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Abstract

This study aims to analyze several properties and relations of the degenerate hyper-harmonic numbers and the degenerate
harmonic numbers. For this purpose, many identities including the Daehee numbers and derangement numbers, and degenerate
Stirling numbers of the first kind are provided. Moreover, the first few values of the degenerate hyper-harmonic numbers are
given and some graphical representations are shown.
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1. Introduction

Harmonic numbers and generalized harmonic numbers have been studied and analyzed in various
branches of science such as theoretical physics, number theory, analysis of algorithms in computer sci-
ence and elementary particle physics. In [5], finite series involving harmonic numbers and generalized
harmonic numbers were derived by using the usual differential operator. The familiar hypergeometric
summation theorems have been exploited to investigate diverse striking properties of harmonic numbers
in [6]. Kargin et al. derived some summation formulae including harmonic numbers, whose coefficients
involve r-Lah numbers. Recently hyperharmonic numbers have been examined and worked on by many
mathematicians. For example, Benjamin et al. [3] obtained combinatorial interpretations of many inter-
esting identities in terms of r-Stirling numbers for hyperharmonic numbers. Also, in [18], Kim and Kim
investigated some identities, recurrence relations and properties covering degenerate harmonic numbers,
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hyperharmonic numbers and degenerate hyperharmonic numbers. Rim et al. [24] acquired some non-
linear differential equations from the generating function of hyperharmonic numbers by which some
identities including the hyperharmonic numbers and the Daehee numbers are derived.

Harmonic numbers H, given by the following sum (see [5-7, 13, 16, 24])

w

> % for w €{1,2,3,---},
k=1

are a long-standing matter of survey and are momentous in diverse categories of elementary and analytic
number theory. Several extensions of the mentioned numbers are extensively considered and investigated
(see [3,5-7,9, 10, 14, 18, 19, 21, 24]. Inspired and motivated by these studies, here we work and analyze
the hyper-harmonic numbers and the generalized harmonic numbers. The w™ generalized harmonic
number of order & is provided by

where an integer £ and a positive integer w. It is obvious that HIS) = 0 for w < 0. Also note that HLY
is the partial sum of the Riemann zeta function ((§) for & > 1, where the Riemann zeta function ((§) is
provided by

)=y oo

k=1

for its analytic continuation elsewhere and Re(&) > 1. Another generalizations of the harmonic numbers
are the hyper-harmonic numbers introduced by (see [3, 6, 7, 9, 10, 18, 24])

Ry =3 e, (1.1)
k=1

where p € {1,2,3,...}. Notice that hg) = Hw,hgg) = %(w > 1), and h(()p) =0, (p = 0). The aforesaid
numbers possess many relations and applications in many branches of mathematics (see [2-5, 8, 11—
14, 24]) and satisfy the following classical generating function (see [10])

= log(1 —
Z hgg)zw — 0%(5‘)’ (1.2)
~ (1—2)
which gives the following relation (see [10, 14, 23])
w+p—1
he = ( b ) (Hetp-1—Hp—1) - (1.3)

The derangement numbers d, are introduced by the following exponential generating function (see [19])

= z
D> do =1 (1.4)

w=0

The degenerate form of the exponential function is provided by (see [1, 15, 17, 18, 20, 21, 25, 26])

>

es(z) := (14+A2)% with e}(z) = ex(z), (1.5)
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which gives

ZW
= Z (C)w,?\a/ (16)

w=0

where (Q)w == C(C—A)({—2A) -+ - ({— (w—1)A) for w > 1 in conjunction with () = 1. Itis readily seen

that limy__,¢ ef\(z) = e%%. The degenerate form of logarithm function log, (z), which is the compositional

inverse of ef\(z), is provided by (see [17, 18])

log, (1+2) = a+z7-1 Z AL wmf. (1.7)

We notice that e) (log, (z)) = log, (ex(z)) = z. Note that

0 w—1
11m logx (1+2) Z ) = log(1+z). (1.8)

w=1

The degenerate form of derangement polynomials is provided by (see [21])

> z® ecfl(z)
Y danlOg =5 (19)

1—2z

Upon setting ¢ = 0, we attain d, » := d,A(0) termed the degenerate form of derangement numbers. The
degenerate form of higher-order Cauchy numbers of the second kind is provided by (see [12])

w

) % = 2°(log, (1+2))°. (1.10)

M
@

€

>

0

(S
I

In [20], the degenerate form of higher-order Daehee numbers D, » is provided by

(0.0} Zw B
Z DEE,)?\J =z P(log,(1+2))°. (1.11)

€
o

The degenerate form of Stirling numbers of the first kind is provided by (see [18-20])

o w 1 1 k
S Siala, k) = Uog\(1+2))" ¢ x>0 (1.12)

k!

Note here that lim_,o S1A(w, k) = S1(w, k), where S;(w, k) are the Stirling numbers of the first kind given
by (see [15, 17, 18, 21, 22])

s w k
PRI e -t Yy S} (1.13)
— w! k!

The degenerate form of Stirling numbers of the second kind (see [15, 17, 18, 18, 19, 23]) is provided by

00 w _ 1\&
Y s os; = EE for @ >0, (1.14)
w=§

which gives
w

(QDwr =D _(NSaalw, 1) for (w >0).

1=0
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2. Main results

In this section, several relations including the degenerate harmonic numbers and the degenerate
hyper-harmonic numbers are examined. Also, diverse relations including the degenerate harmonic num-
bers and the degenerate Daehee numbers are analyzed. Kim and Kim [16] introduced the degenerate
form of harmonic numbers by

> log, (1—2z)
S w _ _ _ 2.1
P Hw,)\Z 1—2 ( )

It is clear that limy_,o Hy,n = Hw, (w €{1,2,3,...}). In view of (1.7), we get

w _
(=N 1)1/
Hor=) o :

k=1

(2.2)

In view of (1.2) and (2.1), the degenerate hyper-harmonic numbers of the order p € {1,2,3,...} are consid-
ered by (see [18])

S yle) o __log(1—2)
g Hoaz® =——F——- (2.3)
It is readily derived that

log, (1 —2z) > >
DN YIE Wl

w=1 w=1
— 1(0) — 1(p) — (1(0) _ 14(p)
P P
= Z Hu?xzw - Z Hu.?fl,)\zw = Z <Hw AT wal,?\) z®
w=1 w=2 w=1
and also
log, (1—2z) log, (1+z) (p—1)
_ 1— — H «,
(1—2z)P ( ) (1—2z)p—1 Z wA #

which means the following relation:

H(p)

(p—1) (p)
WA~ Huf,x + Hcf))—l,?\' (w=1),
which is derived in [23] in another way. For 1 < s < p, it is observed that

logy(1—2z)  log,(1—2z) 1

(1-2z)p  (1—2z)P~s (1—2)3

_ p—s)_1 - w,w

=3 HEE Y () enes 24
1=1 w=0
00 00 oo w+1

(p—s) 1 s+w—2 1 (p—s)[(s+tw—1-1

:ZHL?\ z Z( s 1 >z“’ :ZZHL?\ ( s 1 z%.

1=1 w=1 w=1 1=1

It is seen in (2.3) and (2.4) that
w+1
(p) (p—s)[s+w—1-1
H(S/}\—Zng\S( s—1 '
1=1

It is obtained from (2.3) that

logy(1—2z) 1 _logA(l—z) B 1 > w
SR e (A — e (;H‘”’”>
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1 o0 w w 1 o) w
- (1—2z)p—2 ; (Z Hk,7\> zw = 1—zp2 Zl Hgl)xz (2.5)

o0 w
(2) 1 (3)
s 2 (L) = e 2 e
w=1 \k=1 w=1

Theorem 2.1. For w,p €{1,2,3,...}, we have
w
H (—1D)*KISo A (w, k) = (—1)®
Z Kl Soa(w, k) =(-1)® <p>u 12 w,
k=1
where< p > A= p(P+A)(p+2A)--- (C+ (p—1)A) for w > 1 in conjunction with < p >ox= 1.

Proof. Changing z by 1 — ex(z) in (2.3), we attain that

oo
1
—ze, °(z) = Z Hl(cp}z(—l)kk!g (ea(z) — 1)
k=1
S 1 (P) (ks § 2° 5 (3 yle) 2
=) HAEDM Y Soalw ) =3 | 3 HAED KIS (wk) |
k=1 w=k w=1 \k=1 )
and also derive that
 (Pwn . <P >wa
P _ s _ 1 w
—ze, (Z)——ZZ " Z“’—ZZ( 1) ol @
w=0 w=0
00 00 LW
=) (-D® <p>u_1a =) (D¥ <p>uip 0,
(w ! w!
w=1 w=1
which completes the proof of the theorem. O

Let w €{1,2,3,...}. It can be given that

1 w
) HiaA (D)@ RKIS A (w, k) = w.
<l>wp-1a ]; «

Now, diverse relations including the degenerate harmonic numbers and the degenerate Daehee num-
bers are analyzed. It is observed from (1.11) that

logy(1—2z) —logy\(1—2z)1+z

z (142) —z

1
(—1) @ TH, Az (1 + Z)

o

1

S
I

(DM Heaz® + ) (1) “Hei122%

w=0

o

€
I

M

(1) Hep + (1) Hepr1) 2% + Hia,

€
[N

which means
Dox =Hia, Doy = (—1D)Cw! (Hyt1a —Hon), (0 >1),

since Hy 110 —Hoa = %H and (1.6).
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Theorem 2.2. Let w €{1,2,3,...}. The following formula holds

w

(p) p i

D = w! Z Hi97 A (w 2 i) (—1)t.
i=0

Proof. 1t is readily investigated from (1.11) and (2.3) that

logx(l +2z) _ —log, (1+z) (1+2)° . i( 1+1H S 1i < )

z (1+2z)P —z = =
Eemne £ (£ (Ee )
i=0 j=0 w=0 \i=0
which implies the asserted result of the theorem. O

Theorem 2.3. The following formula holds for any non-negative integer w and k > 1:

w w—i . (p—1) (k)
(p) ifWw—1 (k)w—i—jD',y\ H'+1,)\
D) :w!Z ' (—1)1< j ) (wl_i)! A (2.6)

Proof. It is analyzed from (1.11) and (2.3) that

<log>\(1 —|—Z)> . _log, (1+2) <10g>\(1 +2z) ) el (14 )k
z N (1+2z)k

i=0 £=03j=0
o _ (p—1)q (k)
_ Z iw 1(1)i<w—1> (k)w—l—]D)g\ Hpr])\ w
w=01i=0 j=0 ) (w—1)!
which proves (2.6). O]
Theorem 2.4. The following formula is valid for any non-negative integer w:
w—1
= Z (2.7)
j=0
Proof. 1t is noticeably acquired from (1.11) and (2.1) that
ad log,(14+2z) log,(1+2z) z > : P o @l .Dj,
Y Hops® =S = SRS S Sy (D Y 2= ) Y e,
w=1 j=0 w=1 w=1 j=0
which provides the claimed result (2.7). O
Theorem 2.5. The following formula is valid for any non-negative integer w:
w—1 w
W) = (w10 Y () (-1 1Dl @8)

k=0
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Proof. 1t is clearly attained from (1.11) and (2.3) that

_log}\(l +z) log,(1+z) z
(1—z)p —z (1—2z)°
k 1+1

s |3 Z 11,2
=) (Diai; D (el g

k=0 T 1=1 )
w

oo w—1
— Z (?:)(—1)“’le,A(—p)kl(w—k)Z

w!’
which provides the asserted result (2.8). O

Theorem 2.6. The following correlation is valid for any non-negative integer w:

w—1w-—1

wHP =Y Y (t) (?)Dgg)k,x(—l)k“q,‘;\”(w (=01 2.9)

k=0 1=0

Proof. 1t is obvious to compute from (1.10), (1.11), and (2.3) that

log,(14+z) (log,(1+2) —z =l 4
 (1-2)F _< -z ><108>\(1+Z)> (1—2z)°

which means the claimed relation (2.9). O

Theorem 2.7. The following formula holds for any non-negative integer w:

+1 11
3 he o@D v ede @ -1+ 1)

LA _ I LA _ |
= (w—1+1)! ~ (w—1+1)!

(2.10)

Proof. 1t is clearly derived from (1.9) and (2.3) that

log, (1+z - 3
_Mex(—d =) Rz Y (Daar
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oo w+l w
(p) z
=Y Y HYDwaalw—141)
w=1 1=1 (w—1+1)
and also
log, (1+2z) 2 o)1 e w1
- —z)=Y H de—
00 0o Zw_l oo w+l LW
= ZH{,F;\)Z} Z dwfll}\w wl = Z H{’p}\) dwfll}\(w—l‘i‘l)m,
1=1 w=1 ) w=1 1=1 )
which implies the asserted relation (2.10). O
Theorem 2.8. The following formula holds for any non-negative integer w:
w w—1 w’
Don =2 3 (D HZPleaSialw =t &= (211)
i=0 £=0 )
Proof. It is obvious to investigate from (1.11), (1.12), and (2.3) that
> z®  log,(1+z) —log,(1+2z)(1+2)° —log,(14+2z) 1
D i A — A A = LP 1 1
wZ_O WA D! z (14+2z)e —z (1+2z)° _Zex(og)\( +2))
= = log (1+2))%
_ 1+1H 1 1 A
Z( 2P
i=1 £=0
o o w Zw
= Z( 1.,.1 )\Zl Z 7\31 )\ w, 5)
i=0 w=0 a:o
o0 w w—1 Zw
=) Z THP AP eaSIA(w —1, &),
w=0 i= EZO ((U 1)!
which means (2.13). O

Now, we introduce the generalized degenerate harmonic numbers and then investigate several prop-

erties and relations. For A € C, we consider the generalized degenerate harmonic numbers h |

5 npan = Clom -2
’ 1—2z
w=0

Note that i)y = Ha, (w > 0) in (2.1).
Now, we will provide some theorems.

Theorem 2.9. The following formula holds for any non-negative integer w:

w 3 .
(o) (—=1)*7PS A (w—1,p)p!
Aoy = Z o= Hi .
=

Proof. 1t is obvious to investigate from (1.12), (2.1), and (2.12) that

))p+1

i 1
S e )}\Zw ogy (1—
= 1—z

(p}}\ given by

(2.12)

(2.13)
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(—log, (1—2))
=B log, (1-2))°
:ZHi)\Zl Z ( 1) 51,7\((0, p)p'zw
’ w!
i=0 w=0
[oe] w
—1)P7 PSS A (w —1,
:ZZ( ) 17\(' p)p Hy 2z,
w=01i=0 (w a 1)
which means the desired correlation (2.13). O
Theorem 2.10. The following correlation is valid for any non-negative integer w:
w i (&) ..
(p) _ E=1\, wjpjaSiali—jpe)
h‘”’}‘_.Z,Z<w—i>( 1) Ao (2.14)
i=03j=0
Proof. 1t is clearly attained from (1.12), (2.3), and (2.12) that
s -1 1—2z))P+1
S hfﬁ,);\lw _ ngl(_zl))
w=0
~ (—log, (1—12)) o £-1
= 12t (—logy (1—12))" (1—2z)
¥ e e v (C1PS1AG, p)e! E—i
- ZHwAZ Z it )Z i (=1)%*
w=0 j=0 i=0
C o w (&1 H S Siali—i,p)
S (e
i Y
w=01=0 j=0 w—t (1 ])
which implies the asserted relation (2.14). O
Theorem 2.11. The following formula holds for any non-negative integer w:
’k‘” b0 e
w, w'ZZ H;+1>\D p;x-
i=0j O
Proof. 1t is obvious to obtain from (1.11) and (2.3) that
i DNz <10g)\(1+z))p+1
w=0 z
—log, (1+2z) [log, (1+2)\" K
= 1
C2)(1+2) z (1+2)
_ 5 (%) o ole-12 o izt
= Z( 1)wHw+1?\ZwZD])\ ]TZ l?
w=0 j=0 i=0
oo W D(p) 00 i
=3 Y (FHE SR e 3
w=0j=0 (w—3)t = U
_ i i - DR w0 pe) e
w=01=0 j=0 (w—Dii—j)t AT
which completes the proof of the theorem. O
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Theorem 2.12. The following correlation is valid for any non-negative integer w:
(—1)®+1=PS 5 (w + 1, p)p! = (w +1)! ( nlel — hgg;;“) . (2.15)

Proof. With the help of S;(w,p) =0 for 0 < w < p and h(()f;\) = 0, it is clearly attained from (1.11) and
(2.12) that

i (=D PS1a(w, P)P!Zw_1 _ (=log, (1—2))°

w! z
w=p
(—log, (1—2))° <1 >
= -—1
1—z z
_(logy (1-2))° (- log, (1-2))°
z(1—2z) 1—z
(o S 1 (p—1)  (+(p—1) _ 3 (p—D)
- Z w)\ 'z Z hu?,x 2% = Z (hu‘))Jrl,?\_hu?,?\ )Zwr
w=0 w=0 w=0
and also
i (—1)“)*951,)\((0,0)0!2(0_1 _ i (—1)w+1*psl,7\(w+1lp)plzw
— w! (w+1)!
w=p w=p—1
B i (—1)“’“7"51,7\(604—1,9)9!20”
= (w—+1)!
Hence we arrive at the claimed relation (2.15). O

Theorem 2.13. The following formula holds for any non-negative integer w:

S (w —i+ p) (—1)“’*"*151,5(1, p+Dp+1)! Y <w —itp— 1) h{p{. (2.16)

] _
1i=0 P v i=0 p—1

Proof. Utilizing > 0 _, (‘:)zw = 11277 and then it is obvious to derive from (1.12) and (2.12) that

—log, (1—2z) el
(=)

HHg

(—D)®= P18 A (w, p+1)(p+1)! wz( ) i

w!
w=0
ii( —1+p)( DO P SA (i, p+ Dlp+1)! o
w=01=0 i
and also
—log, (1—2)\°"" (—log}\(l—z))p+1 1
1—2z N 1—z (1—2z)p
0wy (1t i v v (wite—1\. () w
:Zth Z -1 Z:ZZ -1 hl)\ s
w=0 i=0 P w=01=0 P
which means the claimed formula (2.16). O

Theorem 2.14. The following correlation is valid for any non-negative integer w:

w w

. 1)y
Y (T) =D Is Al e+ D+ Dide—in = ! ngp;i( Jo—in (2.17)
A\ = " (w—1)!



A. Al e’damat, et al., J]. Math. Computer Sci., 35 (2024), 136-148 146

Proof. 1t is clearly attained from (1.9), (1.12), and (2.12) that

(~log, (1—2))°"" v ) e — v 5 (0) (“Da—inr o
(1—2) _wz_ohw')‘z ;} il wz_oéh“’)‘ (w—1i)! !

and also

—log, (1—2))°*! —
( OgA1 —ZZ ) ex(—z) = (—log, (1 _Z))pH ei\(?

(D P S (wp+ Dp+ D! ¢, 2
w! Z dw\i
0 i=0

> (V) sl o4 D+ DS

01=0

M

€
Il

Z(U

Nt

€
Il

which implies the asserted formula (2.17).

3. Further remarks

The degenerate hyper-harmonic numbers of the order p €{1,2,3,...} are given by

In this section, computational values, and graphical representations of degenerate hyper-harmonic
numbers are shown. A few of them are

HY =1,
(p) 1 A
Hn =372t
2 2

() _1 PPN PA A
My =3Pt 5752 1%
o 1 11p 3p%2 p® 1IA 3pA p2A A2 pA2 A3
e -, =2 F_ -4 A Fr2, 2 2 _2
T R 1 L R S 4+4+6 24

1 50 702 o> p* B5A T7pA  pPA pPA A2 A2 222 A3 A3 a4
Hé‘;)z—+—p+i+p A 7PA_PA_PpA A P P A P A
AT5"6 "8 "3 24 12 8 2 12 "24 "3 T 12 12 24 120
H(p)_1+137p 1502 17p> 50  p® 1374 15pA  17p°A  5p°\
6A 76 180 16 36 48 120 360 16 24 24

B @JFLAZ 1702 | 5022 p°A2 174 5o0%  pA° 7\4+p7\4 A5
48 16 | 36 24 36 144 48 48 48 ' 120 720°

We investigate the graphical representations of degenerate hyper-harmonic numbers H (f)’)\ (Figure 1).
This shows the ten plots combined into one.
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Figure 1: Degenerate hyper-harmonic numbers H

In Figure 1 (top-left), we choose p =1 and —5 < A < 5. In Figure 1 (top-right), we choose p = 3 and

—5 < A < 5. In Figure 1 (bottom-left), we choose p =5 and —5 < A < 5. In Figure 1 (bottom-right), we
choose p =7 and —5 < A < 5.

3

Table 1: Degenerate hyper-harmonic numbers H, )7\

w A=0 A=2

1 1 1

2 72 13/4

3 47/6 55/8

4 57/4 765/64

5 459/20 2373/128

6 341/10 13657/512

7 3349/70 37263/1024

8  3601/56 781725/16384

9  42131/504 1987865/32768

10 44441/420 9865075,/131072

11  605453/4620 23993489/262144
12 631193/3960 229572889,/2097152
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4. Conclusion

In this paper, we have analyzed diverse properties and relations of the degenerate hyper-harmonic
numbers, and the degenerate harmonic numbers. We have also derived many identities and formulas
including the Daehee numbers and derangement numbers, and degenerate Stirling numbers of the first
kind. Furthermore, the first few values of the degenerate hyper-harmonic numbers are given and some
graphical representations are shown, as applications.

It is possible that this paper’s idea can be applied to polynomials that are similar and these polyno-
mials have potential applications in other fields of science in addition to the applications at the end of the
article. We will continue to explore this opinion in various directions in our next scientific works to ad-
vance the purpose of this article. For future directions, we will consider that the polynomials introduced
in this paper can be examined within the context of the monomiality principle and umbral calculus to
have alternative ways of deriving our results.
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