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Abstract
In this paper, the generalized function projective synchronization of two identical Lü-Chen-Cheng four-scroll chaotic sys-

tems is satisfied. Also, we studied the generalized function projective synchronization between two nonidentical chaotic systems,
Lü-Chen-Cheng four-scroll chaotic system and new chaotic system, with known parameters. To prove the solutions of the er-
ror system that are asymptotic stable, we based on the Lyapunov theorem of stability. The proposed schemes were evaluated
through numerical experiments to showcase their effectiveness and impact.
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1. Introduction

The phenomenon of chaos synchronization in nonlinear science has garnered significant interest
among scientists, engineers, and researchers due to its potential applications in a variety of fields such
as biology, physics, economics, and secure communications [22]. Following the groundbreaking research
by Pecora and Carroll [19], which introduced an effective method for synchronizing chaotic systems with
different initial conditions, many types of synchronization schemes have been discovered and studied
[6–8, 12, 20]. Projective synchronization (PS) [1, 2, 4, 13, 15, 17, 21, 23, 25] has emerged as a particu-
larly promising area of research in recent years due to its ability to achieve rapid synchronization by
proportional features. Many methods have been derived from it, such as modified projective synchro-
nization (MPS) and function projective synchronization (FPS) [3, 5, 9–11, 14, 18, 27, 28]. Recently, a novel
form of synchronization method known as generalized function projective synchronization (GFPS) was
introduced [24, 26].

This article showcases a GFPS scheme between two identical LLü-Chen-Cheng four-scroll chaotic sys-
tems and between two nonidentical chaotic systems Lü-Chen-Cheng four-scroll and new chaotic system
with certain parameters.
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The remainder of this essay is structured as follows. The fundamental dynamic features of Lü-Chen-
Cheng four-scroll chaotic system and new chaotic system are described in Section 2. The GFPS scheme
definition is given in Section 3. In Section 4, GFPS of two identical Lü-Chen-Cheng four-scroll chaotic sys-
tems is presented. GFPS between the Lü-Chen-Cheng four-scroll and new chaotic systems is investigated
in Section 5. Section 6 displays numerical examples to validate the effectiveness of the technique chosen.
Lastly, Section 7 provides the conclusion.

2. Description of systems

In this section, we demonstrate several basic dynamic properties of some chaotic systems.

2.1. Lü-Chen-Cheng four-scroll chaotic system
The model of Lü-Chen-Cheng four-scroll chaotic system [22] is expressed by the following derivative

equations: 
ṡ = ds− vw,
v̇ = −hv+ sw+m,
ẇ = −lw+ sv,

(2.1)

where d,h, l, and m are parameters of the system that are positive constants. At the values d = 20
7 , h =

10, l = 4, and m = 5, the system has chaotic behavior, which is displayed in Figures 1, 2, and 3.

Figure 1: Lü-Chen-Cheng four-scroll chaotic system in XYZ
dimensions.

Figure 2: Lü-Chen-Cheng four-scroll chaotic system in YX
dimensions.

Figure 3: Lü-Chen-Cheng four-scroll chaotic system in YZ dimensions.
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2.1.1. The dissipation
The divergence of system (2.1) can be obtained as:

∇.F =
∂ṡ

∂s
+
∂v̇

∂v
+
∂ẇ

∂w
= d− h− l = −11.1428071 < 0.

Hence, the (2.1) is the dissipative system.

2.1.2. Equilibrium points
By using the usual method for finding equilibrium points by setting the right side of the system’s

equations equal to zero and then solving them, consequently the system has four equilibrium points,
which are:

P1 = (5.838143559,

√
80
7

, 4.934131869), P2 = (−5.838143559,

√
80
7

, −4.934131869),

P3 = (−6.776140478, −

√
80
7

, 5.726883956), P4 = (6.776140478, −

√
80
7

, −5.726883956).

2.2. New chaotic system

The new chaotic system [16] is expressed by:
ṡ = −

ab

a+ b
s− vw+ c,

v̇ = av+ sw,
ż = bw+ sv,

(2.2)

where the parameters a,b, and c are real constant numbers. In a wide parameter range, the system will
be chaotic. For example, when a = −10, b = −4, and c = 18.1, the chaotic attractor is shown in Figure 4.
Furthermore, when a = −10, b = −4, c = 0, the chaotic attractor is shown in Figure 5.

Figure 4: The new chaotic system at a = −10, b = −4, c =
18.1.

Figure 5: The new chaotic system at a = −10, b = −4, c = 0.

2.2.1. The dissipation
The divergence of system (2.2) is found as follows:

∇F = ∂ṡ

∂s
+
∂v̇

∂v
+
∂ẇ

∂w
= −

ab

a+ b
+ a+ b =

−78
7

< 0.

Hence, system (2.2) is dissipative.
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2.2.2. Equilibrium points
The system (2.2) has three equilibrium points when a = −10, b = −4, and c = 18.1, which are

P1 = (−6.335, 0, 0), P2,3 =

(
2
√

10, ±
√

80
7

+ 3.62
√

10, ±1
2

√
800
7

+ 36.2
√

10

)
.

3. Definition of generalized function projective synchronization scheme

In the synchronization process, there is a drive system and a response system, which can be written
in the following formula, respectively,

Ṡ = F(S), (3.1)
V̇ = G(V) +U(t,S,V), (3.2)

where S = (s1, s2, . . . , sn)T ,V = (v1, v2, . . . , vn)T ∈ Rn are the state vectors of the systems (3.1) and
(3.2), F,G : Rn → Rn are differentiable vector functions, U(t,S,V) is a controller function which will be
designed later.

Definition 1. The concept of generalized function projective synchronization (GFPS) for the drive system (3.1) and
the response system (3.2) involves the existence of a scaling function matrix such that

lim
t→+∞ ||e(t)|| = lim

t→+∞ ||V −Λ(s)S|| = 0,

where e(t) = (es, ev, ew) are called the error vectors, Λ(S) = diag{h1(S), h2(S), . . . ,hn(S)} such that hi(S)(i =
1, 2, . . . ,n) are continuous differentiable functions and hi(S) 6= 0 for all t, ||.|| represents a vector norm induced by
the matrix norm.

4. GFPS of two identical Lü-Chen-Cheng four-scroll chaotic dynamical systems

This study will involve examining the GFPS of two identical Lü-Chen-Cheng four-scroll chaotic system
(2.1) with predefined parameters and selected controller functions for the GFPS of the drive and response
systems. The goal is to devise a controller that allows the response system to mimic and achieve the
behavior of the drive system.

For GFPS of Lü-Chen-Cheng four-scroll chaotic system (2.1), the derive and response systems are
defined as follows, respectively, 

ṡ1 = ds1 − v1w1,
v̇1 = −hv1 + s1w1 +m,
ẇ1 = −lw1 + s1v1,

(4.1)

and Lü-Chen-Cheng four-scroll chaotic system as a response system can be written as
ṡ2 = ds2 − v2w2 + u1,
v̇2 = −hv2 + s2w2 +m+ u2,
ẇ2 = −lw2 + s2v2 + u3,

(4.2)

where u1,u2, and u3 are the nonlinear controller functions. Based on the GFPS scheme outlined pre-
viously, we can select the scaling function matrix without loss of generality as: Λ(S) = diag{h11s1 +
h12, h21v1 + h22, h31w1 + h32}, where hij(i = 1, 2, 3, j = 1, 2) are constant numbers.

Therefore, GFPS between the two systems (4.1) and (4.2) occurs if the following is achieved:

lim
t→+∞ ||es|| = lim

t→+∞ ||s2 − (h11s1 + h12)s1|| = 0,
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lim
t→+∞ ||ev|| = lim

t→+∞ ||v2 − (h21v1 + h22)v1|| = 0,

lim
t→+∞ ||ew|| = lim

t→+∞ ||w2 − (h31w1 + h32)w1|| = 0.

Then the error dynamical system is given by:
ės = des − v2w2 − dh11s

2
1 + 2h11s1v1w1 + h12v1w1 + u1,

ėv = −hev + s2w2 +m+ hh21v
2
1 − 2h21s1v1w1 − 2h21v1m− h22s1w1 − h22m+ u2,

ėw = −lew + s2v2 + lh31w
2
1 − 2h31s1v1w1 − h32s1v1 + u3.

(4.3)

The aim is to determine a control law that will stabilize the error variables of the system (4.3). To achieve
this, we can take the control law as:

u1 = v2w2 + dh11s
2
1 − 2h11s1v1w1 − h12v1w1 − 9s2 + 9h11s

2
1 + 9h12s1,

u2 = −s2w2 −m− hh21v
2
1 + 2h21s1v1w1 + 2h21v1m+ h22s1w1 + h22m,

u3 = −s2v2 − lh31w
2
1 + 2h31s1v1w1 + h32s1v1.

(4.4)

Theorem 4.1. GFPS will be achieved between system (4.1) and system (4.2) under controler functions (4.4), where
the hij(i = 1, 2, 3, j = 1, 2) are given nonzero scalars.

Proof. Define a Lyapunov function:

L =
1
2
(e2

s + e
2
v + e

2
w). (4.5)

The derivative of (4.5) with respect to time is:

dL

dt
= (esės + evėv + ewėw)

= es
(
des − v2w2 − dh11s

2
1 + 2h11s1v1w1 + h12v1w1 + u1

)
+ ev

(
−hev + s2w2 +m+ hh21v

2
1 − 2h21s1v1w1 − 2h21v1m− h22s1w1 − h22m+ u2

)
+ ew

(
−lew + s2v2 + lh31w

2
1 − 2h31s1v1w1 − h32s1v1 + u3

)
.

Substituting the controller functions (4.4) into (4.3), we get:

dL

dt
= es

(
des − v2w2 − dh11s

2
1 + 2h11s1v1w1 + h12v1w1 + v2w2 + dh11s

2
1 − 2h11s1v1w1 − h12v1w1

− 9s2 + 9h11s
2
1 + 9h12s1

)
+ ev

(
− hev + s2w2 +m+ hh21v

2
1 − 2h21s1v1w1 − 2h21v1m

− h22s1w1 − h22m+−s2w2 −m− hh21v
2
1 + 2h21s1v1w1 + 2h21v1m+ h22s1w1 + h22m

)
+ ew

(
− lew + s2v2 + lh31w

2
1 − 2h31s1v1w1 − h32s1v1 − s2v2 − lh31w

2
1 + 2h31s1v1w1 + h32s1v1

)
.

Therefore, we have:
dL

dt
= (d− 9)e2

s − he
2
v − le

2
w = −

(43
7
e2
s + he

2
v + le

2
w

)
. (4.6)

Hence, we can write the previous equation (4.6) as:

dL

dt
= −eTDe,

where

D =


43
7

0 0

0 h 0
0 0 l

 =


43
7

0 0

0 10 0
0 0 4

 , e =

esev
ew

 .

Since
dL

dt
is a negative definite, the GFPS is attained for two Lü-Chen-Cheng four-scroll chaotic systems.
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5. GFPS between Lü-Chen-Cheng four-scroll system and new chaotic system

This study will involve examining the GFPS of two nonidentical systems, Lü-Chen-Cheng four-scroll
chaotic system (2.1), and new chaotic system (2.2) with predefined parameters and selected controller
functions for the GFPS of the drive and response systems. The goal is to devise a controller that allows
the response system to mimic and achieve the behavior of the drive system.

For GFPS between Lü-Chen-Cheng four-scroll chaotic system (2.1) and new chaotic system (2.2), the
derive and response systems are defined as follows, respectively,

ṡ1 = ds1 − v1w1,
v̇1 = −hv1 + s1w1 +m,
ẇ1 = −lw1 + s1v1,

(5.1)

and new chaotic system as a response system can be written as:
ṡ2 = −

ab

a+ b
s2 − v2w2 + c+ u1,

v̇2 = av2 + s2w2 + u2,
ẇ2 = bw2 + s2v2 + u3,

(5.2)

where u1,u2, and u3 are the nonlinear controller functions. Based on the GFPS scheme outlined pre-
viously, we can select the scaling function matrix without loss of generality as: Λ(S) = diag{h11s1 +
h12, h21v1 + h22, h31w1 + h32}, where hij(i = 1, 2, 3, j = 1, 2) are constant numbers.

Therefore, GFPS between the two systems (5.1) and (5.2) occurs if the following is achieved:

lim
t→+∞ ||es|| = lim

t→+∞ ||s2 − (h11s1 + h12)s1|| = 0,

lim
t→+∞ ||ev|| = lim

t→+∞ ||v2 − (h21v1 + h22)v1|| = 0,

lim
t→+∞ ||ew|| = lim

t→+∞ ||w2 − (h31w1 + h32)w1|| = 0.

Then the error dynamical system is given by:
ės = −

ab

a+ b
s2 − v2w2 + c− 2dh11s

2
1 + 2h11s1v1w1 − dh12s1 + h12v1w1 + u1,

ėv = av2 + s2w2 + 2hh21v
2
1 − 2h21s1v1w1 − 2mh21v1 + hh22v1 − h22s1w1 − h22m+ u2,

ėw = bw2 + s2v2 + 2h31lw
2
1 − 2h31s1v1w1 + h32lw1 − h32s1v1 + u3.

(5.3)

The aim is to determine a control law that will stabilize the error variables of the system (5.3). To achieve
this, we can take the control law as:

u1 =
ab

a+ b
s2 + v2w2 − c+ dh11s

2
1 − 2h11s1v1w1 − h12v1w1 + ds2 − 8s2 + 8h11s

2
1 + 8h12s1,

u2 = −av2 − s2w2 − hh21v
2
1 + 2h21s1v1w1 + 2mh21v1 + h22s1w1 + h22m− hv2,

u3 = −bw2 − s2v2 − h31lw
2
1 + 2h31s1v1w1 + h32s1v1 − lw2.

(5.4)

Theorem 5.1. GFPS will be achieved between system (5.1) and system (5.2) under controler functions (5.4), where
the hij(i = 1, 2, 3, j = 1, 2) are given nonzero scalars.

Proof. Define a Lyapunov function:

L∗ =
1
2
(e2

s + e
2
v + e

2
w). (5.5)
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The derivative of (5.5) with respect to time is:

dL∗

dt
= (esės + evėv + ewėw)

= es

(
−
ab

a+ b
s2 − v2w2 + c− 2dh11s

2
1 + 2h11s1v1w1 − dh12s1 + h12v1w1 + u1

)
+ ev

(
av2 + s2w2 + 2hh21v

2
1 − 2h21s1v1w1 − 2mh21v1 + hh22v1 − h22s1w1 − h22m+ u2

)
+ ew

(
bw2 + s2v2 + 2h31lw

2
1 − 2h31s1v1w1 + h32lw1 − h32s1v1 + u3

)
.

Substituting the controller functions (5.4) into (5.3), we get:

dL∗

dt
= es

(
−

ab

a+ b
s2 − v2w2 + c− 2dh11s

2
1 + 2h11s1v1w1 − dh12s1 + h12v1w1 −

ab

a+ b
s2 + v2w2 − c

+ dh11s
2
1 − 2h11s1v1w1 − h12v1w1 + ds2 − 8s2 + 8h11s

2
1 + 8h12s1

)
+ ev

(
av2 + s2w2 + 2hh21v

2
1

− 2h21s1v1w1 − 2mh21v1 + hh22v1 − h22s1w1 − h22m− av2 − s2w2 − hh21v
2
1 + 2h21s1v1w1

+ 2mh21v1 + h22s1w1 + h22m− hv2

)
+ ew

(
bw2 + s2v2 + 2h31lw

2
1 − 2h31s1v1w1 + h32lw1

− h32s1v1 − bw2 − s2v2 − h31lw
2
1 + 2h31s1v1w1 + h32s1v1 − lw2

)
.

Therefore, we have

dL∗

dt
= (d− 8)e2

s − he
2
v − le

2
w = −

(36
7
e2
s + he

2
v + le

2
w

)
. (5.6)

Hence, we can write the previous equation (5.6) as

dL∗

dt
= −eTD∗e,

where

D∗ =


36
7

0 0

0 h 0
0 0 l

 =


36
7

0 0

0 10 0
0 0 4

 , e =

esev
ew

 .

Since
dL∗

dt
is a negative definite and the error vectors go to zero with time, GFPS is achieved between

Lü-Chen-Cheng four-scroll chaotic system (2.1) and the new chaotic system (2.2).

6. Numerical simulations

6.1. Synchronization of two identical Lü-Chen-Cheng four-scroll chaotic dynamical systems
The outcomes of the numerical simulations in this section are intended to validate the analytical results

obtained in the previous Section 5. We take the initial conditions as: s1(0) = 22, v1(0) = 10, w1(0) = 1,
and s2(0) = 7, v2(0) = 5, w2(0) = 2 in all processes.

Figure 6 shows that the GFPS for two identical Lü-Chen-Cheng four-scroll chaotic systems when

the scaling functions are given by h1 =
1
22
s−

1
2

, h2 = 1, h3 = w− 2. Furthermore, the MPS for two
identical Lü-Chen-Cheng four-scroll chaotic systems is shown in Figure 7, when the scaling factors are
taken as: h1 = 0.5, h2 = 1, h3 = −1. When we simplify the scaling factors as h1 = h2 = h3 = 3,
Figure 8 displays the PS for two identical Lü-Chen-Cheng four-scroll chaotic systems. Moreover, if we
choose the scaling factors as h1 = h2 = h3 = 1, Figure 9 illustrates the complete synchronization for two
identical Lü-Chen-Cheng four-scroll chaotic systems. Finally, the anti synchronization for two identical
Lü-Chen-Cheng four-scroll chaotic systems is displayed in Figure 10, when the scaling factors are taken
as h1 = h2 = h3 = −1.
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Figure 6: The error vectors es, ev, and ew converge to zero
to attain GFPS between two identical Lü-Chen-Cheng four-
scroll chaotic systems.

Figure 7: The error vectors es, ev, and ew converge to zero
to attain MPS between two identical Lü-Chen-Cheng four-
scroll chaotic systems.

Figure 8: The error vectors es, ev, and ew converge to zero to
attain PS between two identical Lü-Chen-Cheng four-scroll
chaotic systems.

Figure 9: The error vectors es, ev, and ew converge to zero to
attain complete synchronization between two identical Lü-
Chen-Cheng four-scroll chaotic systems.

6.2. Synchronization between Lü-Chen-Cheng four-scroll system and new chaotic system

The outcomes of the numerical simulations in this section are intended to validate the analytical results
obtained in the previous Section 5. We take the initial conditions as: s1(0) = 17, v1(0) = 9, w1(0) = 1, and
s2(0) = 7, v2(0) = 6, w2(0) = 2 in all processes.

Figure 11 shows the GFPS between Lü-Chen-Cheng four-scroll chaotic system and new chaotic system
when the scaling functions are given by h1 = −1, h2 = 0.02v+ 2, h3 = 3w− 4. Furthermore, the FPS
between Lü-Chen-Cheng four-scroll chaotic system and new chaotic system is shown in Figure 12, when
the scaling factors are taken as: h1 = 0.05s− 0.75, h2 = 0.05v− 0.75, h3 = 0.05w− 0.75.

When we simplify the scaling factors as h1 = 2, h2 = −1.5, h3 = −5, Figure 13 displays the MPS
between Lü-Chen-Cheng four-scroll chaotic system and new chaotic system. Moreover, if we choose the
scaling factors as h1 = h2 = h3 = 1, Figure 14 illustrates the complete synchronization between Lü-
Chen-Cheng four-scroll chaotic system and new chaotic system. Finally, the anti synchronization between
Lü-Chen-Cheng four-scroll chaotic system and new chaotic system is displayed in Figure 15, when the
scaling factors are taken as h1 = h2 = h3 = −1.



M. M. El-Dessoky, E. Alzahrani, Z. A. Abdulmannan, J. Math. Computer Sci., 35 (2024), 109–119 117

Figure 10: The error vectors es, ev, and ew converge to
zero to attain anti synchronization between two identical Lü-
Chen-Cheng four-scroll chaotic systems.

Figure 11: The error vectors es, ev, and ew converge to zero
to attain GMPS between two nonidentical chaotic systems.

Figure 12: The error vectors es, ev, and ew converge to zero
to attain FPS between two nonidentical chaotic systems.

Figure 13: The error vectors es, ev, and ew converge to zero
to attain MPS between two nonidentical chaotic systems.

Figure 14: The error vectors es, ev, and ew converge to zero
to attain complete synchronization between two nonidenti-
cal chaotic systems.

Figure 15: The error vectors es, ev, and ew converge to
zero to attain anti synchronization between two nonidentical
chaotic systems.
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7. Conclusion

This study explores the concept of generalized function projective synchronization in two identical Lü-
Chen-Cheng four-scroll chaotic systems, as well as between Lü-Chen-Cheng four-scroll and new chaotic
systems with specific parameters. Through the use of adaptive control techniques and Lyapunov stability
theory, nonlinear function controllers are derived to ensure the stability of the error dynamics between
the driving and responding systems. Numerical simulations are conducted to validate the theoretical
findings and showcase the efficacy of the proposed synchronization approach. Ultimately, this technique
is deemed applicable to a wide range of chaotic systems.
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