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Abstract

In [M. H. Faroughi, R. Ahmadi, Math. Nachr., 284 (2010), 681–693], we generalized the concept
of fusion frames, namely, c-fusion integral, which is a continuous version of the fusion frames and
in [M. H. Faroughi, A. Rahimi, R. Ahmadi, Methods Funct. Anal. Topology, 16 (2010), 112–119]
we extended it for generalized frames. In this article we give some important properties about it
namely erasures of subspaces, the bound of gc-erasure reconstruction error for Parseval gc-frame of
subspaces. c©2016 All rights reserved.
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1. Introduction

Throughout this paper, H will be a Hilbert space and H the collection of all closed subspace of
H. Also, (X,µ) will be a measure space, and v : X → [0,+∞) will be a measurable mapping such
that v 6= 0 a.e.. We shall denote the unit closed ball of H by H1.

Frames was first introduced in the context of non-harmonic Fourier series [8]. Outside of signal
processing, frames did not seem to generate much interest until the ground breaking work [7]. Since
then the theory of frames began to be more widely studied. During the last 20 years, the theory of
frames has grown up rapidly, several new applications have been developed. For example, besides
traditional application as signal processing, image processing, data compression, and sampling theory,
frames are now used to mitigate the effect of losses in pocket-based communication systems and hence
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to improve the robustness of data transmission on [4], and to design high-rate constellation with full
diversity in multiple-antenna code design [16]. In [1–3], some applications have been developed.

The fusion frames were considered by Casazza, Kutyniok and Li in connection with distributed
processing and are related to the construction of global frames [5, 6]. The fusion frame theory is in
fact more delicate due to complicated relations between the structure of the sequence of weighted
subspaces and the local frames in the subspaces and due to the extreme sensitivity with respect to
changes of the weights.

In [9], we extended the fusion frames to their continuous versions in measure spaces and in [10],
we extended the C-fusion frames to GC-fusion frames. In this paper, we shall investigate some
properties about it and interested to C-erasure reconstruction error of gc-frame of subspaces.

Definition 1.1. Let {fi}i∈I be a sequence of members of H. We say that {fi}i∈I is a frame for H,
if there exist 0 < A ≤ B <∞ such that for all h ∈ H

A‖h‖2 ≤
∑
i∈I

| < fi, h > |2 ≤ B‖h‖2.

The constants A and B are called the frame bounds. If A,B can be chosen so that A = B, we
call this frame an A-tight frame and if A = B = 1, it is called a Parseval frame. If we only have
the upper bound, we call {fi}i∈I a Bessel sequence. If {fi}i∈I is a Bessel sequence then the following
operators are bounded,

T : l2(I)→ H, T (ci) =
∑
i∈I

cifi,

T ∗ : H → l2(I), T ∗(f) = {< f, fi >}i∈I ,

Sf = TT ∗f =
∑
i∈I

< f, fi > fi.

These operators are called synthesis operator, analysis operator and frame operator, respectively.

Definition 1.2. For a countable index set I, let {Wi}i∈I be a family of closed subspace in H, and
let {vi}i∈I be a family of real numbers, called weights, i.e., vi > 0 for all i ∈ I. Then {(Wi, vi)}i∈I is
a frame of subspaces for H, if there exist 0 < C ≤ D <∞ such that for all h ∈ H

C‖h‖2 ≤
∑
i∈I

vi
2‖πWi

(f)‖2 ≤ D‖h‖2, (1.1)

where πWi
is the orthogonal projection onto the subspace Wi.

We call C and D the frame of subspaces bounds. The family {(Wi, vi)}i∈I is called a c-tight frame
of subspaces, if in (1.1) the constants C and D can be chosen so that C = D, a Parseval frame of
subspaces provided C = D = 1 and an orthonormal frame of subspaces basis, if H =

⊕
i∈I Wi. If

{(Wi, vi)}i∈I possesses an upper frame of subspaces bound, but not necessarily a lower bound, we call
it a Bessel frame of subspaces sequence with Bessel frame of subspaces bound D. The representation
space employed in this setting is

(
∑
i∈I

⊕Wi)l2 = {{fi}i∈I |fi ∈ Wi and {||fi||}i∈I ∈ l2(I)}.

Let {(Wi, vi)}i∈I be a frame of subspaces for H. The synthesis operator, analysis operator and
frame operator are defined, respectively, by

TW : (
∑
i∈I

⊕Wi)l2 → H with TW (f) =
∑
i∈I

vifi,
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T ∗W : H → (
∑
i∈I

⊕Wi)l2 with T ∗W (f) = {viπWi
(f)}i∈I ,

SW (f) = TWT
∗
W =

∑
i∈I

v2
i πWi

(f).

By Proposition 3.7 in [6], if {(Wi, vi)}i∈I is a frame of subspaces for H with bounds C and D,
then SW is a positive and invertible operator on H with CId ≤ SW ≤ DId. The theory of frames
has a continuous version as follows.

Definition 1.3. Let (X,µ) be a measure space. Let f : X → H be weakly measurable, i.e., for all
h ∈ H, the mapping x→< f(x), h > is measurable. Then f is called a continuous frame or c-frame
for H, if there exist 0 < A ≤ B <∞ such that for all h ∈ H

A‖h‖2 ≤
∫
X

| < f(x), h > |2dµ ≤ B‖h‖2.

The representation space employed in this setting is

L2(X,µ) = {ϕ : X → H|ϕ is measurable and ‖ϕ‖2 <∞},

which ‖ϕ‖2 = (
∫
X
||ϕ(x)||2dµ)

1
2 . The synthesis operator, analysis operator and frame operator are

defined, respectively, by

Tf : L2(X,µ)→ H,

< Tfϕ, h >=

∫
X

ϕ(x) < f(x), h > dµ(x),

T ∗f : H → L2(X,µ),

(T ∗f h)(x) =< h, f(x) >, x ∈ X,
Sf = TfT

∗
f .

Also by Theorem 2.5. in [12], Sf is positive, self-adjoint and invertible.
We need the following theorems and the proofs can be found in [12].

Theorem 1.4. Let f be a continuous frame for H with the frame operator Sf and let V : H → K be
a bounded and invertible operator. Then V ◦ f is a continuous frame for K with the frame operator
V SfV

∗.

Theorem 1.5. Let K be a closed subspace of H and let P : H → K be an orthogonal projection.
Then the following hold:

(i) If f is a continuous frame for H with bounds A and B, then Pf is a continuous frame for K
with the bounds A and B.

(ii) If f is a continuous frame for K with the frame operator Sf , then for each h, k ∈ H,

< Ph, k >=

∫
X

< h, S−1
f f(x) >< f(x), k > dµ(x).

The following lemmas and theorems can be found in operator theory text books [11, 13–15] which
we shall use them in the paper.
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Lemma 1.6. Let u : H → K be a bounded operator. Then

(i) ‖u‖ = ‖u∗‖ and ‖uu∗‖ = ‖u‖2.

(ii) Ru is closed, if and only if Ru∗ is closed.

(iii) u is surjective, if and only if there exists c > 0 such that for each h ∈ H

c‖h‖ ≤ ‖u∗(h)‖.

Lemma 1.7. Let u be a self-adjoint bounded operator on H. Let

mu = inf
h∈H

< uh, h >, Mu = sup
h∈H

< uh, h > .

Then, mu,Mu ∈ σ(u).

Theorem 1.8. Let u : K → H be a bounded operator with closed range Ru. Then there exists a
bounded operator u† : H → K for which uu†f = f , f ∈ Ru. Also, u∗ : H → K has closed range and
(u∗)† = (u†)∗. The operator u† is called the pseudo-inverse of u.

Theorem 1.9. Let u : K → H be a bounded surjective operator. Given y ∈ H, the equation ux = y
has a unique solution of minimal norm, namely, x = u†y.

2. C-Frame of subspaces

In this section we introduce the continuous version of frame of subspaces and we obtain some
useful properties of it.

Definition 2.1. Let F : X → H be such that for each h ∈ H, the mapping x 7→ πF (x)(h) is
measurable (i.e., is weakly measurable), and let v : X → [0,+∞) be a measurable mapping such
that v 6= 0 a.e.. We say that (F, v) is a c-frame of subspaces for H, if there exist 0 < A ≤ B < ∞
such that for all h ∈ H

A‖h‖2 ≤
∫
X

v2(x)‖πF (x)‖2dµ ≤ B‖h‖2. (2.1)

(F, v) is called a tight c-frame of subspaces for H, if A = B, and Parseval if A = B = 1. If we
only have the upper bound, we call (F, v) is a Bessel c-frame of subspaces mapping for H.

Definition 2.2. Let F : X → H. Let L2(X,H,F ) be the class of all measurable mappings f : X → H
such that for each x ∈ X, f(x) ∈ F (x) and∫

X

‖f(x)‖2dµ <∞.

It can be verified that L2(X,H,F ) is a Hilbert space with inner product defined by

< f, g >=

∫
X

< f(x), g(x) > dµ,

for f, g ∈ L2(X,H,F ).
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Remark 2.3. For brevity, we denote L2(X,H,F ) by L2(X,F ). Let (F, v) be a Bessel c-frame of
subspaces mapping, f ∈ L2(X,F ) and h ∈ H. Then

|
∫
X

v(x) < f(x), h > dµ| = |
∫
X

v(x) < πF (x)(f(x)), h > dµ|

= |
∫
X

v(x) < f(x), πF (x)(h) > dµ| ≤
∫
X

v(x)‖f(x)‖.‖πF (x)(h)‖dµ

≤ (

∫
X

‖f(x)‖2dµ)1/2(

∫
X

v2(x)‖πF (x)(h)‖2dµ)1/2

≤ B1/2‖h‖(
∫
X

‖f(x)‖2dµ)1/2.

So we may define:

Definition 2.4. Let (F, v) be a Bessel c-frame of subspaces mapping for H. We define the c-frame
of subspaces pre-frame operator (synthesis operator) TF : L2(X,F )→ H, by

< TF (f), h >=

∫
X

v(x) < f(x), h > dµ,

where f ∈ L2(X,F ) and h ∈ H.

By Remark 2.3, TF : L2(X,F )→ H is a bounded linear mapping. Its adjoint

T ∗F : H → L2(X,F ),

will be called c-frame of subspaces analysis operator, and SF = TF ◦ T ∗F will be called c-frame of
subspaces operator. The representation space in this setting is L2(X,F ).

Remark 2.5. Let (F, v) be a Bessel c-frame of subspaces mapping for H. Then TF : L2(X,F ) → H
is indeed a vector-valued integral, which for f ∈ L2(X,F ) we shall put

TF (f) =

∫
X

vfdµ,

where

<

∫
X

vfdµ, h >=<

∫
X

v(x) < f(x), h > dµ, h ∈ H.

For each h ∈ H and f ∈ L2(X,F ), we have

< T ∗F (h), f > =< h, TF (f) >

=

∫
X

v(x) < h, f(x) > dµ

=

∫
X

v(x) < πF (x)(h), f(x) > dµ

=< vπF (h), f > .

Hence for all h ∈ H,
T ∗F (h) = vπF (h). (2.2)

So T ∗F = vπF .
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Remark 2.6. A c-frame of subspaces is indeed a generalization of frame of subspaces. In Definition
2.1, if we put X = I and µ be the counting measure, then F is a frame of subspaces according
to Definition 1.2. Also with this hypothesis, L2(X,F ) changes to (

∑
i∈I ⊕Wi)l2 , the representation

space of frame of subspaces.

Definition 2.7. Let (F, v) and (G, v) be Bessel c-frame of subspaces mappings for H. We say (F, v)
and (G, v) are weakly equal, if T ∗F = T ∗G, which is equivalent to vπF (h) = vπG(h), a.e. for all h ∈ H.
Since, v 6= 0 a.e., (F, v) and (G, v) are weakly equal, if πF (h) = πG(h), a.e. for all h ∈ H.

Remark 2.8. Let TF = 0. Now, let O : X → H be defined by O(x) = {0}, for almost all x ∈ X. Then
(O, v) is a Bessel c-frame of subspaces mapping and TO = 0. Let h ∈ H. Since vπF (h) ∈ L2(X,F ),
so ∫

X

v2(x) < πF (x)(h), πF (x)(h) > dµ =

∫
X

v(x) < v(x)πF (x)(h), h > dµ =< TF (vπF (h)), h >= 0.

Thus, πF (x)(h) = 0, a.e. Therefore, πF (h) = πO(h), a.e. Hence (F, v) and (O, v) are weakly equal.

Definition 2.9. For any Bessel c-frame of subspaces mapping (F, v) for H, we shall denote

AF,v = inf
h∈H1

‖vπF (h)‖2,

BF,v = sup
h∈H1

‖vπF (h)‖2 = ‖vπF‖2.

Remark 2.10. Let (F, v) be a Bessel c-frame of subspaces mapping for H. Since, for each h ∈ H

< TFT
∗
F (h), h >= ‖vπF (h)‖2 =

∫
X

v2(x)‖πF (x)‖2dµ,

AF,v and BF,v are optimal scalars which satisfies

AF,v ≤ TFT
∗
F ≤ BF,v.

In other words AF,v is the supremum of all positive numbers A, and BF,v is the infimum of all positive
numbers B which satisfies in (2.1). So (F, v) is a c-frame of subspaces for H, if and only if AF,v > 0.

Lemma 2.11. Let (F, v) be a Parseval c-frame of subspaces for H. Then T ∗FTF is the orthogonal
projection of L2(X,F ) onto T ∗F (H).

Proof. By Remark 2.5 we have T ∗F (h) = vπF (h). Thus

||T ∗F (h)||2 = ||vπF (h)||2 =

∫
X

||v(x)πF (x)(h)||2dµ =

∫
X

v2(x)||πF (x)(h)||2dµ = ||h||2.

Thus T ∗F is an isometry. So we can embed H into L2(X,F ) by identifying H with T ∗F (H). Let
P : L2(X,F )→ T ∗F (H) be the orthogonal projection. For each f ∈ L2(X,F ) and h ∈ H we have

< Pf, T ∗F (h) >=< f, PT ∗F (h) >=< f, T ∗F (h) >=< TF (f), h >=< T ∗FTF (f), T ∗F (h) > .

Thus
Pf − T ∗FTF (f) ⊥ T ∗F (H).

But ran(P ) = T ∗F (H), hence P = T ∗FTF .
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Example 2.12. Let X = [−1, 1] with the Lebesgue measure µ and let Hn be a n-dimensional Hilbert
space with orthonormal basis {ei}ni=1. For each x ∈ X, let

F (x) =
{
λ

n−1∑
i=0

xiei+1 : λ ∈ C
}
, and υ(x) =

√√√√ n∑
i=1

x2i−2.

Then F : X → H and (F, v) is a c-frame of subspaces for H. For the proof of the example we
refer the reader to [12].

3. Main result

Theorem 3.1. Let (F, v) be a c-frame of subspaces for H with bounds C and D, and let Y ⊆ X be
measurable. Then the following assertions are satisfied:

(i) If
∫
Y
v2(x)dµ > D, then ∩x∈Y F (x) = {0}.

(ii) If
∫
Y
v2(x)dµ = D, then ∩x∈Y F (x) ⊥ span{F (x)}x∈X−Y a.e.

(iii) If c =
∫
Y
v2(x)dµ < C, then F : X − Y → H is a c-frame of subspaces with bounds C − c and

D.

Proof. (i) Suppose h ∈ ∩x∈Y F (x), then πF (x)(h) = h for all x ∈ Y . We have

D‖h‖2 < ‖h‖2(

∫
Y

v2(x)dµ) =

∫
Y

‖h‖2v2(x)dµ

=

∫
Y

‖πF (x)(h)‖2v2(x)dµ

≤
∫
Y

‖πF (x)(h)‖2v2(x)dµ+

∫
X−Y
‖πF (x)(h)‖2v2(x)dµ

=

∫
X

‖πF (x)(h)‖2v2(x)dµ ≤ D‖h‖2,

hence h = 0.
(ii) If

∫
Y
v2(x)dµ = D and h ∈ ∩x∈Y F (x), then

D‖h‖2 =

∫
Y

‖πF (x)(h)‖2v2(x)dµ

≤
∫
Y

‖πF (x)(h)‖2v2(x)dµ+

∫
X−Y
‖πF (x)(h)‖2v2(x)dµ

≤ D‖h‖2,

thus

D‖h‖2 +

∫
X−Y
‖πF (x)(h)‖2v2(x)dµ ≤ D‖h‖2.

Hence ∫
X−Y
‖πF (x)(h)‖2v2(x)dµ ≤ 0.

Therefore we have πF (x)(h) = 0, for all x ∈ X − Y (a.e.) and we conclude that h ⊥ F (x) for all
x ∈ X − Y (a.e.). Thus h ⊥ span{F (x)}x∈X−Y (a.e.) and we get

∩x∈Y F (x) ⊥ span{F (x)}x∈X−Y .
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(iii) For all h ∈ H we have∫
X−Y
‖πF (x)(h)‖2v2(x)dµ =

∫
X

‖πF (x)(h)‖2v2(x)dµ−
∫
Y

‖πF (x)(h)‖2v2(x)dµ

≥ C‖h‖2 − ‖h‖2

∫
Y

v2(x)dµ = (C − c)‖h‖2.

The upper bound is obvious.

The following corollary immediately follows from Theorem 3.1.

Corollary 3.2. Let (F, v) be a c-frame of subspaces for H with bounds C and D, and let Y ⊆ X be
measurable. Then the following statements are equivalent:

(i) c =
∫
Y
v2(x)dµ < C.

(ii) F : (X − Y )→ H is a c-frame of subspaces with bounds C − c and D.

Definition 3.3. Let {Kx}x∈X be a collection of Hilbert spaces. for each x ∈ X, suppose that
Λx ∈ B(F (x), Kx) and put

Λ = {Λx ∈ B(F (x), Kx) : x ∈ X}.

Then (Λ, F, v) is a gc-frame of subspaces for H, if there exist 0 < A ≤ B < ∞ such that for all
h ∈ H

A‖h‖2 ≤
∫
X

v2(x)‖Λx(πF (x)(h))‖2dµ ≤ B‖h‖2,

where πF (x) is the orthogonal projection onto the subspace F (x).

(Λ, F, v) is called a tight gc-frame of subspaces for H, if A,B can be chosen so that A = B, and
parseval, if A = B = 1. If we only have the upper bound, we call (Λ, F, v) is a Bessel gc-frame of
subspaces mapping for H.

Let K = ⊕x∈XKx and L2(X,K) be a collection of all measurable functions ϕ : X −→ K such
that for each x ∈ X, ϕ(x) ∈ Kx and ∫

X

||ϕ(x)||2dµ <∞.

It can be verified that L2(X,K) is a Hilbert space with inner product defined by

〈
ϕ, γ

〉
=

∫
X

〈
ϕ(x), γ(x)

〉
dµ,

for ϕ, γ ∈ L2(X,K) and the representation space in this setting is L2(X,K).

Remark 3.4. Let (Λ, F, v) be a Bessel gc-frame of subspaces mapping with Bessel bound B, ϕ ∈
L2(X,K) and h ∈ H. Then

|
∫
X

v(x)
〈
Λ∗x(ϕ(x)), h

〉
dµ| = |

∫
X

v(x)
〈
Λ∗x(ϕ(x)), πF (x)(h)

〉
dµ|

= |
∫
X

v(x)
〈
ϕ(x),Λx(πF (x)(h))

〉
dµ|
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≤
∫
X

v(x)‖ϕ(x)‖.‖Λx(πF (x)(h))‖dµ

≤ (

∫
X

‖ϕ(x)‖2dµ)1/2(

∫
X

v2(x)‖Λx(πF (x)(h))‖2dµ)1/2

≤ B1/2‖h‖(
∫
X

‖ϕ(x)‖2dµ)1/2.

So we may define the following:

Definition 3.5. Let (Λ, F, v) be a Bessel gc-frame of subspaces mapping for H. We define the
gc-pre-frame of subspaces operator (synthesis operator) Tgf : L2(X,K)→ H, by

〈
Tgf (ϕ), h

〉
=

∫
X

v(x)
〈
Λ∗x(ϕ(x)), h

〉
dµ,

where ϕ ∈ L2(X,K) and h ∈ H. It is obvious that Tgf is linear and by Remark 3.4 Tgf is a bounded
linear mapping. Its adjoint

T ∗gf : H → L2(X,K),

will be called gc-frame of subspaces analysis operator, and Sgf = Tgf ◦ T ∗gf will be called gc-frame of
subspaces operator. For each h ∈ H and ϕ ∈ L2(X,K), we have〈

T ∗gf (h), ϕ
〉

=
〈
h, Tgf (f)

〉
=

∫
X

v(x)
〈
h,Λ∗x(ϕ(x))

〉
dµ

=

∫
X

v(x)
〈
πF (x)(h),Λ∗x(ϕ(x))

〉
dµ

=

∫
X

v(x)
〈
Λx(πF (x)(h)), ϕ(x)

〉
dµ

=
〈
vΛ.πF.(h), f

〉
.

Hence for each h ∈ H,
T ∗gf = vΛ.πF. .

Definition 3.6. For each Bessel gc-frame of subspaces mapping (F, v) for H, we denote

AΛ,v = inf
h∈H1

‖vΛ.πF.(h)‖2,

BΛ,v = sup
h∈H1

‖vΛ.πF.(h)‖2 = ‖vΛ.πF.‖2.

Remark 3.7. Let (Λ, F, v) be a Bessel gc-frame of subspaces mapping for H. Since, for each h ∈ H〈
TgfT

∗
gf (h), h

〉
= ‖vΛ.πF.(h)‖2,

AΛ,v and BΛ,v are optimal scalars which satisfies

AΛ,v ≤ TgfT
∗
gf ≤ BΛ,v.

So (Λ, F, v) is a gc-frame of subspaces for H, if and only if AΛ,v > 0.
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Proposition 3.8. The following conditions are equivalent.

(i) (Λ, F, v) is a gc-frame of subspaces for H with bounds C and D.

(ii) CId ≤ Sgf ≤ DId.

Moreover, the optimal bounds are ‖Sgf‖ and ‖S−1
gf ‖−1.

Proof. (i) ⇒ (ii) is obvious. For (ii) ⇒ (i), let T ∗gf denote the analysis operator of (Λ, F, v). Since
Sgf = TgfT

∗
gf and then ‖Tgf‖2 = ‖Sgf‖, for each h ∈ H, we have∫

X

v2‖Λx(πF (x)(h))‖2 dµ = ‖T ∗gf (h)‖2 ≤ ‖T ∗gf‖2‖h‖2 = ‖Sgf‖‖h‖2 ≤ D‖h‖2.

Also for all h ∈ H,

‖T ∗gf (h)‖2 =
〈
TgfT

∗
gf (h), h

〉
=
〈
Sgfh, h

〉
=
〈
S

1
2
gfh, S

1
2
gfh
〉

= ‖S
1
2
gfh‖

2 ≥ C‖h‖2.

Also
‖Sgf‖ = sup

h∈H1

〈
Sgf (h), h

〉
= sup

h∈H1

‖vΛ.πF.(h)‖2 = BΛ,v.

So the optimal upper bound is ‖Sgf‖. For the optimal lower bound, if C be the lower bound, we
have

C‖h‖2 ≤
〈
S

1/2
gf (h), S

1/2
gf (h)

〉
≤ D‖h‖2.

Now put h = S
−1/2
gf (h). We have

C‖S−1/2
gf (h)‖2 ≤

〈
h, h
〉
≤ D‖S−1/2

gf (h)‖2.

Thus
‖S−1

gf ‖ = sup
h∈H1

‖S−1/2
gf (h)‖2 ≤ C−1.

We conclude that AΛ,v ≤ ‖S−1
gf ‖−1. In other implication we have

‖h‖ ≤ ‖S−1/2
gf ‖‖S1/2

gf (h)‖.

Hence
inf
h∈H1

‖S1/2
gf (h)‖2 ≥ inf

h∈H1

‖h‖2‖S−1/2
gf ‖−2 = ‖S−1

gf ‖
−1

We conclude that AΛ,v ≥ ‖S−1
gf ‖−1. Finally AΛ,v = ‖S−1

gf ‖−1.

Corollary 3.9. Sgf is a positive and invertible operator from H into H.

Proof. From Proposition 3.8 it is obvious.

Theorem 3.10. Let (Λ, F, v) be a gc-frame of subspaces for H with bounds C and D, and let Y ⊆ X
be measurable. Then the following assertions are satisfied:

(i) If
∫
Y
v2(x)dµ > D, then ∩x∈YKx = {0}.

(ii) If
∫
Y
v2(x)dµ = D, then ∩x∈YKx ⊥ span{Kx}x∈X−Y a.e. .
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(iii) If c =
∫
Y
v2(x)dµ < C, then (Λ, F, v) with F : X − Y → H is a gc-frame of subspaces with

bounds C − c and D.

Proof. (i) Suppose h ∈ ∩x∈YKx, then Λx(πF (x)(h)) = h for all x ∈ Y . We have

D‖h‖2 < ‖h‖2(

∫
Y

v2(x)dµ)

=

∫
Y

‖h‖2v2(x)dµ

=

∫
Y

‖Λx(πF (x)(h))‖2v2(x)dµ

≤
∫
Y

‖Λx(πF (x)(h))‖2v2(x)dµ+

∫
X−Y
‖Λx(πF (x)(h))‖2v2(x)dµ

=

∫
X

‖Λx(πF (x)(h))‖2v2(x)dµ ≤ D‖h‖2,

hence h = 0.
(ii) If

∫
Y
v2(x)dµ = D and h ∈ ∩x∈YKx, then

D‖h‖2 =

∫
Y

‖Λx(πF (x)(h))‖2v2(x)dµ

≤
∫
Y

‖Λx(πF (x)(h))‖2v2(x)dµ+

∫
X−Y
‖Λx(πF (x)(h))‖2v2(x)dµ

≤ D‖h‖2.

Thus

D‖h‖2 +

∫
X−Y
‖Λx(πF (x)(h))‖2v2(x)dµ ≤ D‖h‖2.

Hence ∫
X−Y
‖Λx(πF (x)(h))‖2v2(x)dµ ≤ 0.

Therefore, we have Λx(πF (x)(h)) = 0, for all x ∈ X − Y (a.e.) and we conclude that h ⊥ F (x) for
all x ∈ X − Y (a.e.) Thus h ⊥ span{F (x)}x∈X−Y (a.e.) and we get

∩x∈Y F (x) ⊥ span{F (x)}x∈X−Y .

(iii) For all h ∈ H we have∫
X−Y
‖πF (x)(h)‖2v2(x)dµ =

∫
X

‖πF (x)(h)‖2v2(x)dµ−
∫
Y

‖πF (x)(h)‖2v2(x)dµ

≥ C‖h‖2 − ‖h‖2

∫
Y

v2(x)dµ = (C − c)‖h‖2.

The upper bound is obvious.

Definition 3.11. For any X◦ ⊆ X measurable, we define

DX◦ : L2(X,K)→ L2(X,K),

DX◦(f)(x) =

{
f(x) if x ∈ X◦,
0 if x ∈ X −X◦,

for all f ∈ L2(X,K).
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Definition 3.12. Let (Λ, F, v) be a gc-frame of subspaces with the pre-frame operator Tgf . We
define the c-erasure reconstruction error ξ1(gf) to be

ξ1(gf) = sup{(‖TgfDX◦T
∗
gf‖ : X◦ ⊆ X},

which X◦ is measurable.

Theorem 3.13. Let v ∈ L2(X) and let (Λ, F, v) be a Parseval gc-frame of subspaces with c-erasure
reconstruction error ξ1(gf). Then DX◦(f) ∈ L2(X,K) and

ξ1(F ) ≤ ‖v‖2.

Proof. Since
‖DX◦‖ = sup{‖DX◦(f)‖ : ‖f‖ = 1 and f ∈ L2(X,F )},

‖DX◦(f)‖2 =

∫
X

|DX◦(f)(x)|2dµ =

∫
X◦

|f(x)|2dµ ≤ ‖f‖2,

so
‖DX◦‖ ≤ 1.

Choose X◦ ⊆ X measurable, and fix it. By Remark 2.5 we have

‖TgfDX◦T
∗
gf‖ = sup

h∈H1

‖TgfDX◦T
∗
gf (h)‖

= sup
h∈H1

‖TgfDX◦(vΛ.πF.(h))‖

= sup
h∈H1

sup
k∈H1

| < TgfDX◦(vΛ.πF.(h)), k > |

= sup
h∈H1

sup
k∈H1

|
∫
X◦

< v2(x)Λx(πF (x)(h)), k > dµ|

≤ sup
h∈H1

(

∫
X

v2(x)‖Λx(πF (x)(h))‖2dµ)1/2(

∫
X

v2(x)dµ)1/2

= sup
h∈H1

‖h‖(
∫
X

v2(x)dµ)1/2 = ‖v‖2.

Since X◦ ⊆ X is arbitrary
ξ1(gf) ≤ ‖v‖2.
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