infected [12, 50]. Modeling the impact of pyroptosis on the HIV-1 dynamics
was studied in [49]. Then the model was extended by including reaction-diffusion [47, 52, 53, 55] and
age-structure [61]. Jiang and Zhang [24] examined how pyroptosis-released inflammatory cytokines
affected viral infection-related cell death. The model considered two kinds of discrete-time delays.
The model introduced in article [24] was expanded by including the influence of (i) CTL response
[65]; (ii) CTL response and reaction-diffusion [5]; (iii) both antibody and CTL responses [7, 9].

One of the most effective methods available to researchers for improving their comprehension of viral
dynamics and immune system regulation and elimination is global stability analysis of within-host virus
dynamics models. Research has been done on the global stability of HIV-1 infection models with inflam-
matory cytokines, and antibody and CTL responses in [7, 9]. The intracellular time delay was included
in the model that was introduced in [9], but the cellular infection mechanism was not. However, in [7],
the intracellular time delay was disregarded while the cellular infection process was incorporated. This
section examines a model of HIV-1 dynamics that incorporates distributed time delays. It’s important to
note that dispersed delays are more widely applicable than discrete delays. The assumption made in [65]
was that the duration between the virus’s entry into the cell and the generation of new immature virions
(υ1) is constant for every cell. Further, the maturation time (υ2) of every virus is constant. Furthermore,
the immune response delay (υ3) for every CTL is constant. To avoid such (biologically impossible) as-
sumption, several HIV-1 infection models were built by considering the time delay as a random variable
extracted from a probability distribution function (see e.g., [8, 13, 37, 60]). Therefore, distributed delays
are more widely applicable than discrete delays.

Our aim in this work is to formulate and analyze an HIV-1 infection model that includes the impact
of (i) inflammatory cytokines; (ii) both antibody and CTL responses; (iii) two types of distributed-time
delays. Prior to finding all equilibria and discussing their existence and global stability, we first examine
the essential properties of the model. The global asymptotic stability of all equilibria is demonstrated
using the Lyapunov approach. To illustrate the theoretical results, numerical simulations are performed.
The collected results are finally addressed.

2. Model formulation

We formulate an HIV-1 dynamics model with inflammatory cytokines, cellular infection, and distri-
buted-time delays as:

dT

dt
= α− ξTT − T (γ1H+ γ2C+ γ3T

∗) , (2.1)

dT∗

dt
=

∫δ1

0
B1(υ)e

−κ1υTυ (γ1Hυ + γ2Cυ + γ3T
∗
υ)dυ− (µ1 + ξT∗) T

∗ − λT∗K, (2.2)

dC

dt
= µ2T

∗ − ξCC, (2.3)

dH

dt
= β

∫δ2

0
B2(υ)e

−κ2υT∗υdυ− ξHH−ψAH, (2.4)

dK

dt
= σT∗K− ξKK, (2.5)
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dA

dt
= ρAH− ξAA. (2.6)

Here, we denote Tυ = T(t− υ), T∗υ = T∗(t− υ), Cυ = C(t− υ), and Hυ = H(t− υ). The term γ2TC repre-
sents the cytokine-enhanced viral infection rate, while γ3TT

∗ is the infection rate due to cellular infection.
The proptosis-induced death rate of infected cells is µ1T

∗. The term T∗µ2 denotes the proliferation rate
of inflammatory cytokines from infected cells. There are two distributed-time delays that explain the
interval between the moment the viral particle first interacts with CD4+ T and when the newly generated
virions mature. A probability distribution function Bi(υ), i = 1, 2 across the interval [0, δi] is used to ran-
domly select the delay parameter υ, where δi is the limit superior of the delay duration. When uninfected
CD4+T cells come into contact with virus particles at time t− υ, the likelihood that they will survive for
υ time units and get the infection at time t is represented by the factor B1(υ)e

−κ1υ. Factor B2(υ)e
−κ2υ

shows the likelihood of newly formed immature virions at time t− υ losing υ time units and maturing at
time t. Here κi, i = 1, 2 are positive constants. Functions Bi(υ) > 0, i = 1, 2, satisfy∫δi

0
Bi(υ)dυ = 1 and

∫δi
0
Bi(υ)e

−uυdυ <∞, u > 0.

We denote

B̃i (υ) = Bi(υ)e
−κiυ, Bi =

∫δi
0

B̃i (υ)dυ, i = 1, 2.

This gives 0 < Bi 6 1. The initial conditions are

T(κ) = $1(κ), T∗(κ) = $2(κ), C(κ) = $3(κ), H(κ) = $4(κ),
K(κ) = $5(κ), A(κ) = $6(κ), $j(κ) > 0, κ ∈ [−δ∗, 0] , j = 1, 2, . . . , 6,

(2.7)

where δ∗ = max {δ1, δ2}, $j(κ) ∈ C ([−δ∗, 0] , R>0), j = 1, 2, . . . , 6 and C is the Banach space of continuous
functions mapping the interval [−δ∗, 0] into R>0 with norm

∥∥$j∥∥ = sup
−δ∗6ε60

∣∣$j(ε)∣∣ for$j ∈ C. Therefore,

based on the fundamental theory of functional differential equations, we can say that system (2.1)-(2.6)
with initial conditions (2.7) has a unique solution [29].

3. Non-negativity and boundedness of solutions

We shall demonstrate in this section that, assuming the initial conditions (2.7), any solution to the
model (2.1)-(2.6) is non-negative and ultimately bounded.

Lemma 3.1. All solutions of the model (2.1)-(2.6) associated with initial conditions (2.7) are non-negative and
ultimately bounded.

Proof. Clearly, dTdt |T=0= α > 0 and hence, T (t) > 0 for any t > 0. Moreover, we have

T∗(t) = $2(0)e−
∫t

0 [(µ1+ξT∗)+λK(`)]d`

+

∫t
0
e−
∫t
η[(µ1+ξT∗)+λK(`)]d`

∫δ1

0
B̃1(υ)T(η− υ)(γ1H(η− υ) + γ2C(η− υ) + γ3T

∗(η− υ))dυdη > 0,

C(t) = $3(0)e−ξCt + µ2

∫t
0
e−ξC(t−η)T∗(η)dη > 0,

H(t) = $4(0)e−
∫t

0(ξH+ψA(`))d` +β

∫t
0
e−
∫t
η(ξH+ψA(`))d`

∫δ2

0
B̃2(υ)T

∗(η− υ)dυdη > 0,

K(t) = $5(0)e−
∫t

0(ξK−σT
∗(`))d` > 0,

A(t) = $6(0)e−
∫t

0(ξA−ρH(`))d` > 0,
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for any t ∈ [0, δ∗]. Thus, (T(t), T∗(t),C(t),H(t),K(t),A(t)) ∈ R6
>0 for any t > 0 is obtained using a

recursive argument.
Next, we demonstrate the ultimate boundedness of the solutions to the model. Eq. (2.1) gives

lim
t→∞ sup T(t) 6 α

ξT
. Further, we let

Ω1 =

∫δ1

0
B̃1(υ)Tυdυ+ T

∗ +
λ

σ
K.

Then, we get

dΩ1

dt
=

∫δ1

0
B̃1(υ) (α− Tυ (ξT + γ1Hυ + γ2Cυ + γ3T

∗
υ))dυ

+

∫δ1

0
B̃1(υ)Tυ (γ1Hυ + γ2Cυ + γ3T

∗
υ)dυ− (µ1 + ξT∗) T

∗ − λT∗K+
λ

σ
(σT∗K− ξKK)

= αB1 − ξT

∫δ1

0
B̃1(υ)Tυdυ− (µ1 + ξT∗) T

∗ −
λξK
σ
K 6 α− ρ1Ω1,

where ρ1 = min{ξT ,µ1 + ξT∗ , ξK}. Thus, lim
t→∞ supΩ1(t) 6 L1, where L1 = α

ρ1
, and consequently

lim
t→∞ sup T∗(t) 6 L1 and lim

t→∞ supK(t) 6 σ
λL1 = L2. Eq. (2.3) implies that

dC

dt
= µ2T

∗ − ξCC 6 µ2L1 − ξCC,

which confirms that lim
t→∞ supC(t) 6 L3, where L3 = µ2L1

ξC
. Further, we assume that Ω2 = H+ ψ

ρA. Then,

from Eqs. (2.4) and (2.6), we have

dΩ2

dt
= β

∫δ2

0
B̃2(υ)T

∗
υdυ− ξHH−ψAH−

ψ

ρ
(ρAH− ξAA)

= β

∫δ2

0
B̃2(υ)T

∗
υdυ− ξHH−

ψξA
ρ
A 6 βL1 − ρ2Ω2,

where ρ2 = min{ξH, ξA}. Hence, lim
t→∞ supΩ2(t) 6 L4, where L4 = βL1

ρ2
. Therefore, we can obtain that

lim
t→∞ supH(t) 6 L4, and lim

t→∞ supA(t) 6 ρ
ψL3 = L5.

Lemma 3.1 allows one to determine the compact set

Ξ =
{
(T , T∗,C,H,K,A) ∈ C6

>0 : ‖T‖ 6 L1, ‖T∗‖ 6 L1, ‖K‖ 6 L2, ‖H‖ 6 L4, ‖C‖ 6 L3, ‖A‖ 6 L5
}

,

which can be easily proved that it is positively invariant with respect to system (2.1)-(2.6).

4. Existence of equilibrium points

In this section, we calculate the potential equilibrium points of system (2.1)-(2.6) and identify the
prerequisites for their existence. Any equilibrium point (T , T∗,C,H,K,A) is recognized in the following
system of algebraic equations:

0 = α− ξTT − γ1TH− γ2TC− γ3TT
∗, (4.1)

0 = B1T (γ1H+ γ2C+ γ3T
∗) − (µ1 + ξT∗) T

∗ − λT∗K, (4.2)
0 = µ2T

∗ − ξCC, (4.3)
0 = βB2T

∗ − ξHH−ψAH, (4.4)
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0 = σT∗K− ξKK, (4.5)
0 = ρAH− ξAA. (4.6)

Eq. (4.6) admits two solutions A = 0 and H = ξA
ρ . First, we consider the case A = 0, then from Eqs.

(4.1)-(4.5), we get three equilibria for system (2.1)-(2.6) as follows.

(I) Infection-free equilibrium point, EP0 = (T0, 0, 0, 0, 0, 0), where T0 = α
ξT

. This instance illustrates a
healthy state in which there is no infection.

(II) Chronic infection equilibrium point with inactive immune responses, EP1 = (T1, T∗1 ,C1,H1, 0, 0), where

T1 =
ξHξC (µ1 + ξT∗)

B1 (βξCB2γ1 + ξHµ2γ2 + ξCξHγ3)
=
T0

<0
,

T∗1 =
ξTξCξH

γ1βξCB2 + γ2ξHµ2 + γ3ξCξH
(<0 − 1) ,

C1 =
ξTξHµ2

γ1βξCB2 + γ2ξHµ2 + γ3ξCξH
(<0 − 1) ,

H1 =
ξTξCβB2

γ1βξCB2 + γ2ξHµ2 + γ3ξCξH
(<0 − 1) ,

where the parameter <0 stands for the basic reproduction number and is defined as the number of newly
infected CD4+T cells that can develop from a single infected CD4+T cell in the beginning of the infection.
It is stated as follows:

<0 =
T0B1 (γ1βξCB2 + γ2ξHµ2 + γ3ξCξH)

ξCξH (µ1 + ξT∗)

=
T0γ1βB1B2

ξH (µ1 + ξT∗)
+

T0γ2µ2B1

ξC (µ1 + ξT∗)
+
T0γ3B1

µ1 + ξT∗
= <01 +<02 +<03.

It is notable that the equilibrium EP1 exists when <0 > 1, which in turn determines whether or not
a chronic infection can be established. In fact, <01, <02, and <03 refer to the role of viral infection,
inflammatory cytokines, and cellular infection, respectively.

(III) Chronic infection equilibrium point with only CTL response, EP2 = (T2, T∗2 ,C2,H2,K2, 0), where

T2 =
αξHξCσ

ξTξHξCσ+ γ1βξCξKB2 + γ2ξHξKµ2 + γ3ξHξCξK
,

T∗2 =
ξK
σ

, C2 =
µ2ξK
σξC

, H2 =
βξKB2

ξHσ
, K2 =

µ1 + ξT∗

λ

(
T2<0

T0
− 1
)

=
µ1 + ξT∗

λ
(<1 − 1) ,

where

<1 =
T2<0

T0
=

ασB1 (γ1βξCB2 + γ2ξHµ2 + γ3ξHξC)

(µ1 + ξT∗) (ξTξHξCσ+ γ1βξCξKB2 + γ2ξHξKµ2 + γ3ξHξCξK)
.

Here, <1 is the CTL response activation number. Obviously, EP2 exists if <1 > 1. Depending on the value
of the parameter <1, the CTL response is either activated or not.

Now, we consider the case when H = ξA
ρ . Then from Eqs. (4.1)-(4.5), we derive two equilibrium points

as follows.

(IV) Chronic infection equilibrium point with only antibody response, EP3 = (T3, T∗3 ,C3,H3, 0,A3), where

T3 =
αρµ2

ξTρµ2 + γ1ξAµ2 + γ2ρµ2C3 + γ3ρξCC3
, T∗3 =

ξC
µ2
C3, H3 =

ξA
ρ

, A3 =
ξH
ψ

(
βξCρB2

ξHξAµ2
C3 − 1

)
,

where compartment C3 satisfies the following quadratic equation:

θ2C
2
3 + θ1C3 + θ0 = 0, (4.7)
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and

θ2 = ρξC (µ1 + ξT∗) (γ3ξC + γ2µ2) ,
θ1 = −µ2 ((γ2µ2 + γ3ξC)B1αρ− (µ1 + ξT∗) (ξTρ+ γ1ξA) ξC) ,

θ0 = −γ1αµ
2
2ξAB1.

Because, θ2 > 0 and θ0 < 0, then θ2
1 − 4θ0θ2 > 0 and there are two distinct real roots of Eq. (4.7). The

positive root is

C3 =
−θ1 +

√
θ2

1 − 4θ0θ2

2θ2
.

Thus, if βξCρB2C3
ξHξAµ2

> 1, then T3 > 0, T∗3 > 0, and A3 > 0. The antibody response activation number is now
defined as follows:

<2 =
βξCρB2

ξHξAµ2
C3.

Thus, A3 = ξH
ψ

(<2 − 1). Depending on the value <2, the antibody response is either initiated or not.
Therefore, the existence of the equilibrium EP3 is ensured by the condition <2 is greater than 1.

(V) Chronic infection equilibrium point with both CTL and antibody responses, EP4 = (T4, T∗4 ,C4,H4,K4,
A4), where

T4 =
αρξCσ

ξTξCσρ+ γ1ξCξAσ+ γ2ρξKµ2 + γ3ρξCξK
,

T∗4 =
ξK
σ

, C4 =
ξKµ2

ξCσ
, H4 =

ξA
ρ

, K4 =
µ1 + ξT∗

λ
(<4 − 1) , A4 =

ξH
ψ

(<3 − 1) ,

where <3 and <4 represent the antibody and CTL immunity competitive reproductive numbers, respec-
tively, and they are given as

<3 =
ξKρβB2

ξHξAσ
, <4 =

ασB1 (γ1ξCξAσ+ ργ2ξKµ2 + ργ3ξCξK)

ξK (µ1 + ξT∗) (ξTξCρσ+ γ1ξCξAσ+ γ2ρξKµ2 + γ3ρξCξK)
.

The effectiveness of the CTL and antibody immunological responses is determined by parameters <3 and
<4. Therefore, the existence of the equilibrium EP4 is ensured by the condition <3 and <4 are greater
than 1.

After putting the talks above into summary, we get at the following lemma.

Lemma 4.1. There exist five threshold parameters <0, <1, <2, <3, and <4 such that

(i) If <0 6 1, then model (2.1)-(2.6) always has one infection-free equilibrium point, EP0 = (T0, 0, 0, 0, 0, 0).
(ii) If <0 > 1, then model (2.1)-(2.6) has a chronic infection equilibrium point with inactive immune responses,

EP1 = (T1, T∗1 ,C1,H1, 0, 0).
(iii) If <1 > 1, then model (2.1)-(2.6) has a chronic infection equilibrium point with only CTL response, EP2 =

(T2, T∗2 ,C2,H2,K2, 0).
(iv) If <2 > 1, then model (2.1)-(2.6) has a chronic infection equilibrium point with only antibody response,

EP3 = (T3, T∗3 ,C3,H3, 0,A3).
(v) If <3 > 1 and <4 > 1, then model (2.1)-(2.6) has a chronic infection equilibrium point with both CTL and

antibody responses, EP4 = (T4, T∗4 ,C4,H4,K4,A4).
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5. Global stability

In this part, the global asymptotic stability properties of all equilibrium points will be investigated.
For this purpose, we define χ(κ) = κ − 1 − ln(κ), χ(κ) > 0 for all κ > 0 and χ(1) = 0. In addition, we
define a Lyapunov function candidate Φi(T , T∗,C,H,K,A). Define

Γi =

{
(T , T∗,C,H,K,A) :

dΦi
dt

= 0
}

, i = 0, 1, . . . , 4,

and Γ ′i is the largest invariant subset of Γi. Following the investigations in [28, 37, 61], we formulate
Lyapunov functions in the ensuing theorems.

Theorem 5.1. If <0 6 1, then EP0 (T , 0, 0, 0, 0, 0) is globally asymptotically stable (G.A.S).

Proof. Let Φ0(T , T∗,C,H,K,A) be given as:

Φ0 = T0χ

(
T

T0

)
+

1
B1
T∗ +

γ2T0

ξC
C+

γ1T0

ξH
H+

λ

σB1
K+

γ1T0ψ

ρξH
A

+
1
B1

∫δ1

0
B̃1(υ)

∫t
t−υ

T(u) (γ1H(u) + γ2C(u) + γ3T
∗(u))dudυ+

γ1T0β

ξH

∫δ2

0
B̃2(υ)

∫t
t−υ

T∗(u)dudυ.

Clearly, Φ0(T , T∗,C,H,K,A) > 0 for any T , T∗,C,H,K,A > 0 and Φ0 = 0 at EP0. Calculating dΦ0
dt along

the solutions of model (2.1)-(2.6) we get

dΦ0

dt
=

(
1 −

T0

T

)
dT

dt
+

1
B1

dT∗

dt
+
γ2T0

ξC

dC

dt
+
γ1T0

ξH

dH

dt
+

λ

σB1

dK

dt
+
γ1T0ψ

ρξH

dA

dt

+
1
B1

∫δ1

0
B̃1(υ) [T (γ1H+ γ2C+ γ3T

∗) − Tυ (γ1Hυ + γ2Cυ + γ3T
∗
υ)]dυ

+
γ1T0β

ξH

∫δ2

0
B̃2(υ) (T

∗ − T∗υ)dυ.

Using model (2.1)-(2.6) we get

dΦ0

dt
=

(
1 −

T0

T

)
(α− ξTT − γ1TH− γ2TC− γ3TT

∗)

+
1
B1

(∫δ1

0
B̃1(υ)Tυ (γ1Hυ + γ2Cυ + γ3T

∗
υ)dυ− (µ1 + ξT∗) T

∗ − λT∗K

)

+
γ2T0

ξC
(µ2T

∗ − ξCC) +
γ1T0

ξH

(
β

∫δ2

0
B̃2(υ)T

∗
υdυ− ξHH−ψAH

)
+

λ

σB1
(σT∗K− ξKK)

+
γ1T0ψ

ρξH
(ρAH− ξAA) +

1
B1

∫δ1

0
B̃1(υ)T (γ1H+ γ2C+ γ3T

∗)dυ

−
1
B1

∫δ1

0
B̃1(υ)Tυ (γ1Hυ + γ2Cυ + γ3T

∗
υ)dυ+

γ1T0β

ξH

∫δ2

0
B̃2(υ) (T

∗ − T∗υ)dυ.

Collecting terms we obtain

dΦ0

dt
=

(
1 −

T0

T

)
(α− ξTT) +

(
γ1T0βB2

ξH
+
γ2T0µ2

ξC
+ γ3T0 −

µ1 + ξT∗

B1

)
T∗ −

λξK
σB1

K−
γ1T0ψξA
ρξH

A. (5.1)

Substituting the value α = ξTT0 in Eq. (5.1), we obtain

dΦ0

dt
= −ξT

(T − T0)
2

T
+
µ1 + ξT∗

B1

(
T0B1 (γ1βξCB2 + γ2ξHµ2 + γ3ξCξH)

ξCξH (µ1 + ξT∗)
− 1
)
T∗ −

λξK
σB1

K−
γ1T0ψξA
ρξH

A
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= −ξT
(T − T0)

2

T
+
µ1 + ξT∗

B1
(<0 − 1) T∗ −

λξK
σB1

K−
γ1T0ψξA
ρξH

A.

If <0 6 1, then dΦ0
dt 6 0 for any T , T∗,C,H,K,A > 0. Moreover, dΦ0

dt = 0 when T = T0, T∗ = 0, K = 0, and
A = 0. System’s solutions approach to Γ ′0, which has elements with T (t) = T0, and T∗ (t) = K (t) = A (t) =
0 ([21]). From Eq. (2.1), we have

0 =
dT

dt
= α− ξTT0 − γ1T0H− γ2T0C, for any t.

Using T0 = α
ξT

, we get
0 = γ1H+ γ2C =⇒ H (t) = C (t) = 0 for any t.

Hence Γ ′0 = {EP0} and LaSalle’s invariance principle (L.I.P.) shows that EP0 is G.A.S ([26]).

The following equalities will be used for the following theorems:

ln
(
TυHυ

TH

)
= ln

(
T∗i TυHυ
T∗TiHi

)
+ ln

(
Ti
T

)
+ ln

(
T∗Hi
T∗i H

)
,

ln
(
T∗υ
T∗

)
= ln

(
T∗υHi
T∗i H

)
+ ln

(
T∗i H

T∗Hi

)
,

ln
(
TυCυ

TC

)
= ln

(
T∗i TυCυ
T∗TiCi

)
+ ln

(
Ti
T

)
+ ln

(
T∗Ci
T∗i C

)
,

ln
(
TυT

∗
υ

TT∗

)
= ln

(
Ti
T

)
+ ln

(
T∗i TυT

∗
υ

T∗TiT
∗
i

)
, i = 1, 2, 3, 4.

(5.2)

In addition

γ1TiHi
B1

∫δ1

0
B̃1(υ) ln

(
TυHυ

TH

)
dυ+

γ1TiHi
B2

∫δ2

0
B̃2(υ) ln

(
T∗υ
T∗

)
dυ

=
γ1TiHi
B1

∫δ1

0
B̃1(υ)

(
ln
(
T∗i TυHυ
T∗TiHi

)
+ ln

(
Ti
T

)
+ ln

(
T∗Hi
T∗i H

))
dυ

+
γ1TiHi
B2

∫δ2

0
B̃2(υ)

(
ln
(
T∗υHi
T∗i H

)
+ ln

(
T∗i H

T∗Hi

))
dυ

=
γ1TiHi
B1

∫δ1

0
B̃1(υ)

(
ln
(
T∗i TυHυ
T∗TiHi

)
+ ln

(
Ti
T

))
dυ+

γ1TiHi
B2

∫δ2

0
B̃2(υ) ln

(
T∗υHi
T∗i H

)
dυ.

(5.3)

Theorem 5.2. If <0 > 1, <3 6 1, and <4 6 1, then EP1 is G.A.S.

Proof. Define Φ1(T , T∗,C,H,K,A) as:

Φ1 = T1χ

(
T

T1

)
+

1
B1
T∗1 χ

(
T∗

T∗1

)
+
γ2T1C1

ξC
χ

(
C

C1

)
+
γ1T1H1

ξH
χ

(
H

H1

)
+

λ

σB1
K+

γ1T1ψ

ξHρ
A

+
γ1T1H1

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)H(u)

T1H1

)
dudυ+

γ2T1C1

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)C(u)

T1C1

)
dudυ

+
γ3T1T

∗
1

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)T∗(u)

T1T
∗
1

)
dudυ+

βγ1T1T
∗
1

ξH

∫δ2

0
B̃2(υ)

∫t
t−υ

χ

(
T∗(u)

T∗1

)
dudυ.

We calculate dΦ1
dt as:

dΦ1

dt
=

(
1 −

T1

T

)
(α− ξTT − γ1TH− γ2TC− γ3TT

∗) +
1
B1

(
1 −

T∗1
T∗

)
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×

(∫δ1

0
B̃1(υ)Tυ (γ1Hυ + γ2Cυ + γ3T

∗
υ)dυ− (µ1 + ξT∗) T

∗ − λT∗K

)

+
γ2T1

ξC

(
1 −

C1

C

)
(µ2T

∗ − ξCC) +
γ1T1

ξH

(
1 −

H1

H

)(
β

∫δ2

0
B̃2(υ)T

∗
υdυ− ξHH−ψAH

)

+
λ

σB1
(σT∗K− ξKK) +

γ1T1ψ

ξHρ
(ρAH− ξAA) (5.4)

+
γ1T1H1

B1

∫δ1

0
B̃1(υ)

(
TH

T1H1
−
TυHυ

T1H1
+ ln

(
TυHυ

TH

))
dυ

+
γ2T1C1

B1

∫δ1

0
B̃1(υ)

(
TC

T1C1
−
TυCυ

T1C1
+ ln

(
TυCυ

TC

))
dυ

+
γ3T1T

∗
1

B1

∫δ1

0
B̃1(υ)

(
TT∗

T1T
∗
1
−
TυT

∗
υ

T1T
∗
1
+ ln

(
TυT

∗
υ

TT∗

))
dυ

+
βγ1T1T

∗
1

ξH

∫δ2

0
B̃2(υ)

(
T∗

T∗1
−
T∗υ
T∗1

+ ln
(
T∗υ
T∗

))
dυ.

Summing terms of Eq. (5.4), we derive

dΦ1

dt
=

(
1 −

T1

T

)
(α− ξTT) + γ3T1T

∗ −
γ1

B1

∫δ1

0
B̃1(υ)

T∗1 TυHυ
T∗

dυ−
γ2

B1

∫δ1

0
B̃1(υ)

T∗1 TυCυ
T∗

dυ

−
γ3

B1

∫δ1

0
B̃1(υ)

T∗1 TυT
∗
υ

T∗
dυ−

1
B1

(
1 −

T∗1
T∗

)
(µ1 + ξT∗) T

∗ +
1
B1
λT∗1 K+

γ2T1

ξC

(
1 −

C1

C

)
µ2T
∗

+ γ2T1C1 −
γ1T1

ξH
β

∫δ2

0
B̃2(υ)

T∗υH1

H
dυ+ γ1T1H1 +

ψγ1T1H1

ξH
A

−
λξK
σB1

K−
γ1T1ξAψ

ξHρ
A+

γ1T1H1

B1

∫δ1

0
B̃1(υ) ln

(
TυHυ

TH

)
dυ

+
γ2T1C1

B1

∫δ1

0
B̃1(υ) ln

(
TυCυ

TC

)
dυ+

γ3T1T
∗
1

B1

∫δ1

0
B̃1(υ) ln

(
TυT

∗
υ

TT∗

)
dυ

+
βB2γ1T1T

∗

ξH
+
βγ1T1T

∗
1

ξH

∫δ2

0
B̃2(υ) ln

(
T∗υ
T∗

)
dυ.

Using the following conditions for equilibrium EP1:

α = ξTT1 + γ1T1H1 + γ2T1C1 + γ3T1T
∗
1 ,

(µ1 + ξT∗) T
∗
1

B1
= γ1T1H1 + γ2T1C1 + γ3T1T

∗
1 ,

µ2

ξC
=
C1

T∗1
,

β

ξH
=

H1

B2T
∗
1

.

Then, we obtain

dΦ1

dt
=

(
1 −

T1

T

)
(ξTT1 − ξTT) + γ1T1H1

(
1 −

T1

T

)
+ γ2T1C1

(
1 −

T1

T

)
+ γ3T1T

∗
1

(
1 −

T1

T

)
−
γ1T1H1

B1

∫δ1

0
B̃1(υ)

T∗1 TυHυ
T∗T1H1

dυ−
γ2T1C1

B1

∫δ1

0
B̃1(υ)

T∗1 TυCυ
T∗T1C1

dυ

−
γ3T1T

∗
1

B1

∫δ1

0
B̃1(υ)

T∗1 TυT
∗
υ

T∗T1T
∗
1
dυ+ γ1T1H1 + γ2T1C1 + γ3T1T

∗
1 − γ2T1C1

T∗C1

T∗1 C
+ γ2T1C1

−
γ1T1H1

B2

∫δ2

0
B̃2(υ)

T∗υH1

T∗1H
dυ+ γ1T1H1 +

(
1
B1
λT∗1 −

λξK
σB1

)
K+

(
ψγ1T1H1

ξH
−
γ1T1ξAψ

ξHρ

)
A
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+
γ1T1H1

B1

∫δ1

0
B̃1(υ) ln

(
TυHυ

TH

)
dυ+

γ2T1C1

B1

∫δ1

0
B̃1(υ) ln

(
TυCυ

TC

)
dυ

+
γ3T1T

∗
1

B1

∫δ1

0
B̃1(υ) ln

(
TυT

∗
υ

TT∗

)
dυ+

γ1T1H1

B2

∫δ2

0
B̃2(υ) ln

(
T∗υ
T∗

)
dυ.

Using the equalities represented in Eqs. (5.2) and (5.3) in case of i = 1, we get

dΦ1

dt
=

(
1 −

T1

T

)
(ξTT1 − ξTT) −

γ1T1H1

B1

∫δ1

0
B̃1(υ)

(
T1

T
− 1 − ln

(
T1

T

))
dυ

−
γ1T1H1

B1

∫δ1

0
B̃1(υ)

(
T∗1 TυHυ
T∗T1H1

− 1 − ln
(
T∗1 TυHυ
T∗T1H1

))
dυ

−
γ1T1H1

B2

∫δ2

0
B̃2(υ)

(
T∗υH1

T∗1H
− 1 − ln

(
T∗υH1

T∗1H

))
dυ−

γ2T1C1

B1

∫δ1

0
B̃1(υ)

(
T1

T
− 1 − ln

(
T1

T

))
dυ

−
γ2T1C1

B1

∫δ1

0
B̃1(υ)

(
T∗1 TυCυ
T∗T1C1

− 1 − ln
(
T∗1 TυCυ
T∗T1C1

))
dυ (5.5)

−
γ2T1C1

B1

∫δ1

0
B̃1(υ)

(
T∗C1

T∗1 C
− 1 − ln

(
T∗C1

T∗1 C

))
dυ−

γ3T1T
∗
1

B1

∫δ1

0
B̃1(υ)

(
T1

T
− 1 − ln

(
T1

T

))
dυ

−
γ3T1T

∗
1

B1

∫δ1

0
B̃1(υ)

(
T∗1 TυT

∗
υ

T∗T1T
∗
1
− 1 − ln

(
T∗1 TυT

∗
υ

T∗T1T
∗
1

))
dυ

+

(
λT∗1
B1

−
λξK
σB1

)
K+

(
ψγ1T1H1

ξH
−
γ1T1ξAψ

ξHρ

)
A.

In fact, we have

λT∗1
B1

−
λξK
σB1

=
λ

B1
(T∗1 − T∗4 ) ,

ψγ1T1H1

ξH
−
γ1T1ξAψ

ξHρ
=
γ1T1ψ

ξH

(
H1 −

ξA
ρ

)
=
γ1T1ψ

ξH
(H1 −H4) .

Therefore, Eq. (5.5) becomes

dΦ1

dt
= −ξT

(T − T1)
2

T
−
γ1T1H1

B1

∫δ1

0
B̃1(υ)

(
χ

(
T1

T

)
+ χ

(
T∗1 TυHυ
T∗T1H1

))
dυ

−
γ1T1H1

B2

∫δ2

0
B̃2(υ)χ

(
T∗υH1

T∗1H

)
dυ−

γ2T1C1

B1

∫δ1

0
B̃1(υ)

(
χ

(
T1

T

)
+ χ

(
T∗1 TυCυ
T∗T1C1

)
+ χ

(
T∗C1

T∗1 C

))
dυ

−
γ3T1T

∗
1

B1

∫δ1

0
B̃1(υ)

(
χ

(
T1

T

)
+ χ

(
T∗1 TυT

∗
υ

T∗T1T
∗
1

))
dυ+

λ

B1
(T∗1 − T∗4 )K+

γ1T1ψ

ξH
(H1 −H4)A.

If <3 6 1, then EP4 does not exist because A4 = ξH
ψ

(<3 − 1) 6 0. This ensures that

dA

dt
= ρ

(
H−

ξA
ρ

)
A 6 0 =⇒ dA

dt
= ρ (H−H4)A 6 0 for any H,A > 0.

Further, if <4 6 1, then EP4 does not exist because K4 = µ1+ξT∗
λ

(<4 − 1) 6 0. This ensures that

dK

dt
= σ

(
T∗ −

ξK
σ

)
K 6 0 =⇒ dK

dt
= σ (T∗ − T∗4 )K 6 0 for any T∗,K > 0,

which implies that H1 6 H4, and T∗1 6 T∗4 . So dΦ1
dt 6 0 for any T , T∗,C,H,K,A > 0. Moreover, dΦ1

dt = 0
when T = T1, and K = A = 0. The solutions of system (2.1)-(2.6) approach to Γ ′1, which contains elements
with T (t) = T1, K (t) = A (t) = 0, and χ = 0 such that

T∗1 TυHυ
T∗T1H1

=
T∗υH1

T∗1H
=
T∗1 TυCυ
T∗T1C1

=
T∗C1

T∗1 C
=
T∗1 TυT

∗
υ

T∗T1T
∗
1

= 1, for almost υ ∈ [0, δ∗]. (5.6)
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Because T (t) = T1, then from Eq. (5.6) we get T∗ (t) = T∗1 , H (t) = H1, and C (t) = C1 for any t. Therefore,
Γ ′1 = {EP1} and L.I.P shows that EP1 is G.A.S.

Theorem 5.3. If <1 > 1 and <3 6 1, then EP2 is G.A.S.

Proof. Construct a function Φ2(T , T∗,C,H,K,A) as:

Φ2 = T2χ

(
T

T2

)
+

1
B1
T∗2 χ

(
T∗

T∗2

)
+
γ2T2C2

ξC
χ

(
C

C2

)
+
γ1T2H2

ξH
χ

(
H

H2

)
+
λK2

σB1
χ

(
K

K2

)
+
γ1T2ψ

ξHρ
A

+
γ1T2H2

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)H(u)

T2H2

)
dudυ+

γ2T2C2

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)C(u)

T2C2

)
dudυ

+
γ3T2T

∗
2

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)T∗(u)

T2T
∗
2

)
dudυ+

βγ1T2T
∗
2

ξH

∫δ2

0
B̃2(υ)

∫t
t−υ

χ

(
T∗(u)

T∗2

)
dudυ.

We calculate dΦ2
dt as:

dΦ2

dt
=

(
1 −

T2

T

)
(α− ξTT − γ1TH− γ2TC− γ3TT

∗) +
1
B1

(
1 −

T∗2
T∗

)
×

(∫δ1

0
B̃1(υ)Tυ (γ1Hυ + γ2Cυ + γ3T

∗
υ)dυ− (µ1 + ξT∗) T

∗ − λT∗K

)

+
γ2T2

ξC

(
1 −

C2

C

)
(µ2T

∗ − ξCC) +
γ1T2

ξH

(
1 −

H2

H

)(
β

∫δ2

0
B̃2(υ)T

∗
υdυ− ξHH−ψAH

)

+
λ

σB1

(
1 −

K2

K

)
(σT∗K− ξKK) +

γ1T2ψ

ξHρ
(ρAH− ξAA)

+
γ1T2H2

B1

∫δ1

0
B̃1(υ)

(
TH

T2H2
−
TυHυ

T2H2
+ ln

(
TυHυ

TH

))
dυ

+
γ2T2C2

B1

∫δ1

0
B̃1(υ)

(
TC

T2C2
−
TυCυ

T2C2
+ ln

(
TυCυ

TC

))
dυ

+
γ3T2T

∗
2

B1

∫δ1

0
B̃1(υ)

(
TT∗

T2T
∗
2
−
TυT

∗
υ

T2T
∗
2
+ ln

(
TυT

∗
υ

TT∗

))
dυ

+
βγ1T2T

∗
2

ξH

∫δ2

0
B̃2(υ)

(
T∗

T∗2
−
T∗υ
T∗2

+ ln
(
T∗υ
T∗

))
dυ.

(5.7)

Collecting terms of Eq. (5.7), we get

dΦ2

dt
=

(
1 −

T2

T

)
(α− ξTT) + γ3T2T

∗ −
γ1

B1

∫δ1

0
B̃1(υ)

T∗2 TυHυ
T∗

dυ−
γ2

B1

∫δ1

0
B̃1(υ)

T∗2 TυCυ
T∗

dυ

−
γ3

B1

∫δ1

0
B̃1(υ)

T∗2 TυT
∗
υ

T∗
dυ−

1
B1

(
1 −

T∗2
T∗

)
(µ1 + ξT∗) T

∗ +
1
B1
λT∗2 K+

γ2T2

ξC

(
1 −

C2

C

)
µ2T
∗

+ γ2T2C2 −
γ1T2

ξH
β

∫δ2

0
B̃2(υ)

T∗υH2

H
dυ+ γ1T2H2 +

γ1T2

ξH
ψAH2 −

λ

B1
T∗K2 −

λ

σB1
ξKK

+
λ

σB1
ξKK2 −

γ1T2ψ

ξHρ
ξAA+

γ1T2H2

B1

∫δ1

0
B̃1(υ) ln

(
TυHυ

TH

)
dυ+

γ2T2C2

B1

∫δ1

0
B̃1(υ) ln

(
TυCυ

TC

)
dυ

+
γ3T2T

∗
2

B1

∫δ1

0
B̃1(υ) ln

(
TυT

∗
υ

TT∗

)
dυ+

βB2γ1T2T
∗

ξH
+
βγ1T2T

∗
2

ξH

∫δ2

0
B̃2(υ) ln

(
T∗υ
T∗

)
dυ.

Using the following conditions for equilibrium EP2:

α = ξTT2 + γ1T2H2 + γ2T2C2 + γ3T2T
∗
2 ,
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(µ1 + ξT∗) T
∗
2

B1
+
λT∗2 K2

B1
= γ1T2H2 + γ2T2C2 + γ3T2T

∗
2 ,

µ2

ξC
=
C2

T∗2
,

β

ξH
=

H2

B2T
∗
2

, T∗2 =
ξK
σ

.

Then, we obtain

dΦ2

dt
=

(
1 −

T2

T

)
(ξTT2 − ξTT) + γ1T2H2

(
1 −

T2

T

)
+ γ2T2C2

(
1 −

T2

T

)
+ γ3T2T

∗
2

(
1 −

T2

T

)
−
γ1T2H2

B1

∫δ1

0
B̃1(υ)

T∗2 TυHυ
T∗T2H2

dυ−
γ2T2C2

B1

∫δ1

0
B̃1(υ)

T∗2 TυCυ
T∗T2C2

dυ

−
γ3T2T

∗
2

B1

∫δ1

0
B̃1(υ)

T∗2 TυT
∗
υ

T∗T2T
∗
2
dυ+ γ1T2H2 + γ2T2C2 + γ3T2T

∗
2 − γ2T2C2

T∗C2

T∗2 C
+ γ2T2C2

−
γ1T2H2

B2

∫δ2

0
B̃2(υ)

T∗υH2

T∗2H
dυ+ γ1T2H2 +

(
γ1T2ψH2

ξH
−
γ1T2ψξA
ξHρ

)
A

+
γ1T2H2

B1

∫δ1

0
B̃1(υ) ln

(
TυHυ

TH

)
dυ+

γ2T2C2

B1

∫δ1

0
B̃1(υ) ln

(
TυCυ

TC

)
dυ

+
γ3T2T

∗
2

B1

∫δ1

0
B̃1(υ) ln

(
TυT

∗
υ

TT∗

)
dυ+

γ1T2H2

B2

∫δ2

0
B̃2(υ) ln

(
T∗υ
T∗

)
dυ.

Using the equalities given by Eqs. (5.2) and (5.3) in case of i = 2, we get

dΦ2

dt
= −ξT

(T − T2)
2

T
−
γ1T2H2

B1

∫δ1

0
B̃1(υ)

(
T2

T
− 1 − ln

(
T2

T

))
dυ

−
γ1T2H2

B1

∫δ1

0
B̃1(υ)

(
T∗2 TυHυ
T∗T2H2

− 1 − ln
(
T∗2 TυHυ
T∗T2H2

))
dυ

−
γ1T2H2

B2

∫δ2

0
B̃2(υ)

(
T∗υH2

T∗2H
− 1 − ln

(
T∗υH2

T∗2H

))
dυ−

γ2T2C2

B1

∫δ1

0
B̃1(υ)

(
T2

T
− 1 − ln

(
T2

T

))
dυ

−
γ2T2C2

B1

∫δ1

0
B̃1(υ)

(
T∗C2

T∗2 C
− 1 − ln

(
T∗C2

T∗2 C

))
dυ (5.8)

−
γ2T2C2

B1

∫δ1

0
B̃1(υ)

(
T∗2 TυCυ
T∗T2C2

dυ− 1 − ln
(
T∗2 TυCυ
T∗T2C2

))
dυ

−
γ3T2T

∗
2

B1

∫δ1

0
B̃1(υ)

(
T2

T
− 1 − ln

(
T2

T

))
−
γ3T2T

∗
2

B1

∫δ1

0
B̃1(υ)

(
T∗2 TυT

∗
υ

T∗T2T
∗
2
− 1 − ln

(
T∗2 TυT

∗
υ

T∗T2T
∗
2

))
dυ+

γ1T2ψξA
ξHρ

(
ρξKβB2

σξHξA
− 1
)
A.

Eq. (5.8) can be rewritten as

dΦ2

dt
= −ξT

(T − T2)
2

T
−
γ1T2H2

B1

∫δ1

0
B̃1(υ)

(
χ

(
T2

T

)
+ χ

(
T∗2 TυHυ
T∗T2H2

))
dυ

−
γ1T2H2

B2

∫δ2

0
B̃2(υ)χ

(
T∗υH2

T∗2H

)
dυ−

γ2T2C2

B1

∫δ1

0
B̃1(υ)

(
χ

(
T2

T

)
+ χ

(
T∗C2

T∗2 C

)
+ χ

(
T∗2 TυCυ
T∗T2C2

dυ

))
dυ

−
γ3T2T

∗
2

B1

∫δ1

0
B̃1(υ)

(
χ

(
T2

T

)
+ χ

(
T∗2 TυT

∗
υ

T∗T2T
∗
2

))
+
γ1T2ψξA
ξHρ

(<3 − 1)A.

If <1 > 1 and <3 6 1, then dΦ2
dt 6 0 for any T , T∗,C,H,K,A > 0. Moreover, dΦ2

dt = 0 when T = T2, and
A = 0. System’s solutions (2.1)-(2.6) approach to Γ ′2 which has elements with T (t) = T2, and χ = 0, such
that

T∗υH2

T∗2H
=
T∗2 TυHυ
T∗T2H2

=
T∗C2

T∗2 C
=
T∗2 TυCυ
T∗T2C2

=
T∗2 TυT

∗
υ

T∗T2T
∗
2

= 1, for almost υ ∈ [0, δ∗]. (5.9)
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Because of T (t) = T2, then from Eq. (5.9) we obtain H (t) = H2, T∗ (t) = T∗2 , and C (t) = C2 for any t. In
addition, from Eq. (2.2), we obtain

0 =
dT∗

dt
= B1T2 (γ1H2 + γ2C2 + γ3T

∗
2 ) − (µ1 + ξT∗) T

∗
2 − λT∗2 K, for any t.

This guarantees that K (t) = K2 for any t. Thus, Γ
′
2 = {EP2} and consequently from L.I.P we can say that

EP2 is G.A.S.

Theorem 5.4. If <2 > 1 and <4 6 1, then EP3 is G.A.S.

Proof. We define a functional Φ3(T , T∗,C,H,K,A) as:

Φ3 = T3χ

(
T

T3

)
+

1
B1
T∗3 χ

(
T∗

T∗3

)
+
γ2T3C3

ξC
χ

(
C

C3

)
+

γ1T3H3

ξH +ψA3
χ

(
H

H3

)
+

λ

σB1
K

+
γ1T3ψ

ρ (ξH +ψA3)
A3χ

(
A

A3

)
+
γ1T3H3

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)H(u)

T3H3

)
dudυ

+
γ2T3C3

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)C(u)

T3C3

)
dudυ

+
γ3T3T

∗
3

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)T∗(u)

T3T
∗
3

)
dudυ+

βγ1T3T
∗
3

ξH +ψA3

∫δ2

0
B̃2(υ)

∫t
t−υ

χ

(
T∗(u)

T∗3

)
dudυ.

We obtain dΦ3
dt as

dΦ3

dt
=

(
1 −

T3

T

)
(α− ξTT − γ1TH− γ2TC− γ3TT

∗) +
1
B1

(
1 −

T∗3
T∗

)
×

(∫δ1

0
B̃1(υ)Tυ (γ1Hυ + γ2Cυ + γ3T

∗
υ)dυ− (µ1 + ξT∗) T

∗ − λT∗K

)

+
γ2T3

ξC

(
1 −

C3

C

)
(µ2T

∗ − ξCC) +
γ1T3

ξH +ψA3

(
1 −

H3

H

)(
β

∫δ2

0
B̃2(υ)T

∗
υdυ− ξHH−ψAH

)

+
λ

σB1
(σT∗K− ξKK) +

γ1T3ψ

ρ (ξH +ψA3)

(
1 −

A3

A

)
(ρAH− ξAA)

+
γ1T3H3

B1

∫δ1

0
B̃1(υ)

(
TH

T3H3
−
TυHυ

T3H3
+ ln

(
TυHυ

TH

))
dυ

+
γ2T3C3

B1

∫δ1

0
B̃1(υ)

(
TC

T3C3
−
TυCυ

T3C3
+ ln

(
TυCυ

TC

))
dυ

+
γ3T3T

∗
3

B1

∫δ1

0
B̃1(υ)

(
TT∗

T3T
∗
3
−
TυT

∗
υ

T3T
∗
3
+ ln

(
TυT

∗
υ

TT∗

))
dυ

+
βγ1T3T

∗
3

ξH +ψA3

∫δ2

0
B̃2(υ)

(
T∗

T∗3
−
T∗υ
T∗3

+ ln
(
T∗υ
T∗

))
dυ. (5.10)

Collecting terms of Eq. (5.10), yields

dΦ3

dt
=

(
1 −

T3

T

)
(α− ξTT) + γ1T3H+ γ3T3T

∗ −
γ1

B1

∫δ1

0
B̃1(υ)

T∗3 TυHυ
T∗

dυ

−
γ2

B1

∫δ1

0
B̃1(υ)

T∗3 TυCυ
T∗

dυ−
γ3

B1

∫δ1

0
B̃1(υ)

T∗3 TυT
∗
υ

T∗
dυ−

1
B1

(
1 −

T∗3
T∗

)
× (µ1 + ξT∗) T

∗ +
1
B1
λT∗3 K+

γ2T3µ2

ξC
T∗ −

γ2T3µ2

ξC

T∗C3

C
+ γ2T3C3
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−
γ1T3

ξH +ψA3
β

∫δ2

0
B̃2(υ)

T∗υH3

H
dυ−

γ1T3

ξH +ψA3
ξHH+

γ1T3

ξH +ψA3
ξHH3

+
γ1T3

ξH +ψA3
ψAH3 −

λ

σB1
ξKK−

γ1T3ψ

ξH +ψA3
A3H−

γ1T3ψ

ρ (ξH +ψA3)
ξAA

+
γ1T3ψ

ρ (ξH +ψA3)
ξAA3 +

γ1T3H3

B1

∫δ1

0
B̃1(υ) ln

(
TυHυ

TH

)
dυ

+
γ2T3C3

B1

∫δ1

0
B̃1(υ) ln

(
TυCυ

TC

)
dυ+

γ3T3T
∗
3

B1

∫δ1

0
B̃1(υ) ln

(
TυT

∗
υ

TT∗

)
dυ

+
βB2γ1T3T

∗

ξH +ψA3
+
βγ1T3T

∗
3

ξH +ψA3

∫δ2

0
B̃2(υ) ln

(
T∗υ
T∗

)
dυ.

Using the following conditions for equilibrium EP3:

α = ξTT3 + γ1T3H3 + γ2T3C3 + γ3T3T
∗
3 ,

(µ1 + ξT∗) T
∗
3

B1
= γ1T3H3 + γ2T3C3 + γ3T3T

∗
3 ,

C3

T∗3
=
µ2

ξC
, H3 =

ξA
ρ

, ξH +ψA3 =
βB2T

∗
3

H3
.

Then, we obtain

dΦ3

dt
=

(
1 −

T3

T

)
(ξTT3 − ξTT) + γ1T3H3

(
1 −

T3

T

)
+ γ2T3C3

(
1 −

T3

T

)
+ γ3T3T

∗
3

(
1 −

T3

T

)
−
γ1T3H3

B1

∫δ1

0
B̃1(υ)

T∗3 TυHυ
T∗T3H3

dυ

−
γ2T3C3

B1

∫δ1

0
B̃1(υ)

T∗3 TυCυ
T∗T3C3

dυ−
γ3T3T

∗
3

B1

∫δ1

0
B̃1(υ)

T∗3 TυT
∗
υ

T∗T3T
∗
3
dυ

+ γ1T3H3 + γ2T3C3 + γ3T3T
∗
3 − γ2T3C3

T∗C3

T∗3 C
+ γ2T3C3

−
γ1T3H3

B2

∫δ2

0
B̃2(υ)

T∗υH3

T∗3H
dυ+ γ1T3H3 +

γ1T3H3

B1

∫δ1

0
B̃1(υ) ln

(
TυHυ

TH

)
dυ

+
γ2T3C3

B1

∫δ1

0
B̃1(υ) ln

(
TυCυ

TC

)
dυ+

γ3T3T
∗
3

B1

∫δ1

0
B̃1(υ) ln

(
TυT

∗
υ

TT∗

)
dυ

+
γ1T3H3

B2

∫δ2

0
B̃2(υ) ln

(
T∗υ
T∗

)
dυ+

(
1
B1
λT∗3 −

λξK
σB1

)
K.

Using the equalities given by Eqs. (5.2) and (5.3) in case of i = 3, we get

dΦ3

dt
= −ξT

(T − T3)
2

T
−
γ1T3H3

B1

∫δ1

0
B̃1(υ)

(
T3

T
− 1 − ln

(
T3

T

))
dυ

−
γ1T3H3

B1

∫δ1

0
B̃1(υ)

(
T∗3 TυHυ
T∗T3H3

− 1 − ln
(
T∗3 TυHυ
T∗T3H3

))
dυ

−
γ1T3H3

B2

∫δ2

0
B̃2(υ)

(
T∗υH3

T∗3H
− 1 − ln

(
T∗υH3

T∗3H

))
dυ−

γ2T3C3

B1

∫δ1

0
B̃1(υ)

(
T3

T
− 1 − ln

(
T3

T

))
dυ

−
γ2T3C3

B1

∫δ1

0
B̃1(υ)

(
T∗3 TυCυ
T∗T3C3

− 1 − ln
(
T∗3 TυCυ
T∗T3C3

))
dυ (5.11)

−
γ2T3C3

B1

∫δ1

0
B̃1(υ)

(
T∗C3

T∗3 C
− 1 − ln

(
T∗C3

T∗3 C

))
dυ−

γ3T3T
∗
3

B1

∫δ1

0
B̃1(υ)

(
T3

T
− 1 − ln

(
T3

T

))
dυ

−
γ3T3T

∗
3

B1

∫δ1

0
B̃1(υ)

(
T∗3 TυT

∗
υ

T∗T3T
∗
3
− 1 − ln

(
T∗3 TυT

∗
υ

T∗T3T
∗
3

))
dυ+

λ

B1

(
T∗3 −

ξK
σ

)
K.
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Eq. (5.11) can be rewritten as

dΦ3

dt
= −ξT

(T − T3)
2

T
−
γ1T3H3

B1

∫δ1

0
B̃1(υ)

(
χ

(
T3

T

)
+ χ

(
T∗3 TυHυ
T∗T3H3

))
dυ−

γ1T3H3

B2

∫δ2

0
B̃2(υ)χ

(
T∗υH3

T∗3H

)
dυ

−
γ2T3C3

B1

∫δ1

0
B̃1(υ)

(
χ

(
T3

T

)
+ χ

(
T∗3 TυCυ
T∗T3C3

)
+ χ

(
T∗C3

T∗3 C

))
dυ

−
γ3T3T

∗
3

B1

∫δ1

0
B̃1(υ)

(
χ

(
T3

T

)
+ χ

(
T∗3 TυT

∗
υ

T∗T3T
∗
3

))
dυ+

λ

B1
(T∗3 − T∗4 )K.

Hence, if <4 6 1, then EP4 does not exist since K4 = µ1+ξT∗
λ

(<4 − 1) 6 0. This ensures that

dK

dt
= σ

(
T∗ −

ξK
σ

)
K 6 0 =⇒ dK

dt
= σ (T∗ − T∗4 )K 6 0 for any T∗,K > 0,

which implies that T∗3 6 T∗4 . We have dΦ3
dt 6 0 for any T , T∗,C,H,K,A > 0. Moreover, dΦ3

dt = 0, when
T = T3, and K = 0. System’s solutions approach to Γ ′3, where T (t) = T3 and χ = 0, such that

T∗3 TυHυ
T∗T3H3

=
T∗υH3

T∗3H
=
T∗3 TυCυ
T∗T3C3

=
T∗C3

T∗3 C
=
T∗3 TυT

∗
υ

T∗T3T
∗
3

= 1, for almost υ ∈ [0, δ∗]. (5.12)

Because of T (t) = T3, then from Eq. (5.12) we get T∗ (t) = T∗3 , C (t) = C3, and H (t) = H3, for any t. In
addition, Eq. (2.4) gives

0 =
dH

dt
= βB2T

∗
3 − ξHH3 −ψA (t)H3.

This yields A (t) = A3, for any t. Hence, Γ
′
3 = {EP3} and from L.I.P we show that EP3 is G.A.S.

Theorem 5.5. If <3 > 1 and <4 > 1, then EP4 is G.A.S.

Proof. Define Φ4(T , T∗,C,H,K,A) as:

Φ4 = T4χ

(
T

T4

)
+

1
B1
T∗4 χ

(
T∗

T∗4

)
+
γ2T4C4

ξC
χ

(
C

C4

)
+

γ1T4H4

ξH +ψA4
χ

(
H

H4

)
+

λ

σB1
K4χ

(
K

K4

)
+

γ1T4ψ

ρ (ξH +ψA4)
A4χ

(
A

A4

)
+
γ1T4H4

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)H(u)

T4H4

)
dudυ

+
γ2T4C4

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)C(u)

T4C4

)
dudυ+

γ3T4T
∗
4

B1

∫δ1

0
B̃1(υ)

∫t
t−υ

χ

(
T(u)T∗(u)

T4T
∗
4

)
dudυ

+
βγ1T4T

∗
4

ξH +ψA4

∫δ2

0
B̃2(υ)

∫t
t−υ

χ

(
T∗(u)

T∗4

)
dudυ.

Calculating dΦ4
dt as:

dΦ4

dt
=

(
1 −

T4

T

)
(α− ξTT − γ1TH− γ2TC− γ3TT

∗) +
1
B1

(
1 −

T∗4
T∗

)
×

(∫δ1

0
B̃1(υ)Tυ (γ1Hυ + γ2Cυ + γ3T

∗
υ)dυ− (µ1 + ξT∗) T

∗ − λT∗K

)

+
γ2T4

ξC

(
1 −

C4

C

)
(µ2T

∗ − ξCC) +
γ1T4

ξH +ψA4

(
1 −

H4

H

)(
β

∫δ2

0
B̃2(υ)T

∗
υdυ− ξHH−ψAH

)

+
λ

σB1

(
1 −

K4

K

)
(σT∗K− ξKK) +

γ1T4ψ

ρ (ξH +ψA4)

(
1 −

A4

A

)
(ρAH− ξAA) (5.13)
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+
γ1T4H4

B1

∫δ1

0
B̃1(υ)

(
TH

T4H4
−
TυHυ

T4H4
+ ln

(
TυHυ

TH

))
dυ

+
γ2T4C4

B1

∫δ1

0
B̃1(υ)

(
TC

T4C4
−
TυCυ

T4C4
+ ln

(
TυCυ

TC

))
dυ

+
γ3T4T

∗
4

B1

∫δ1

0
B̃1(υ)

(
TT∗

T4T
∗
4
−
TυT

∗
υ

T4T
∗
4
+ ln

(
TυT

∗
υ

TT∗

))
dυ

+
βγ1T4T

∗
4

ξH +ψA4

∫δ2

0
B̃2(υ)

(
T∗

T∗4
−
T∗υ
T∗4

+ ln
(
T∗υ
T∗

))
dυ,

and collecting terms of Eq. (5.13), we get

dΦ4

dt
=

(
1 −

T4

T

)
(α− ξTT) + γ1T4H+ γ3T4T

∗ −
γ1

B1

∫δ1

0
B̃1(υ)

T∗4 TυHυ
T∗

dυ−
γ2

B1

∫δ1

0
B̃1(υ)

T∗4 TυCυ
T∗

dυ

−
γ3

B1

∫δ1

0
B̃1(υ)

T∗4 TυT
∗
υ

T∗
dυ−

1
B1

(
1 −

T∗4
T∗

)
(µ1 + ξT∗) T

∗ +
λ

B1
T∗4 K+

γ2T4

ξC
µ2T
∗

−
γ2T4µ2

ξC

T∗C4

C
+ γ2T4C4 −

γ1T4

ξH +ψA4
β

∫δ2

0
B̃2(υ)

T∗υH4

H
dυ

−
γ1T4

ξH +ψA4
ξHH+

γ1T4

ξH +ψA4
ξHH4 +

γ1T4

ξH +ψA4
ψAH4 −

λ

B1
T∗K4

−
λ

σB1
ξKK+

λ

σB1
ξKK4 −

γ1T4ψ

ξH +ψA4
A4H−

γ1T4ψ

ρ (ξH +ψA4)
ξAA

+
γ1T4ψ

ρ (ξH +ψA4)
ξAA4 +

γ1T4H4

B1

∫δ1

0
B̃1(υ) ln

(
TυHυ

TH

)
dυ+

γ2T4C4

B1

∫δ1

0
B̃1(υ) ln

(
TυCυ

TC

)
dυ

+
γ3T4T

∗
4

B1

∫δ1

0
B̃1(υ) ln

(
TυT

∗
υ

TT∗

)
dυ+

βB2γ1T4T
∗

ξH +ψA4
+
βγ1T4T

∗
4

ξH +ψA4

∫δ2

0
B̃2(υ) ln

(
T∗υ
T∗

)
dυ.

Using the following conditions for equilibrium EP4:

α = ξTT4 + γ1T4H4 + γ2T4C4 + γ3T4T
∗
4 ,

(µ1 + ξT∗) T
∗
4

B1
+
λT∗4 K4

B1
= γ1T4H4 + γ2T4C4 + γ3T4T

∗
4 ,

µ2

ξC
=
C4

T∗4
, H4 =

ξA
ρ

, ξH +ψA4 =
βB2T

∗
4

H4
, T∗4 =

ξK
σ

,

then, we obtain

dΦ4

dt
=

(
1 −

T4

T

)
(ξTT4 − ξTT) + γ1T4H4

(
1 −

T4

T

)
+ γ2T4C4

(
1 −

T4

T

)
+ γ3T4T

∗
4

(
1 −

T4

T

)
−
γ1T4H4

B1

∫δ1

0
B̃1(υ)

T∗4 TυHυ
T∗T4H4

dυ

−
γ2T4C4

B1

∫δ1

0
B̃1(υ)

T∗4 TυCυ
T∗T4C4

dυ−
γ3T4T

∗
4

B1

∫δ1

0
B̃1(υ)

T∗4 TυT
∗
υ

T∗T4T
∗
4
dυ

+ γ1T4H4 + γ2T4C4 + γ3T4T
∗
4 − γ2T4C4

T∗C4

T∗4 C
+ γ2T4C4 −

γ1T4H4

B2

∫δ2

0
B̃2(υ)

T∗υH4

T∗4H
dυ+ γ1T4H4

+
γ1T4H4

B1

∫δ1

0
B̃1(υ) ln

(
TυHυ

TH

)
dυ+

γ2T4C4

B1

∫δ1

0
B̃1(υ) ln

(
TυCυ

TC

)
dυ

+
γ3T4T

∗
4

B1

∫δ1

0
B̃1(υ) ln

(
TυT

∗
υ

TT∗

)
dυ+

γ1T4H4

B2

∫δ2

0
B̃2(υ) ln

(
T∗υ
T∗

)
dυ.
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Using the equalities given by Eqs. (5.2) and (5.3) in case of i = 4, we get

dΦ4

dt
= −ξT

(T − T4)
2

T
−
γ1T4H4

B1

∫δ1

0
B̃1(υ)

(
T4

T
− 1 − ln

(
T4

T

))
dυ

−
γ1T4H4

B1

∫δ1

0
B̃1(υ)

(
T∗4 TυHυ
T∗T4H4

− 1 − ln
(
T∗4 TυHυ
T∗T4H4

))
dυ

−
γ1T4H4

B2

∫δ2

0
B̃2(υ)

(
T∗υH4

T∗4H
− 1 − ln

(
T∗υH4

T∗4H

))
dυ−

γ2T4C4

B1

∫δ1

0
B̃1(υ)

(
T4

T
− 1 − ln

(
T4

T

))
dυ

−
γ2T4C4

B1

∫δ1

0
B̃1(υ)

(
T∗4 TυCυ
T∗T4C4

− 1 − ln
(
T∗4 TυCυ
T∗T4C4

))
dυ (5.14)

−
γ2T4C4

B1

∫δ1

0
B̃1(υ)

(
T∗C4

T∗4 C
− 1 − ln

(
T∗C4

T∗4 C

))
dυ−

γ3T4T
∗
4

B1

∫δ1

0
B̃1(υ)

(
T4

T
− 1 − ln

(
T4

T

))
dυ

−
γ3T4T

∗
4

B1

∫δ1

0
B̃1(υ)

(
T∗4 TυT

∗
υ

T∗T4T
∗
4
− 1 − ln

(
T∗4 TυT

∗
υ

T∗T4T
∗
4

))
dυ.

Eq. (5.14) can be rewritten as

dΦ4

dt
= −ξT

(T − T4)
2

T
−
γ1T4H4

B1

∫δ1

0
B̃1(υ)

(
χ

(
T4

T

)
+ χ

(
T∗4 TυHυ
T∗T4H4

))
dυ−

γ1T4H4

B2

∫δ2

0
B̃2(υ)χ

(
T∗υH4

T∗4H

)
dυ

−
γ2T4C4

B1

∫δ1

0
B̃1(υ)

(
χ

(
T4

T

)
+ χ

(
T∗4 TυCυ
T∗T4C4

)
+ χ

(
T∗C4

T∗4 C

))
dυ

−
γ3T4T

∗
4

B1

∫δ1

0
B̃1(υ)

(
χ

(
T4

T

)
+ χ

(
T∗4 TυT

∗
υ

T∗T4T
∗
4

))
dυ.

If <3 > 1 and <4 > 1, then dΦ4
dt 6 0 for any T , T∗,C,H,K,A > 0. Similarly, one can show that dΦ4

dt = 0,
when T = T4, T∗ = T∗4 , C = C4, and H = H4. System’s solutions approach to Γ ′4, where T (t) = T4,
T∗ (t) = T∗4 , C (t) = C4, and H (t) = H4 ([21]). From Eqs. (2.2) and (2.3), we have

0 =
dT∗

dt
= B1T4 (γ1H4 + γ2C4 + γ3T

∗
4 ) − (µ1 + ξT∗) T

∗
4 − λT∗4 K, 0 =

dH

dt
= βB2T

∗
4 − ξHH4 −ψA (t)H4.

This yields that K (t) = K4 and A (t) = A4, for any t. Hence, Γ ′4 = {EP4} and L.I.P shows that EP4 is G.A.S
([21]).

Table 1 provides an overview of the five equilibrium points’ global stability criteria and existence.

Table 1: Sufficient conditions of existence and global stability of equilibria.

Equilibrium point Existence conditions Global stability conditions
EP0 = (T0, 0, 0, 0, 0, 0) None <0 6 1
EP1 = (T1, T∗1 ,C1,H1, 0, 0) <0 > 1 <0 > 1, <3 6 1, and <4 6 1
EP2 = (T2, T∗2 ,C2,H2,K2, 0) <1 > 1 <1 > 1 and <3 6 1
EP3 = (T3, T∗3 ,C3,H3, 0,A3) <2 > 1 <2 > 1 and <4 6 1
EP4 = (T4, T∗4 ,C4,H4,K4,A4) <3 > 1 and <4 > 1 <3 > 1 and <4 > 1
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6. Effect of cellular infection and inflammatory cytokines on the dynamics of HIV-1

This section examines the impact of cellular infection and inflammatory cytokines on the dynamic
characteristics of HIV-1. We examine the application of three different forms of medication therapy for:
(i) preventing infection through a viral infection pathway [40]; (ii) preventing pyroptotic cell death [43, 52];
and (iii) preventing infection through a cellular infection pathway [54]. Let ωi ∈ [0, 1], i = 1, 2, 3 be the
efficacies of the above drug therapies, respectively. Model (2.1)-(2.6) under the effect of these treatments
becomes:

dT

dt
= α− ξTT − (1 −ω1)γ1TH− (1 −ω2)γ2TC− (1 −ω3)γ3TT

∗, (6.1)

dT∗

dt
=

∫δ1

0
B1(υ)e

−κ1υTυ ((1 −ω1)γ1Hυ + (1 −ω2)γ2Cυ + (1 −ω3)γ3T
∗
υ)dυ− (µ1 + ξT∗) T

∗ − λT∗K, (6.2)

dC

dt
= µ2T

∗ − ξCC, (6.3)

dH

dt
= β

∫δ2

0
B2(υ)e

−κ2υT∗υdυ− ξHH−ψAH, (6.4)

dK

dt
= σT∗K− ξKK, (6.5)

dA

dt
= ρAH− ξAA. (6.6)

We calculate the basic reproduction number for model (6.1)-(6.6) as:

<0 =
(1 −ω1)T0γ1βB1B2

ξH (µ1 + ξT∗)
+

(1 −ω2)T0γ2µ2B1

ξC (µ1 + ξT∗)
+

(1 −ω3)T0γ3B1

µ1 + ξT∗
.

Let us assume that ω = ω1 = ω2 = ω3, then <0 becomes

<ω0 = (1 −ω)

[
T0γ1βB1B2

ξH (µ1 + ξT∗)
+

T0γ2µ2B1

ξC (µ1 + ξT∗)
+
T0γ3B1

µ1 + ξT∗

]
= (1 −ω)<0.

The drug efficacy ω that makes <ω0 6 1 and stabilizes system (6.1)-(6.6) around EP0 is calculated as:

1 > ω > ω̃critical = max
{

0, 1 −
1
<0

}
. (6.7)

Let us first disregard the cellular infection in model (6.1)-(6.6), then we get

dT

dt
= α− ξTT − (1 −ω)γ1TH− (1 −ω)γ2TC, (6.8)

dT∗

dt
=

∫δ1

0
B1(υ)e

−κ1υTυ ((1 −ω)γ1Hυ + (1 −ω)γ2Cυ)dυ− (µ1 + ξT∗) T
∗ − λT∗K, (6.9)

dC

dt
= µ2T

∗ − ξCC, (6.10)

dH

dt
= β

∫δ2

0
B2(υ)e

−κ2υT∗υdυ− ξHH−ψAH, (6.11)

dK

dt
= σT∗K− ξKK, (6.12)

dA

dt
= ρAH− ξAA. (6.13)

The basic reproduction number of model (6.8)-(6.13) is calculated as:

<̂ω0 = (1 −ω)

[
T0γ1βB1B2

ξH (µ1 + ξT∗)
+

T0γ2µ2B1

ξC (µ1 + ξT∗)

]
= (1 −ω)<̂0.
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The drug efficacy ω that makes <̂ω0 6 1 and stabilizes system (6.8)-(6.13) around EP0 is determined as:

1 > ω > ω̂critical = max
{

0, 1 −
1
<̂0

}
. (6.14)

Evidently, <̂0 < <0, therefore an HIV-1 model that downplays the significance of cellular infection will
underestimate its basic reproduction number. We obtain that ω̂critical 6 ω̃critical by comparing (6.7) and
(6.14). Consequently, using medications with an efficacy of ω such that ω̂critical 6 ω < ω̃critical ensures
<̂ω0 6 1 and the global stability of EP0 of system (6.8)-(6.13). On the other hand this makes <ω0 > 1
and then EP0 of system (6.1)-(6.6) will be unstable. Because of this, the basic reproduction number <̂ω0
determines a treatment quantity that is less than what is required to completely eliminate the virus.

Secondly, if we neglect the inflammatory cytokines, then model (6.1)-(6.6) becomes:

dT

dt
= α− ξTT − (1 −ω)γ1TH− (1 −ω)γ3TT

∗, (6.15)

dT∗

dt
=

∫δ1

0
B1(υ)e

−κ1υTυ ((1 −ω)γ1Hυ + (1 −ω)γ3T
∗
υ)dυ− ξT∗T

∗ − λT∗K, (6.16)

dH

dt
= β

∫δ2

0
B2(υ)e

−κ2υT∗υdυ− ξHH−ψAH, (6.17)

dK

dt
= σT∗K− ξKK, (6.18)

dA

dt
= ρAH− ξAA. (6.19)

The basic reproduction number for model (6.15)-(6.19) is given by:

<̄ω0 = (1 −ω)

[
T0γ1βB1B2

ξHξT∗
+
T0γ3B1

ξT∗

]
= (1 −ω)<̄0.

Similar to the above discussion, we find that the basic reproduction number <̄ω0 determines a treatment
quantity that is less than what is required to completely eliminate the virus. Therefore, compared to the
models given in [9, 22, 51], our suggested model is more pertinent in explaining the dynamics of HIV-1.

7. Numerical simulations

In this section, we use a particular version of the probability distribution to do some numerical simu-
lations for the model (2.1)-(2.6). Let υi ∈ [0, δi] , i = 1, 2 be constants and consider

Bi(υ) = ϕ(υ− υi),

where ϕ(.) is the Dirac delta function. In addition, we let δi tends to∞ to obtain the following properties:∫∞
0
Bi(υ)dυ = 1, Bi =

∫∞
0
ϕ(υ− υi) e

−κiυdυ = e−κiυi , i = 1, 2.

Then, model (2.1)-(2.6) becomes:

dT

dt
= α− ξTT − γ1TH− γ2TC− γ3TT

∗, (7.1)

dT∗

dt
= e−κ1υ1

(
γ1Tυ1Hυ1 + γ2Tυ1Cυ1 + γ3Tυ1T

∗
υ1

)
− (µ1 + ξT∗) T

∗ − λT∗K, (7.2)

dC

dt
= µ2T

∗ − ξCC, (7.3)
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dH

dt
= βe−κ2υ2T∗υ2

− ξHH−ψAH, (7.4)

dK

dt
= σT∗K− ξKK, (7.5)

dA

dt
= ρAH− ξAA, (7.6)

where Uυi = U (t− υi), for U ∈ {T , T∗,C,H}, i = 1, 2. The threshold parameters for this model become as
below:

<0 =
T0e

−κ1υ1 (γ1βξCe
−κ2υ2 + γ2ξHµ2 + γ3ξCξH)

ξCξH (µ1 + ξT∗)
,

<1 =
ασe−κ1υ1 (γ1βξCe

−κ2υ2 + γ2ξHµ2 + γ3ξHξC)

(µ1 + ξT∗) (ξTξHξCσ+ γ1βξCξKe−κ2υ2 + γ2ξHξKµ2 + γ3ξHξCξK)
,

<2 =
βξCρe

−κ2υ2C3

ξHξAµ2
,

<3 =
ξKρβe

−κ2υ2

ξHξAσ
,

<4 =
ασe−κ1υ1 (γ1ξCξAσ+ ργ2ξKµ2 + ργ3ξCξK)

ξK (µ1 + ξT∗) (ξTξCρσ+ γ1ξCξAσ+ γ2ρξKµ2 + γ3ρξCξK)
.

We fix the values of some parameters (see Table 2) and vary the others, then solving the system of delay
differential equations system (DDEs) (7.1)-(7.6) numerically to get the results in the next subsections. The
dde23 solver in MATLAB is used to solve the system of DDEs.

Table 2: Model parameters.

Parameter Value Source Parameter Value Source Parameter Value Source
α 10 [30, 38, 41] λ 0.001 [65] ψ 0.8 [1]
ξT 0.01 [3, 34] ξC 0.1 [65] ξK 0.32 [65]
µ1 0.1 [65] β 5 [16, 18] ξA 0.1 [1]
ξT∗ 0.75 [65] ξH 0.3 [64] κ1 0.2 [17]
κ2 0.1 [18] µ2 0.1 [9]

7.1. Analyzing the sensitivity of <0

Identifying the crucial parameters influencing infection mitigation is a foundational task achieved
through sensitivity analysis. Particularly, forward sensitivity analysis plays a vital role in disease model-
ing, providing valuable insights into the factors shaping disease dynamics. A key strategy in curtailing
HIV-1 infection is reducing the basic reproduction number <0 below unity. Therefore, it is essential to
investigate the relationship between the model parameters and the basic reproduction number.

In this section, we employ the local sensitivity analysis method to delineate the sensitivity of <0 to the
associated parameters in the proposed model (7.1)-(7.6). This analytical technique has gained considerable
attention from researchers for its relevance in understanding disease infection [33].
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In our examination, we present the normalized forward sensitivity index (Λε) concerning <0, a crucial
virological measure. This sensitivity index gauges the influence of a parameter ε on <0 and is expressed
as follows:

Λε =
ε

<0

∂<0

∂ε
. (7.7)

Using relation (7.7) to all parameters of <0, we get:



Λα = 1, ΛξT = −1, Λγ1 = Λβ = −ΛξH =
γ1ξCe

−κ2υ2β

γ1βξCe−κ2υ2 + γ2ξHµ2 + γ3ξCξH
,

Λγ2 = Λµ2 = −ΛξC =
γ2ξHµ2

γ1βξCe−κ2υ2 + γ2ξHµ2 + γ3ξCξH
,

Λγ3 =
γ3ξCξH

γ1βξCe−κ2υ2 + γ2ξHµ2 + γ3ξCξH
, Λκ1 = Λυ1 = −κ1υ1, Λµ1 = −

µ1

µ1 + ξT∗
,

ΛξT∗ = −
ξT∗

µ1 + ξT∗
, Λκ2 = Λυ2 = −κ2υ2Λγ1 , Λλ = Λψ = Λσ = ΛξK = Λρ = ΛξA = 0.

(7.8)

As shown by the equations (7.8), the parameters, α,γ1,γ2,γ3,µ2, and β, exhibit a positive influence on the
basic reproduction number <0. This suggests that changes in these variables cause commensurate adjust-
ments in <0, either fostering its increase or decrease. Conversely, the parameters ξT , κ1,υ1,µ1, ξT∗ , ξC, κ2,
υ2, and ξH exert a negative influence on <0, suggesting that a rise in their values causes <0 to fall. The
parameters λ,ψ,σ, ξK, ρ, and ξA do not affect the value of <0. It is noteworthy that, time delay and <0
have an inverse association, meaning that while time delay grows, <0 usually lowers, indicating a lower
probability of infection. It should be noted that the value of <0 is heavily influenced by the time delay.
Extended periods of time are linked to lower <0 values and a decrease in the production of both ma-
ture viruses and infected cells. Understanding this relationship is crucial for devising effective treatment
strategies. These findings provide valuable guidance for understanding the factors that drive a decreased
risk of disease during HIV-1 infection and for formulating effective strategies to control the disease within
the host.

In order to offer a numerical simulation, we assign the value υ1 = 1,υ2 = 2,γ1 = 0.0001, γ2 = 0.001,
and γ3 = 0.001. Figure 1 shows the sensitivity indices for the different model parameters graphi-
cally. Moreover, a summary is presented in Table 3. It is evident that a 10% increase or decrease in
the values of α,γ1,γ2,γ3,µ2, and β results in a corresponding 10%, 4.056%, 2.976%, 2.976%, 2.976 and
4.056% and 4.056% increase or decrease in <0, respectively. In contrast, a 10% increase in the values of
ξT , κ1,υ1,µ1, ξT∗ , ξC, κ2,υ2, and ξH leads to a reduction in <0 by 10%, 2%, 2%,1.18%, 8.82%, 2.97%, 0.81%,
and 0.81%, respectively.

Table 3: Indexes of sensitivity for <0.

Parameter Sensitivity index Parameter Sensitivity index
α 1 µ1 −0.118
ξT −1 ξT∗ −0.882
γ1 0.406 µ2 0.297
γ2 0.297 ξC −0.297
γ3 0.297 β 0.406
κ1 −0.2 κ2 −0.081
υ1 −0.2 ξH −0.406
υ2 −0.081



A. A. Raezah, et al., J. Math. Computer Sci., 35 (2024), 52–81 74

Figure 1: Forward sensitivity analysis for <0.

7.2. Stability of the equilibria
We set the delay parameters to υ1 = 1 and υ2 = 2 in this subsection. We use numerical simulation

to show our results on global stability from Theorems 5.1 through 5.5. To achieve this, we demonstrate
that only one of the system’s five equilibria will be reached by the system’s solution initiating from any
feasible state (any stage of infection). As a result, we select three distinct starting conditions:

I.1: (T(κ), T∗(κ),C(κ),H(κ),K(κ),A(κ)) = (500, 10, 12, 25, 400, 4);
I.2: (T(κ), T∗(κ),C(κ),H(κ),K(κ),A(κ)) = (300, 8, 9, 15, 300, 3);
I.3: (T(κ), T∗(κ),C(κ),H(κ),K(κ),A(κ)) = (100, 5, 3, 5, 100, 1), κ ∈ [−2, 0].

Choosing values for γ1, γ2, γ3, σ, and ρ under the previously mentioned initials yields the following
situations.
Situation 1 (Stability of EP0): γ1 = 0.00001, γ2 = 0.0001, γ3 = 0.0001, σ = 0.001, and ρ = 0.001. These
values give <0 = 0.32 6 1 with the fact that EP0 = (1000, 0, 0, 0, 0, 0) is G.A.S as shown in Figure 2. The
study’s findings in Theorem 5.1 are consistent with the numerical results displayed in Figure 2. This
suggests that HIV-1 particles will eventually be eliminated.
Situation 2 (Stability of EP1): γ1 = 0.0001, γ2 = 0.001, γ3 = 0.001, σ = 0.001, and ρ = 0.00001. These
choice give <0 = 3.24 > 1, <3 = 0.44 6 1, and <4 = 0.03 6 1. Further, they ensure the existence of the
equilibrium point EP1 = (308.57, 6.66, 6.66, 90.88, 0, 0). Figure 3 illustrates the global stability of EP1 which
was proved in Theorem 5.2. This situation indicates that the infection will become endemic, however, the
immune cells are not stimulated to destroy infected cells and viruses.
Situation 3 (Stability of EP2): γ1 = 0.0001, γ2 = 0.001, γ3 = 0.001, σ = 0.057, and ρ = 0.0002. This gives
<1 = 1.12 > 1 and <3 = 0.15 6 1. Then, the equilibrium point EP2 = (346.16, 5.61, 5.61, 76.61, 103.54, 0) is
G.A.S. Figure 4 shows that the solutions of model (7.1)-(7.6) with the different initials I.1-I.3 lead to the
equilibrium EP2. This finding aligns with Theorem 5.3’s conclusions, which indicates that the infection
will become endemic in the availability of CTL immunity, however, the antibodies are not stimulated to
destroy viruses.
Situation 4 (Stability of EP3): γ1 = 0.0001, γ2 = 0.001, γ3 = 0.001, σ = 0.001, and ρ = 0.01. Then we get
<2 = 6.89 > 1 and <4 = 0.03 6 1. Therefore, the equilibrium point EP3 = (472.58, 5.08, 5.08, 10, 0, 2.22) is
G.A.S (see Figure 5). Figure 5 illustrates how the concentrations of all compartments gradually converge
to EP3 with time, beginning from any initial. This finding aligns with Theorem 5.4’s conclusions, which
indicates that the infection will become endemic in the availability of antibody immunity, however, the
CTLs are not stimulated to destroy infected cells.
Situation 5 (Stability of EP4): γ1 = 0.0013, γ2 = 0.002, γ3 = 0.002, σ = 0.057, and ρ = 0.013. This gives
<3 = 9.96 > 1 and <4 = 1.31 > 1. Then, the equilibrium point EP4 = (235.54, 5.61, 5.61, 7.69, 264.87, 3.36) is
G.A.S (see Figure 6). Figure 6 illustrates how, over time, the concentrations of all compartments eventually
trend to EP4 from any initial values. Consequently, we sum up a consistency between this observation and
the outcomes of Theorem 5.5, which indicates that the infection will become endemic in the availability
of both CTL and antibody immunities.
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7.3. Impact of time delays on HIV-1 dynamics

This section demonstrates the impact of time delays on the system’s solutions. We fix the values
γ1 = 0.0013, γ2 = 0.002, γ3 = 0.002, σ = 0.057, and ρ = 0.013. Let us take υ = υ1 = υ2, as a result <0
becomes

<0 =
T0e

−κ1υ (γ1βξCe
−κ2υ + γ2ξHµ2 + γ3ξCξH)

ξCξH (µ1 + ξT∗)
.

It is observed that <0 decreases as υ increases. As a result, the system’s equilibrium points’ stability will
be changed as the delay parameter υ is changed. The stability of the uninfected equilibrium point EP0 is
of importance to us, thus, we calculate the critical value of the delay parameter υcritical so that

<0 =
T0e

−κ1υ
critical

(
γ1βξCe

−κ2υ
critical

+ γ2ξHµ2 + γ3ξCξH

)
ξCξH (µ1 + ξT∗)

= 1. (7.9)

By solving Eq. (7.9) numerically we get υcritical = 12.445. Then we have if υ > 12.445, then <0 6 1 and EP0
is G.A.S, resulting the eradication of the virus. We now demonstrate how the delay parameter υ affects
the system’s solutions. We consider the initial condition:

I.4: (T(κ), T∗(κ),C(κ),H(κ),K(κ),A(κ)) = (700, 15, 4, 20, 500, 3), where κ ∈ [−υ, 0].

The impact of υ on the system’s solutions is seen in Figure 7. We find that when υ is raised, the proportion
of uninfected CD4+T cells rises and the proportion of other compartments falls.

Time delays are beneficial to the HIV-1 infection process from a biological perspective, helping to
eradicate the virus. In summary, long enough lags cause HIV-1 to evolve more slowly, stabilize, and
maybe even stop altogether. This might indicate that new HIV-1 medications will be developed based on
the delay time extension.
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Figure 2: The equilibrium point EP0 = (1000, 0, 0, 0, 0, 0) is G.A.S whenever <0 6 1 (Situation 1).
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Figure 3: The equilibrium point EP1 = (308.57, 6.66, 6.66, 90.88, 0, 0) is G.A.S whenever <0 > 1, <3 6 1,
and <4 6 1 (Situation 2).
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Figure 4: The equilibrium point EP2 = (346.16, 5.61, 5.61, 76.61, 103.54, 0) is G.A.S whenever <1 > 1 and
<3 6 1 (Situation 3) .
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Figure 5: The equilibrium point EP3 = (472.58, 5.08, 5.08, 10, 0, 2.22) is G.A.S whenever <2 > 1 and <4 6 1
(Situation 4).
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Figure 6: The equilibrium point EP4 = (235.53, 5.61, 5.61, 7.69, 264.86, 3.35) is G.A.S. whenever <3 > 1 and
<4 > 1 (Situation 5).
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Figure 7: Impact of the delay parameter υ on the model’s solutions.

8. Conclusion

In this study, we proposed a novel mathematical model to explain the roles of inflammatory cytokines
and adaptive immunity (antibody and CTL) in HIV-1 infection. The model has taken into account both
viral and cellular infection modes. In addition, the model included two kinds of distributed-time delays
during infection processes and viral production. First, we demonstrated nonnegativity and bounded-
ness, which are the key characteristics of the solutions. Next, we proved that the model admits five
equilibria, denoted as EPi, for i = 0, 1, . . . , 4. Five threshold parameters, <i, i = 0, 1, . . . , 4, have been
determined. These threshold parameters decide whether the model’s equilibria exist and are globally
stable. We demonstrated the global asymptotic stability for every equilibrium point using the Lyapunov
approach. We used a numerical method to solve the model, and then we displayed the findings graphi-
cally. We found a correlation between the theoretical and numerical results. To determine how the basic
reproduction number <0 is impacted by the model’s parameter values, sensitivity analysis was carried
out. The impact of inflammatory cytokines, time delays, and cellular infection on the dynamics of HIV-1
were deliberated. Cellular infection and inflammatory cytokines both contribute to the number <0; there-
fore, if any of them are neglected, <0 will be underestimated. We revised our model to incorporate the
impact of three categories of antiretroviral medication treatments. Each antiretroviral medication has a
crucial efficacy that we have identified; if treatment effectiveness exceeds this threshold, HIV-1 will be
completely eliminated. Additionally, we showed that if cellular infection and/or inflammatory cytokines
are disregarded, the projected treatment effectiveness would be less than what is required to completely
eradicate the virus. Furthermore, we demonstrated that the elimination of viruses is impacted by the
length of the time delay in the same way as antiretroviral treatment. Additionally, it has been demon-
strated that extending time delays can effectively lower <0 and halt HIV-1 replication. This might mean
that novel therapies are being developed, which would cause the delay to increase. Our results indicate
that inflammatory cytokines, time delay, and cellular infection are essential elements of the HIV-1 model
that cannot be ignored.

Our study’s main flaw is that, we were unable to use actual data to determine the values of the model’s
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parameters. This is because real-world data on HIV-1 infection are still few. Our model can be extended
by including (i) viral mutations [2]; (ii) mobility of cells and viruses [14]; (iii) immunologic memory by
formulation the model by fractional differential equations [4]; (iv) age-structured [31]; and (v) stochastic
interactions [46, 63] .
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