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Abstract
The article introduces a novel class of polynomials, HQ

[∆h]
m (q1,q2,q3,q4,q5;h), termed ∆h Hermite-based Appell polyno-

mials, utilizing the monomiality principle. These polynomials exhibit close connections with ∆h Hermite-based Bernoulli, Euler,
and Genocchi polynomials, elucidating their specific properties and explicit forms. Moreover, the research establishes generating
relations for these polynomials, facilitating profound insights applicable across diverse domains such as mathematics, physics,
and engineering sciences.
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1. Introduction

The Appell polynomial sequences, which constitute a prominent class of polynomial sequences, are
employed in various fields such as applied mathematics, theoretical physics, and approximation theory,
among others. These polynomials are encountered in numerous problems within these disciplines. More-
over, Appell polynomials satisfy all the axioms of an Abelian group when subjected to the composition
operation.

In the eighteenth century, Appell introduced a series of polynomials denoted as Qm(u), as described
in [2]. These polynomials exhibit a specific relationship:

d

du
Qm(u) = m Qm−1(u), m ∈N0,
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and the relation of generating type:

(Qt) exp (ut) =

∞∑
k=0

Qk(u)
tk

k!
, (1.1)

where Q(t) is expressed as:

Q(t) =

∞∑
k=0

Qk
tk

k!
, Q0 6= 0.

In recent years, there has been significant progress and advancement in the generalization of mathe-
matical physics, particularly in the field of special functions. This new development has laid the analytical
foundation for a large number of precisely solvable problems in mathematical physics and engineer-
ing. These advancements have found diverse applications across various domains. References such as
[13, 14, 16, 18, 20, 21, 23, 25–27, 29, 30] exemplify the wide-ranging applications of these developments.
The introduction of special functions with multiple indices and variables represents a significant break-
through in the theory of generalized special functions. These functions have been recognized for their
importance and relevance in both practical applications and pure mathematics. The demand for polyno-
mials with multiple indices and multiple variables has been recognized as a means to address challenges
arising in diverse mathematical disciplines, ranging from the theory of partial differential equations to
abstract group theory. Hermite, the mathematician, introduced the concept of multiple-index, multiple-
variable Hermite polynomials. These Hermite polynomials [11] have extensive applications, not only in
physics, such as in numerical analysis for Gaussian quadrature and in the study of quantum harmonic
oscillators and Schrödinger’s equation.

Several authors have shown a growing interest in the exploration and investigation of ∆h special
polynomials, as evidenced by works such as [4, 6, 9, 15, 19]. Recently, Shahid Wani et al. have made
significant contributions by introducing and studying various doped polynomials of a special nature.
They have derived numerous characteristics and properties of these polynomials, which hold significance
from an engineering perspective. Notable examples include [5, 17, 22, 28]. These properties encompass
a wide range of aspects, including summation formulas, determinant forms, approximation properties,
explicit, and implicit formulas, as well as generating expressions.

Consider a function g that maps a subset I of the real numbers to the real numbers, and let h be a
positive real number. We can define the forward difference operator, denoted by ∆h, as introduced by
Jordan in reference [12] on page 2. The operator ∆h is defined as follows:

∆h[g](u) = g(u+ h) − g(u).

This operator calculates the difference between the function values of g at u+h and u. Now, let’s explore
the finite difference of order i, denoted by ∆ihg, where i is a natural number. We can express the ith order
finite difference recursively using the forward difference operator:

∆ih[g](u) = ∆h
(
∆i−1
h [g](u)

)
=

i∑
l=0

(−1)i−l
(
i

l

)
g(u+ lh), (1.2)

where
(
i
l

)
represents the binomial coefficient, and l ranges from 0 to i. The equation above demonstrates

that the ith order finite difference of g at u can be obtained by applying the forward difference operator
iteratively i times, starting from the (i− 1)th order finite difference. The sum in the equation captures
the contributions of different function values of g at u + lh with appropriate coefficients. To clarify,
the notation ∆0

h corresponds to the identity operator, which leaves the function unchanged, while ∆1
h

represents the first-order forward difference operator, as defined previously.
Costabile and Longo, [9], have recently undertaken a pioneering effort to introduce a novel class of

polynomial sequences called ∆h Appell polynomials. These polynomials are specifically designed to be
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associated with the ∆h operator. In their research, they thoroughly examined various properties and
characteristics of these polynomials. The ∆h Appell polynomials can be represented by a generating
function denoted as Qm(q1;h). This generating function serves as a fundamental tool for expressing and
analyzing the properties of these polynomials. It defines a functional relationship between the parameters
q1 and h, allowing for the systematic generation and exploration of the ∆h Appell polynomials. While
the specific form of the generating function has not been provided in the given context, it plays a crucial
role in determining the properties, behavior, and algebraic structure of the ∆h Appell polynomials. By
studying the generating function, one can gain insights into the relationship between the parameters,
investigate the coefficients and roots of the polynomials, and explore other relevant properties associated
with these specialized sequences. Thus, Costabile and Longo’s work represents a significant advancement
in the field, as it not only introduces a new class of polynomial sequences tailored to the ∆h operator but
also delves into the investigation of their properties, thereby contributing to the broader understanding
of these unique mathematical constructs. The generating relation for these polynomials is given by:

∞∑
m=0

Qm(q1;h)
tm

m!
= γ(t)(1 + ht)

q1
h , (1.3)

or by the relation
∆h[Qm](q1;h) = mhQm−1(q1;h), (1.4)

respectively. For h→ 0, the expression (1.3) reduces to equation (1.1) and (1.4) reduces to (1), respectively.
Further, in [9], ∆h Appell sequences Qm(u), m ∈ N were defined by the power series of the product of
two functions γ(t)(1 + ht)

q1
h by

γ(t)(1 + ht)
q1
h = Q0(q1;h) +Q1(q1;h)

t

1!
+Q2(q1;h)

t2

2!
+ · · ·+Qm(q1;h)

tm

m!
+ · · · , (1.5)

where

γ(t) = γ0,h + γ1,h
t

1!
+ γ2,h

t2

2!
+ · · ·+ γm,h

tm

m!
+ · · · . (1.6)

The ∆h Appell sequences, as explored by Jordan [12], exhibit a fascinating property: they can be reduced
to various well-known sequences and polynomials. Some of these established sequences include the
generalized falling factorials (u)hm, denoted as (u)m, the Bernoulli sequence of the second kind bm(u),
the Boole sequence Blm(u; λ), and the Poisson-Charlier sequence Cm(u;γ).

The generalized falling factorials, (u)m, are a familiar sequence of polynomials that arise in many
mathematical contexts. By applying the ∆h operator to the ∆h Appell sequences, they can be reduced to
these generalized falling factorials.

Similarly, the ∆h Appell sequences can be related to the Bernoulli sequence of the second kind, de-
noted as bm(u). This sequence is well-known in the realm of number theory and combinatorics. The
connection between the ∆h Appell sequences and the Bernoulli sequence of the second kind reveals
an intriguing relationship between these different mathematical constructs. Further, the Boole sequence
Blm(u; λ) and the Poisson-Charlier sequence Cm(u;γ) are also encompassed within the reductions of
the ∆h Appell sequences. The Boole sequence plays a significant role in the study of combinatorics and
Boolean algebra, while the Poisson-Charlier sequence finds applications in probability theory and statisti-
cal analysis. These connections further highlight the versatility and relevance of the ∆h Appell sequences
within various mathematical domains.

Undoubtedly, there is irrefutable evidence supporting the substantial progress observed in various
facets of hybrid special polynomials through the integration of principles such as monomiality, opera-
tional rules, and related properties. The foundational concept of monomiality, a key contributor to these
advancements, has a historical origin dating back to 1941 with Steffenson’s introduction of the notion of
poweroids, as documented in [24]. This pivotal idea was further honed and refined in subsequent years,
with Dattoli playing a prominent role in advancing the field, as highlighted in [10].
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Thus, within this framework, the M̂ and D̂ operators play a crucial role. These operators serve as
multiplicative and derivative operators, respectively, for a set of polynomials denoted as bm(u)m∈N. This
implies that they satisfy the following expressions:

bm+1(u) = M̂{bm(u)} (1.7)

and
m bm−1(u) = D̂{bm(u)}. (1.8)

Subsequently, when the set of polynomials bm(u)m∈N is subjected to manipulation by multiplicative and
derivative operators, it is characterized as a quasi-monomial. To qualify as a quasi-monomial, the set is
expected to adhere to the following formula:

[D̂, M̂] = D̂M̂− M̂D̂ = 1̂,

thus displays a Weyl group structure as a result. By leveraging the properties of the operators M̂ and
D̂, one can ascertain the characteristics of the underlying set bm(u)m∈N when it is considered a quasi-
monomial. Consequently, the following traits can be established with confidence.

(i) bm(u) demonstrate the differential equation

M̂D̂{bm(u)} = m bm(u), (1.9)

if M̂ and D̂ possesses differential realizations.
(ii) The explicit form of bm(u), can be cast in the form as listed:

bm(u) = M̂m {1}, (1.10)

while taking, b0(u) = 1.
(iii) Also, generating relation in exponential form for bm(u) can be casted in the form

etM̂{1} =
∞∑
m=0

bm(u)
tm

m!
, |t| <∞,

using identity (1.10).

Even in contemporary times, these operational methodologies continue to find extensive application
in various domains of mathematical physics, quantum mechanics, and classical optics. As a result, these
techniques remain powerful and effective tools for conducting research. For instance, their utility can be
observed in a wide range of studies, as exemplified by references such as [1, 3, 7]. Considering equations
(1.7) and (1.8), we have successfully obtained the multiplicative and derivative operators for the ∆h Appell
polynomials. This was achieved by differentiating the expression (1.3) with respect to t and u, respectively.
Consequently, the derived operators can be expressed as follows:

Qm+1(q1;h) = M̂A{Qm(q1;h)} =

(
q1

1 + q1∆h
+
γ
′
(
q1∆h
h )

γ(
q1∆h
h )

)
{Qm(q1;h)} (1.11)

and

Qm−1(q1;h) = D̂A{Qm(q1;h)} =
log(1 + (

q1∆h
h ))

mh
{Qm(q1;h)}. (1.12)

Furthermore, considering equation (1.9), we can deduce the expression for a differential equation by
utilizing equations (1.11) and (1.12) as(

q1

1 + q1∆h
+
γ
′
(
q1∆h
h )

γ(
q1∆h
h )

−
m2h

log(1 + q1∆h)

)
Qm(q1;h) = 0. (1.13)
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As the parameter h approaches zero, the expressions (1.11)-(1.13) simplify to the multiplicative and deriva-
tive operators. Additionally, the resulting differential equation satisfied by the Appell polynomials Qm(u),
defined in equation (1.1) ([2]), can be derived.

Recognizing the significance of the ∆h hybrid special polynomials associated with Hermite polyno-
mials, it becomes evident that these polynomials find extensive applications in both mathematics and
physics. Their relevance manifests in various fields, including quantum mechanics, probability theory,
approximation theory, numerical analysis, statistical mechanics, and Fourier analysis.

In the realm of quantum mechanics, the ∆h hybrid special polynomials linked to Hermite polyno-
mials arise naturally. They play a crucial role in quantum mechanical calculations, contributing to the
understanding of fundamental phenomena and properties. Probability theory also benefits from these
polynomials as they are intimately connected to the normal distribution, which is a fundamental concept
in probability theory. The ∆h hybrid special polynomials provide a means to explore and analyze the
statistical properties of the normal distribution and its various applications. In the field of approxima-
tion theory, these polynomials serve as a basis for approximating functions. They offer an effective tool
for numerical analysis, enabling accurate and efficient approximations of complex functions. Statistical
mechanics utilizes Hermite polynomials to calculate the partition function and thermodynamic proper-
ties of ideal gases. These polynomials play a crucial role in understanding the behavior of gases and
are instrumental in characterizing their thermodynamic properties. Furthermore, Hermite-based Appell
polynomials incorporating the ∆h operator are introduced, inspired by the research of Costabile and
Longo [9]. These polynomials possess a generating expression of the form:

γ(t) (1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h (1 + ht5)

q5
h =

∞∑
m=0

HQ
[∆h]
m (q1,q2,q3,q4,q5;h)

tm

m!
. (1.14)

The utilization of these hybrid special polynomials extends beyond mathematics and physics, finding po-
tential applications in diverse fields such as image processing and computer vision. In image processing,
these polynomials can be leveraged to improve image quality, enhance details, and extract meaningful fea-
tures. By employing the properties of the ∆h operator, the polynomials offer valuable tools for analyzing
and manipulating digital images.

Moreover, the hybrid special polynomials demonstrate relevance in the realm of financial mathematics.
They serve as mathematical models to understand and predict the behavior of various financial variables,
including stock prices, interest rates, and other market-related quantities. By incorporating the ∆h op-
erator, these polynomials enable the analysis and forecasting of financial data, aiding decision-making
processes in investment, risk management, and other financial applications.

The main objective of this article is to present a comprehensive investigation into the characteristics of
the ∆h hybrid special polynomials, specifically their connection to the Hermite polynomials. This study
extensively employs principles of monomiality and operational techniques to derive and explore various
properties of these polynomials. The remainder of the manuscript is organized as follows. In Section
2, we introduce the three-variable ∆h Hermite-based Appell polynomials. We discuss their distinct fea-
tures and provide a detailed analysis of their properties. This section aims to provide a comprehensive
understanding of these polynomials and their behavior. Moving on to Section 3, we establish the quasi-
monomial characteristics of these polynomials. By examining their behavior under certain principles and
operations, we identify the specific traits that classify them as quasi-monomials. This analysis contributes
to a deeper understanding of the underlying structure and properties of the ∆h hybrid special polynomi-
als. Finally, in Section 4, we present a selection of members from this polynomial family. We highlight
their key findings and discuss the implications of these findings within the broader context of the study.
This section provides valuable insights into the specific instances and applications of the ∆h hybrid spe-
cial polynomials, shedding light on their potential uses and relevance. By following this structure, we
aim to comprehensively explore and present the study on the ∆h hybrid special polynomials connected
to the Hermite polynomials, offering valuable insights and findings for further research.
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2. ∆h Hermite-based Appell polynomials

In this section, we present an alternative and general approach for determining the ∆h Hermite-based
Appell sequences. This method offers an alternative perspective and methodology compared to existing
approaches. By utilizing this new method, we aim to enhance the understanding and exploration of these
sequences, providing a fresh perspective on their properties and applications. Thus, we have following.

Theorem 2.1. Since, we observe ∆h Hermite based Appell are given by (1.14), therefore we have

q1∆h[HQ
[∆h]
m (q1,q2,q3,q4,q5;h)] = mh HQ

[∆h]
m−1(q1,q2,q3,q4,q5;h),

q2∆h[HQ
[∆h]
m (q1,q2,q3,q4,q5;h)] = m(m− 1)h HQ

[∆h]
m−2(q1,q2,q3,q4,q5;h),

q3∆h[HQ
[∆h]
m (q1,q2,q3,q4,q5;h)] = m(m− 1)(m− 2)h HQ

[∆h]
m−2(q1,q2,q3,q4,q5;h),

q4∆h[HQ
[∆h]
m (q1,q2,q3,q4,q5;h)] = m(m− 1)(m− 2)(m− 3)h HQ

[∆h]
m−3(q1,q2,q3,q4,q5;h),

q5∆h[HQ
[∆h]
m (q1,q2,q3,q4,q5;h)] = m(m− 1)(m− 2)(m− 3)(m− 4)h HQ

[∆h]
m−4(q1,q2,q3,q4,q5;h).

(2.1)

Proof. Differentiating expression (1.14) with respect to q1 in view of expression (1.2), it follows that

q1∆h

[
γ(t) (1 + ht)

q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h × (1 + ht5)

q5
h

]
= γ(t) (1 + ht)

q1+h
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h × (1 + ht5)

q5
h

− γ(t) (1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h (1 + ht5)

q5
h

=
(
ht
)
γ(t) (1 + ht)

q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h (1 + ht5)

q5
h .

Thus, inserting the r.h.s. of expression (1.14) in previous expression, we find

q1∆h

[ ∞∑
m=0

HQ
[∆h]
m (q1,q2,q3,q4,q5;h)

tm

m!

]
= h

∞∑
m=0

HQ
[∆h]
m (q1,q2,q3,q4,q5;h)

tm+1

m!
.

By replacing m with m− 1 on the right-hand side of the above equation, we obtain a modified equation.
We then proceed to equate the coefficients of the same powers of t in this resultant equation and thus we
have:

q1∆h

[ ∞∑
m=0

HQ
[∆h]
m (q1,q2,q3,q4,q5;h)

tm

m!

]
=

∞∑
m=0

mhHQ
[∆h]
m−1(q1,q2,q3,q4,q5;h)

tm

m!
,

we get the proof of ist equation of system of equations (2.1). By using the similar fashion, we can prove
other two relations.

Theorem 2.2. Further, for the power series

γ(t) = γ0,h + γ1,h
t

1!
+ γ2,h

t2

2!
+ · · ·+ γm,h

tm

m!
· · · γ0,h 6= 0,

with γm,m = 0, 1, 2, . . . as real coefficients, ∆h Hermite based Appell polynomials HQ
[∆h]
m (q1,q2,q3,q4,q5;h)m ∈

N are determined by the power series expansion of the product γ(t)(1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 +

ht4)
q4
h (1 + ht5)

q4
h , that is

γ(t)(1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h (1 + ht5)

q5
h

= HQ
[∆h]
0 (q1,q2,q3,q4,q5;h) +HQ

[∆h]
1 (q1,q2,q3,q4,q5;h)

t

1!
+HQ

[∆h]
2 (q1,q2,q3,q4,q5;h)

t2

2!

+HQ
[∆h]
3 (q1,q2,q3,q4,q5;h)

t3

3!
+HQ

[∆h]
4 (q1,q2,q3,q4,q5;h)

t4

4!

+ · · ·+HQ
[∆h]
m (q1,q2,q3,q4,q5;h)

tm

m!
+ · · · .

(2.2)
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Proof. Expanding (1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h (1 + ht5)

q5
h by Newton series for finite

differences at q1 = q2 = q3 = q4 = q5 = 0 and order the product of the developments of functions
γ(t) and (1 + ht)

q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h (1 + ht5)

q5
h w.r.t. the powers of t, then in view of

expression (1.5), we observe the polynomials HQ
[∆h]
m (q1,q2,q3,q4,q5;h) and expressed in equation (2.2)

as coefficients of t
m

m! as the generating function of ∆h Hermite based Appell polynomials.

Subsequently, we obtain the explicit series representation of the ∆h Hermite-based Appell polyno-
mials. To derive the formulas, our first step involves determining the explicit form of the ∆h Hermite
polynomials. This is achieved by setting γ(t) = 1 in equation (1.14), which results in:

(1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h (1 + ht5)

q5
h =

∞∑
m=0

∆hHm(q1,q2,q3,q4,q5;h)
tm

m!
, (2.3)

in the form of the following result.

Theorem 2.3. For ∆h Hermite polynomials in 3-variables q1,q2,q3, the succeeding explicit series formulae holds
true:

∆hHm(q1,q2,q3;h) =
[mk ]∑
k=0

[k3 ]∑
l=0

(
m

k

)(
k

3l

)
(q1)

h
m−k (q2)

h
k−3l (q3)

h
l

(2m)!
m!

(3l)!
l!

, (2.4)

where (u)hm ≡ (u)m and is given by

(q1)
h
m = q1(q1 + h)(q1 + 2h) · · · (q1 + (m− 1)h), m = 1, 2, . . . , (q1)

h
0 = 1. (2.5)

Proof. Expanding the expression (1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h · · · using the concept of raising facto-

rials as defined in (2.5), we obtain the following expansion:

(1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h =

∞∑
m=0

(
−
q1

h

)
m
(−h)m

tm

m!

∞∑
k=0

(
−
q2

h

)
k
(−h)k

t2k

k!

∞∑
l=0

(
−
q3

h

)
l
(−h)l

t3l

l!
.

Considering the product rule for two series, specifically the Cauchy product applied to the last two series
on the right-hand side of the aforementioned expression, it can be inferred that:

(1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h =

∞∑
m=0

(q1)
h
m

tm

m!

∞∑
k=0

[k3 ]∑
l=0

(
k

3l

)
(q2)

h
k−3l (q3)

h
l

(3l)!
l!

tk

k!
.

Once again, recognizing the product rule for two series, specifically the Cauchy product applied to the
first two series on the right-hand side of the aforementioned expression, it can be deduced that:

(1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h =

∞∑
m=0

[mk ]∑
k=0

[k3 ]∑
l=0

(
m

k

)(
k

3l

)
(q1)

h
m−k (q2)

h
k−3l (q3)

h
l

(2m)!
m!

(3l)!
l!

tm

m!
.

By inserting the series expansion of the ∆h Hermite polynomials, as given in equation (2.3) with q4 =
0 = q5 into the left-hand side of the above equation, we obtain a resultant equation. Further, we compare
the coefficients of the same powers of t on both sides. This comparison leads us to the assertion stated
in equation (2.4). This assertion provides valuable insights and establishes a relationship between the
coefficients and the powers of t within the equation.

Subsequently, we proceed to derive the explicit forms of the ∆h Hermite-based Appell polynomials
by establishing the following results.
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Theorem 2.4. The ∆h Hermite-based Appell polynomials satisfy the following explicit form:

HQ
[∆h]
m (q1,q2,q3,q4,q5;h) =

[ms ]∑
s=0

(
m

s

)
Qs,h ∆hHm−s(q1,q2,q3,q4,q5;h). (2.6)

Proof. Inserting expressions (1.5) with h = 0 and (2.3) in the l.h.s. of equation (1.14), it follows that

∞∑
s=0

Qs,h(q1)
ts

s!

∞∑
m=0

∆hHm(q1,q2,q3,q4,q5;h)
tm

m!
=

∞∑
m=0

HQ
[∆h]
m (q1,q2,q3,q4,q5;h)

tm

m!
.

By considering the C.P. rule, we examine the left-hand side of the above equation and compare it to the
resultant equation. Specifically, we focus on comparing the coefficients of the same powers of t in both
equations. Through this comparison, we arrive at the assertion stated in equation (2.6). This assertion
highlights an important relationship between the coefficients and the powers of t within the equation.

Theorem 2.5. The ∆h Hermite-based Appell polynomials, satisfy the following explicit form:

HQ
[∆h]
m (q1,q2,q3,q4,q5;h) =

[ms ]∑
s=0

(
m

s

)
γs,h ∆hHm−s(q1,q2,q3,q4,q5;h). (2.7)

Proof. Inserting expressions (1.6) and (2.3) in the l.h.s. of equation (1.14), it follows that

∞∑
s=0

γs,h
ts

s!

∞∑
m=0

∆hHm(q1,q2,q3,q4,q5;h)
tm

m!
=

∞∑
m=0

∆hHQm(q1,q2,q3,q4,q5;h)
tm

m!
.

Using the C.P. rule in the l.h.s. of the above equation and in the resultant equation, comparing the
coefficients of like powers of t, we are lead to assertion (2.7).

3. Monomiality principle

In this section, we aim to establish the quasi-monomial characteristics demonstrated by the ∆h Hermite-
based Appell polynomials. To achieve this objective, we present the proofs for the following outcomes.

Theorem 3.1. The ∆h Hermite-based Appell polynomials satisfy the following multiplicative and derivative opera-
tors:

∆hHQm+1(q1,q2,q3,q4,q5;h) = ˆM∆h{∆hHQm(q1,q2,q3,q4,q5;h)}

=

(
q1

1 + q1∆h
+

2q2q1∆h

h+ q1∆h
2 +

3q3q1∆h
2

h2 + q1∆h
3 +

4q4q1∆h
3

h3 + q1∆h
4

+
5q5q1∆h

4

h4 + q1∆h
5 +

γ
′
(
q1∆h
h )

γ(
q1∆h
h )

)
{∆hHQm(q1,q2,q3,q4,q5;h)}

(3.1)

and

HQ
[∆h]
m−1(q1,q2,q3,q4,q5;h) = ˆD∆h{HQ

[∆h]
m (q1,q2,q3,q4,q5;h)}

=
log(1 + q1∆h)

mh
{HQ

[∆h]
m (q1,q2,q3,q4,q5;h)},

(3.2)

respectively.
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Proof. In view of finite difference operator ∆h, we have

q1∆h[HQ
[∆h]
m (q1,q2,q3,q4,q5;h)] = h t [HQ

[∆h]
m−1(q1,q2,q3,q4,q5;h)],

or
q1∆h

h
[HQ

[∆h]
m (q1,q2,q3,q4,q5;h)] = t [HQ

[∆h]
m−1(q1,q2,q3,q4,q5;h)]. (3.3)

Differentiating the expression (1.14) w.r.t. t and u, respectively, we have

∆hHQm+1(q1,q2,q3,q4,q5;h)

= ˆM∆h{HQ
[∆h]
m (q1,q2,q3,q4,q5;h)}

=

(
q1

1 + ht
+

2q2t

1 + ht2 +
3q3t

2

1 + ht3 + · · ·+ γ
′
(t)

γ(t)

)
{∆hHQm(q1,q2,q3,q4,q5;h)}

(3.4)

and

HQ
[∆h]
m−1(q1,q2,q3,q4,q5;h) = ˆD∆h{HQ

[∆h]
m (q1,q2,q3,q4,q5;h)}

=
log(1 + ht)

mh
{HQ

[∆h]
m (q1,q2,q3,q4,q5;h)},

(3.5)

respectively. By employing identity (3.3), which is based on equations (1.7) and (1.8), we utilize this
identity in the context of equations (3.4) and (3.5). Through this process, we derive assertions (3.1) and
(3.2). These assertions highlight important results that are obtained by applying the mentioned identity
and equations, shedding light on the properties and relationships of the involved expressions.

Corollary 3.2. The ∆h Hermite-based Appell polynomials satisfy the following differential equation:(
q1

1 + q1∆h
+

2q2q1∆h

h+ q1∆h
2 +

3q3q1∆h
2

h2 + q1∆h
3 + · · ·+

γ
′
(
q1∆h
h )

γ(
q1∆h
h )

−
m2h

log(1 +q1 ∆h)

)
× {HQ

[∆h]
m (q1,q2,q3,q4,q5;h)} = 0.

(3.6)

Proof. Making use of expressions (3.1) and (3.2) in (1.9), we are lead to assertion (3.6).

For q2,q3, . . .→ 0, the expressions (3.1), (3.2), and (3.6) reduce to the multiplicative and derivative op-
erators, and the differential equation satisfied by ∆h Appell polynomials Qm(q1;h) given by expressions
(1.11)-(1.13).

For h → 0, the expressions (3.1), (3.2), and (3.6) reduce to the multiplicative and derivative operators,
and differential equation satisfied by Appell polynomials Qm(q1) given by expression (1.1).

4. Examples

The Appell polynomial family encompasses a wide range of members that can be obtained by selecting
an appropriate function γ(t). These members possess distinct names, generating functions, and associated
numbers. Below, we provide information on the generating function for the ∆h Bernoulli polynomials,
denoted as ∆hβm(q1;h).

The generating function for the ∆h Bernoulli polynomials ∆hβm(q1;h) is given by

t

(1 + ht)
1
h − 1

(1 + ht)
q1
h =

∞∑
m=0

∆hβm(q1;h)
tm

m!
, |t| < 2π. (4.1)
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The generating function for the Euler polynomials ∆hEm(q1;h) is given by

2

(1 + ht)
1
h + 1

(1 + ht)
q1
h =

∞∑
m=0

∆hEm(q1;h)
tm

m!
, |t| < π. (4.2)

The generating function for the Genocchi polynomials ∆hGm(q1;h) is given by

2t

(1 + ht)
1
h + 1

(1 + ht)
q1
h =

∞∑
m=0

∆hGm(q1;h)
tm

m!
, |t| < π. (4.3)

For h→ 0, polynomials (4.1)-(4.3) reduce to the Bernoulli, Euler, and Genocchi polynomials [8].
The ∆h polynomials and numbers of Bernoulli, Euler, and Genocchi have found numerous applica-

tions in various areas of mathematics, including number theory, combinatorics, and numerical analysis.
These applications extend to practical mathematics, where these polynomials and numbers are utilized to
solve problems and derive mathematical formulas.

For instance, the Bernoulli numbers are prominently featured in diverse mathematical formulas, in-
cluding the Taylor expansion, trigonometric and hyperbolic tangent and cotangent functions, as well as
sums of powers of natural numbers. These numbers hold a pivotal position in number theory, offering
valuable insights into patterns and relationships among integers.

Similarly, the Euler numbers emerge in the Taylor expansion and exhibit close associations with
trigonometric and hyperbolic secant functions. Beyond this, they find applications in graph theory, au-
tomata theory, and the computation of the number of up-down ascending sequences. This contribution
enhances the analysis of structures and patterns within the realm of discrete mathematics.

Furthermore, the Genocchi numbers prove beneficial in the domains of graph theory and automata
theory, with a particular emphasis on counting the number of up-down ascending sequences. This appli-
cation involves a detailed study of the order and arrangement of elements in a sequence. Consequently,
these ∆h polynomials and numbers associated with Bernoulli, Euler, and Genocchi play a pivotal role
across various mathematical disciplines, facilitating exploration of mathematical relationships, derivation
of formulas, and analysis of patterns and structures.

By appropriately choosing the function γ(t) in equation (1.14), we can establish the following gener-
ating functions for the ∆h Hermite-based Bernoulli, Euler, and Genocchi polynomials

t

(1 + ht)
1
h − 1

(1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h (1 + ht5)

q5
h

=

∞∑
m=0

∆hHβm(q1,q2,q3,q4,q5;h)
tm

m!
,

2

(1 + ht)
1
h + 1

(1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h (1 + ht5)

q5
h

=

∞∑
m=0

∆hHEm(q1,q2,q3,q4,q5;h)
tm

m!
,

2t

(1 + ht)
1
h + 1

(1 + ht)
q1
h (1 + ht2)

q2
h (1 + ht3)

q3
h (1 + ht4)

q4
h (1 + ht5)

q5
h

=

∞∑
m=0

∆hHGm(q1,q2,q3,q4,q5;h)
tm

m!
,

(4.4)

respectively. Thus the corresponding results can be obtained for these polynomials.

Theorem 4.1. As we can observe from equations (4.4), the ∆h Hermite-based Bernoulli, Euler, and Genocchi poly-
nomials are defined. Consequently, these polynomials exhibit certain relations and properties that can be summarized
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as follows:

q1∆h[∆hHβm(q1,q2,q3,q4,q5;h)] = mh ∆hHβm−1(q1,q2,q3,q4,q5;h),

q2∆h[∆hHβm(q1,q2,q3,q4,q5;h)] = m(m− 1)h ∆hHβm−2(q1,q2,q3,q4,q5;h),

q3∆h[∆hHβm(q1,q2,q3,q4,q5;h)] = m(m− 1)(m− 2)h ∆hHβm−2(q1,q2,q3,q4,q5;h),

q1∆h[∆hHEm(q1,q2,q3,q4,q5;h)] = mh ∆hHEm−1(q1,q2,q3,q4,q5;h),

q2∆h[∆hHEm(q1,q2,q3,q4,q5;h)] = m(m− 1)h ∆hHEm−2(q1,q2,q3,q4,q5;h),

q3∆h[∆hHEm(q1,q2,q3,q4,q5;h)] = m(m− 1)(m− 2)h ∆hHEm−2(q1,q2,q3,q4,q5;h),

q1∆h[∆hHGm(q1,q2,q3,q4,q5;h)] = mh ∆hHGm−1(q1,q2,q3,q4,q5;h),

q2∆h[∆hHGm(q1,q2,q3,q4,q5;h)] = m(m− 1)h ∆hHGm−2(q1,q2,q3,q4,q5;h),

q3∆h[∆hHGm(q1,q2,q3,q4,q5;h)] = m(m− 1)(m− 2)h ∆hHGm−2(q1,q2,q3,q4,q5;h),

respectively.

Also, in view of equation (2.7), these polynomials satisfy the following explicit form.

Theorem 4.2. The ∆h Hermite-based Bernoulli, Euler, and Genocchi polynomials, satisfy the following explicit
form:

∆hHβm(q1,q2,q3,q4,q5;h) =
[ms ]∑
s=0

(
m

s

)
βs,h ∆hHm−s(q1,q2,q3,q4,q5;h),

∆hHEm(q1,q2,q3,q4,q5;h) =
[ms ]∑
s=0

(
m

s

)
Es,h ∆hHm−s(q1,q2,q3,q4,q5;h),

∆hHGm(q1,q2,q3,q4,q5;h) =
[ms ]∑
s=0

(
m

s

)
Gs,h ∆hHm−s(q1,q2,q3,q4,q5;h),

respectively.

Likewise, utilizing similar methods, we can establish additional results and properties for these poly-
nomials. The Bernoulli, Euler, and Genocchi numbers associated with these polynomials find practical
applications in various fields such as graph theory, automata theory, and the calculation of up-down
ascending sequences. Therefore, it would be of interest for future research to explore the physical sig-
nificance and potential applications of these hybrid polynomials and the hybrid special numbers derived
from them.

5. Conclusion

In this study, we have introduced a new class of polynomials called the hybrid ∆h Hermite-based
Appell polynomials. These polynomials are obtained through the convolution of ∆h Appell polynomi-
als and Hermite polynomials of several variables. We have presented several specific features of these
polynomials, including the establishment of their quasi-monomial characteristics in a dedicated section.

Furthermore, we have derived various results for these polynomials. Theorem 2.1 establishes forward
difference relations for the hybrid ∆h Hermite-based Appell polynomials, providing a useful tool for their
computation. Additionally, we have obtained explicit forms for some members of this polynomial family,
allowing for a better understanding of their structure and behavior.

Looking ahead, there are several avenues for future research and investigation. Extended and gener-
alized forms of the hybrid ∆h Hermite-based Appell polynomials can be explored, potentially leading to
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new insights and applications. Integral representations, recurrence relations, shift operators, and sum-
mation formulas are other aspects that can be investigated to further enrich the understanding of these
polynomials.

Moreover, exploring interpolation forms and studying the properties associated with them would be
of interest. By investigating the interpolation properties, one can potentially derive polynomial approxi-
mations and interpolation schemes using the hybrid ∆h Hermite-based Appell polynomials.

In conclusion, this study provides an initial exploration of the hybrid ∆h Hermite-based Appell poly-
nomials, showcasing their specific features and potential applications. Further research efforts can con-
tribute to uncovering more properties and expanding their utility in various mathematical and scientific
domains.

Acknowledgment

We extend our sincere gratitude to all the reviewers for diligently assessing this article and contributing
to its improvement. Thank you for your valuable time and efforts.

References

[1] L. C. Andrews, Special functions for engineers and applied mathematicians, Macmillan Co., New York, (1985). 1
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