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Abstract

In this paper, an issue of Hilfer fractional order of an It6 stochastic differential equation with two non-local conditions is
considered, studying case is split into two problems, one of them gives its solution as a second-order stochastic process and
the other gives its solution as a non-standard Brownian motion in the same space of continuous second order processes. The
existence of the solutions of both problems will be studied, the maximal and minimal solution will be defined, the sufficient
conditions for uniqueness and some continuous dependencies will be shown. For some examples of non-standard Brownian
motion as a Brownian motion with drift, geometric Brownian motion, Brownian bridge, and integrated Brownian bridge see
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1. Introduction

Stochastic problems have got attention of many researchers, in particular Ito’s problems that are related
to Brownian motion, and also simple stochastic problems in which fractional operators appear, or more
complicated problems, see [1, 3-5, 9, 12, 15, 18-20, 26]. Let (Q, G, P) be a probability space where Q is a
sample space, G is a o-algebra of subsets of () and P is the probability measure (see [7, 15, 25, 27]). Let
[ =1[aT], a>0 and ¥(t;w) =9(t), t € I, w € Q, considering the space of all mean square stochastic
processes L>(Q)), which is identified with the norm

190) =/ E®Cw))2,

where the expectation E is recognized with E(h;) = fQ hy(w)dP. Let C(I,L,(Q)) be the Banach space of
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all continuous maps from I into L[,(Q) that is satisfying the condition sup EII{}IIZL2 < 00, t € I, where
tel

IDllc = sup E|I9I,

tel

Consider the fractional problem of It6 stochastic differential equation, whereas the Hilfer fractional oper-
ator is appeared

ds(t) = ?(t,szﬁ(t))dt—i— G(t,B8(t))dW(t), te€ (a,T], (1.1)
with non-local random initial conditions
m
B(a)+ Y & Blti) = Ra (12)
k=1
and o
8(a)+ D M d(m) = I} 10q, (1.3)
k=1

where o, p € (0,1, < &,y = ot + B — &3, Dg‘;ﬁ is the generalized Riemann-Lioville fractional derivative
operator of order « and type [ provided by Hilfer in [14], £5(t), t € [a, T] is non-standard Brownian
motion, ny’s, &k’s, k = 1,2,..., m are some positive real numbers, and ¥, and 3, are second-order
random variable.

2. Preliminaries

Here, let’s present some basic definitions.

Definition 2.1 ([2, 23]). Let ¥ € C(I, L2(Q)) and «, € (0, 1]. The stochastic integral operator of order {3 is
defined by

t o s
o= [

a
and the stochastic fractional order derivative is defined by

d(s)ds

_,dd

Dac+19(t) - I}lJroca.

Definition 2.2 ([14, 23]). The Hilfer fractional derivative operator of order 0 < v<land 0 < p <1 fora
function ¥ can be defined as

DYHB(t) = YW DIU I ),

For some features of stochastic fractional calculus, see [10, 13].

3. Integral representation

During the research, it was assumed that the following assumptions are fulfilled.

(1) The functions F(t,9(t)) : [ x [L(Q) — [L(Q) and G(t,8B(t)) : I x [L(Q) — [,(Q) are measurable in
t € I and continuous in the second argument w.p.1.
(ii)) Forallt € I, 3 u; > 0, i = 1,2, and two bounded measurable functions v;(t) : I — R such that
vi = sup||vi(t)llr, and
tel
T3 < vi+w [ 90) I, and || S(t,B(t)) [[,< v2+ 12 || B(1) [|L,,

where
v =max{vy, va}, W =max{u, 1z}.
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Now, consider the following lemma.

Lemma 3.1. Consider
DYPa(t) = U(b). (3.1)

Then, the solution of the fractional stochastic problem (3.1) with the initial elementary condition (1.3) can be given
through

_ -1 m Tk B
3(t) =7 (‘9““ or 1 anj (Tks)o‘_lll(s)ds) *r(loqj (t—s)* 'U(s)ds,  (3.2)

m —1
where n = <1—|— > nk> .
k=1
Proof. Operating with I, in equation (3.1), we obtain
1% DYP9(t) = 1% U().

Using the definition of DZ"P,

By (1-B) (1—a) I
%100 ) DI “I9(t) :wja (t—s)* TU(s)ds.
So
t
(1) = 9(a) + g | (457 U(s)a
and

9(a) =179 ans

19(1 (t _ a)yi
ry)

J (T — ) ¥ TU(s)ds

J (T — )% 1U(s )d),

~1
m
wheren = (1 + > nk> , then equation (3.2) is given. Conversely, let
k=1

T
i

Hence
9(t) —9(a) = I%U),
I DO(t) = I% U(t),
9(t) = 1% U(t),
DIS:B)U*(X)‘B(.U — Dlglfﬁ)(l*“)lzcjlu(t),
DIV Py gy — 1 POy (),
[PU=IppI=BI-)g 4y — y(t),
DPH(t) = U(t) O
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Now, consider the following lemma.

Lemma 3.2. The solution of the stochastic fractional problem (1.1)-(1.3) can be given by

a(ﬁafakjksf(s, ds—ZakJ $))AW(s ))

a a

t (3.3)
+J&" ds~|—J9( 5, R(s))dW(s),
m ~1
where U(t) is defined in equation (3.1) and & = <1 + > &k) .
k=1

Proof. Integrating equation (1.1), we obtain

t t

B(t) =8(a) + J F(s,U(s))ds + J S(s,B3(s))dW(s).
Then
Y EBim) = Y Ekla +Zakj ds+Zakj )aw(s),
k=1 k=1
By —R(a Zak@ Z J ds+Z&kJ ))dW(s).

k=1 a a

So,
m —1 m Tk
:(HZak) (BaZakJ:f(s, ds—ZakJ $))dAW(s ))
k=1 k=1 o
Hence, equation (3.3) is given. Conversely, let
m Tk t t
B(t)=¢& (BaZEk J F(s,U ds—ZEk J s))dW(s )) —i—Jff"(s,U(s))ds+J9(s,ﬁ(s))dW(s)
k=1 a a a

t t
=f3(a) —l—Jff"(s,U(s))ds —l—JS(s,B(s))dW(s).

t t
B(t) —6B(a) = J&‘"(S,U(s))ds + J G(s,B5(s))dW(s),

t
J dBS(t) = I+ [F(t, U(t))dt + G(t, B(t)) dW(1)],

dBs(t) = F(t, U(t))dt + G(t,B(t))dW(t).

Thus, equations (3.2) and (3.3) are proved. Now, let’s discuss the existence of their solutions in the defined
space C(I, L2(Q)). O



M. E. I. El-Gendy, J. Math. Computer Sci., 35 (2024), 149-168 153

4. Solutions of the problem

Theorem 4.1. Let the assumptions (i)-(ii) be satisfied and 4(T — a)® < T'(x+ 1), then the stochastic integral
equation (3.2) has at least one solution ¥(t) € C(I, L(Q)).

Proof. Consider the set Q.,, such that Q, = {(t) € Cw.p.1. : |Bllc <71} C C, where

(T—a)y ! (T—a)*

V2|[9allcA
< A. = A_ el —_,
! 27 et 1)

1x 1_ 4A2 ’ - r(y) ’
and ¥(t) is any continuous second-order stochastic process. Now, define the mapping Fd(t), where

t

_Valt—at 1 & a1 1 o1
F9(t) n( e _F(oc)k;m‘L (T — s) u(s)ds>+wj(t—s) U(s)ds.

a

Noting that (a; + ay)? < Za% + Za%, we get (a; +ax + az)? < Za% + 4a§ + 4(1% and so on. Let X € Q;, then

nVa(t—a)y—17?

m 2
1 Tk o1
r(v) ]H“E W)nk;nkja (Tkc —5) U(s)ds]

2

E(F9(1))? < 2E [

+4E [1 J (t—s)*TU(s)ds

I"(ex)
Thus
nda(t—a)! L S
Fd <V2 2|l =— — U(s)d
PO, < V2| TR r(a)nkz_lnkja (= e
t
+2 r(loqj (t—s)* 'U(s)ds
a L,
So
MY mllUlle(T— a)®
IRl < Y2Palle(T—a) n & MO e (7
© ) Mo+1) Mot 1)

< V2|PallcAr +4lIUlcAy =14,

m
where (1 +n > nk> <2,and n < 1, thus
k=1

11 = V2[PallcAr +4lUllcAs < V2|PallcAr +411A,,

which implies that
V2| allcAq
"M —— 5 —
1—4A,
That proves F : Q, = Q+, also, the class {FQ+,} is uniformly bounded on Q.,. Now, considering t;,t; €
[0, T] such that [t; — t1| < §, then
(to—a)¥ ' (y—a)y!

_ 1 2 x—1 f x—1
Fo(ty) — F3(t1) =ndq M) — M) ] + o) Ua (tp —s)* "U(s)ds —L (t1 —s)* *U(s)ds
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— 9 [(tz—a)yl_(tl—a)yl]
— e T ) M)
1 t2 t
+ o) Ut (tz—s)“llJ(s)ds—i-J [(ty—s)* ' —(ty —s)“l]U(s)ds} .
So
(tb—a) ! (tj—a)r!
IF9(ta) — F(t1)ll, < vV2n|PallL, M T
V2IU)li, w1 [ 1 1
- d - —(t1— ds|| .
+ s L](tz 5) S+L[(’E2 11— s
Thus
—1 - —1
IE8(t2) — F3(t)llc < vanliallc |2 (o)
I'(y) I'(y)
VALDE 1y — )% (12— )% + (12— @~ (1~ @)
(’Ezfa)y_1 (ti—a)Y 1 V2[Ulc « «
< V2n9allc ) ) Mo Jrl)|(‘C2—0L) —(t1 —a)¥].

This proves the equi-continuity of the class {FQr,} on Qr,. Now, let 9, € Qr,, 9 — ¥ w.p.1 (see [7]).

Jim Fon (1) = lim [n ﬁa(lt,(_v)a)y - nanJ (T —8) Un(s)ds

1 ¢ x—1

* i, 49 “““)ds}

ndalt—a) ! 1 & (™ a1
M) _r(cx)“kzl“kja (e =)™ i, Un (s)ds
1 ¢ oc—1 1z

T J, (490 Jim, s
= Fo(t).

This proves that {FQ, } is continuous. Therefore, the closure of {FQ., } is compact (see [7]). Thus, equation
(3.2) has a solution ¥ € C and the Hilfer stochastic fractional differential equation (3.1) with the nonlocal
random condition (1.3) consequently has a solution ¥ € C. O

Now, consider the following theorem.

Theorem 4.2. Let the assumptions (i)-(ii) be satisfied and p <
solution f(t) € C.

ﬁ, then the problem (3.3) has at least one

Proof. Consider a set Q, such that Q,, ={®@(t) € Cw.p.1 :||®@lc < 12} C C, where

f||13a||c+4[v+m1](T—a +4v2vVT —a
1—4vV2uyT—a

and @ is any Brownian motion in the space of continuous second-order stochastic processes, whatever it
is standard or nonstandard. Now, define the mapping NB(t), where

RB() = & (ﬁaZak [ 55, ds—ZakJ $))dW(s ))
k=1 a
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+J?(S,U(s))ds + J G(s,83(s))dW(s).

Let B € Qy,, then

Tk

INB(t)llL, < & | V2IIRallc +2v+ plU(t)llL,] ) Ex(tc—a) +2v2 ) & J I1S(s, B(s))I2, ds
k=1 k=1

a

+AV + Ul (t—a) +4 | | 1IS(s,B(s))II7, ds).

pe—

So
INBllc < & (ﬁnﬁanc 2+ Ul Y Elti—a)+2v2 Y Elv+ uliBllc)vT —a a)
k=1 k=1
+4[v +ullullcl(t —a) +4[v + pllBllc]vVt —a
< V2|Ballc + 4 + pUllc)T — a) +4v2[v + wWi8llc]VT —a =1,
where
2 = V2|[Ballc + 4 + wlUIc)(T — a) +4V2[v + iBllc VT —a
<V2Balle + 4+ ur (T — @) + 4V2[v + url VT — a.
Then

\f||fg lc +4v+ur)(T—a)+4v2vV/T—a
1—4/2uvT—a ’

which proves X : Qr, = Qr,, also, the class {XQy,} is uniformly bounded on Q.,.

t1,1t> € [0, T] such that [t, — t1] < §, then

t) ts
Nf3(ty) — XB(tg) = J F(s,U(s))ds + J S(s,8(s))dW(s).

So

1%
IXB(t2) — RB(t)llc < V2V + wBllclits — ti] + V2 J[eruIIBIIZC]ds

t1

Now, considering

V21V + w8l ]tz — t1] + V2[v + Bl c]v/(t2 — t1)

<
< V20 + Bl eIt — t 4+ /[t — 1))

This leads to the equi-continuity of the class {XQ,} on Q,. Now, let B, € Q+,, 8, = 8 w.p.1,

lim X8, () = lim {a (Baiak J F(s,U ds—ZakJ $))dW(s ))
k=1 a

t t
+ J?(S,U(s))ds + J S(s, Bn(s))dW(s)}



M. E. I. El-Gendy, J. Math. Computer Sci., 35 (2024), 149-168 156

= (@a - Z Ex J F(s,Uls))ds — )& J S(s, lim Bn(s))dW(s))
k=1 a k=1 a

— 00

t t
+J"f ))ds +J9(s, Tllim B5.(s))dW(s) = Xf5(t).

That is, {NXQ,} is continuous. Accordingly, the closure of {¥XQ.,} is compact (see [7]). Thus, equation (3.3)
has a solution $3(t) € C. Therefore, the stochastic fractional problem (1.1)-(1.3) has a solution £8(t) € C. [
5. Maximal and minimal solution

In this section, consider the next definitions (see [11]).

Definition 5.1. Let Y(t) be a solution of the stochastic integral equation (3.2), then d(t) is said to be a
maximal solution of (3.2) if every solution Y(t) of (3.2) satisfies the inequality

E(Y}(1) <E@*(t) or [IV(t)llL, < B,
A minimal solution s(t) can be defined by a similar way by reversing the above inequality, i.e.,

E(@®%(t) > E(s*(t)) or  IB(V)lIL, > lls(t)llr,-

Definition 5.2. Let @(t) be a solution of the stochastic integral equation (3.3), then w(t) is said to be a
maximal solution of (3.3) if every solution @(t) of (3.2) satisfies the inequality

E(@*(t)) < E(w?(t) or (@), < lwt)l,.
A minimal solution \(t) can be defined by a similar way by reversing the above inequality;, i.e.,

E(w?(t) > EW (1) or  llw(t)l, > (b,

Definition 5.3. The function f(t, ¢(t)) : [0, T] x Lo(Q) — L»(Q) is said to be stochastically decreasing if for
any ¢1(t), @2(t) € Lo(Q) satisfying || @1(t) [|L,>] @2(t) ||r,, implies that

10t @1(t) [[L, <[l £(t, @a(t) [, -

Definition 5.4. The function f(t, ¢(t)) : [0, T] x Lo(Q) — L2(Q) is said to be stochastically increasing if for
any ¢1(t), @2(t) € L2(Q) satisfying || @1(t) [|1,>| @2(t) [|L, implies that

It @1(1) [l > £t 2(1)) [, -
Now, the following theorems will be proved.

Theorem 5.5. Let the assumptions of Theorem 4.1 be satisfied. If U(t)(= U(D(t))) = Do‘ B{} ) satisfies the
Definition 5.3, then there exists a maximal solution of the stochastic integral equation (3.2).

Proof. Firstly, we prove the existence of the maximal solution of the stochastic integral equation (3.2). Let
€ > 0 be given. Now consider the integral equation

t

9clt) = <f’“(tr_(y‘;)y an [ st )ds) Tl L A UXOL R

a
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and for € > €1 > €,
Ue. (t) =Uc(t)+€e, i=1,2, 0<ep <e.

1

Thus Ue(t) < Ug, (t) < Ug,(t). Also, it is clear that the function U, (t), i = 1,2 satisfies the conditions
(i)-(ii). Then equation (5.1) is a solution of problem (3.2) according to Theorem 4.1. Now

9o, (t) =1 (‘%“r_(y“))y anj T — ) 1[Ue(5)+€1]d3>
1 t
e | (9 el + e
SO
m T 1 t
a—1 a—1
19e1(t)+€1r( )n];nkja (T — ) ds—elr(a)a[ (t—s) ds
t
C (Valt—ay 1 & * a1 1 a1
n( ) T ];nkL (Tk —s) Ue(5)d5> +F((X)J (t—s)* "Ue(s)ds
and hence
t
1 - T a—1 1 ax—1
ﬁel(t)—l-elr(cx)n];nkja (T — s) ds+elwl (t—s) ds
t
Balt—a)™' 1 & (™ a1 1 a1
> ( = —r(“)kz_lnkja () ue(s)ds> +”“)l (t—5)* Uels)d
In the same way, but for the opposite inequality,
t
Ve, (t nanJ (T — )% 1ds—<~:zr(1(X)J (t—s)* 'ds
t
dalt—a) ' 1 (™ o1 1 a1
< ( — —r(“)kz_lnkja (=) ue(s)ds> e AL

This implies that, for e; > e,

t
nanL T —S)%~ 1ds—i—r(o()J (t—s)*ds

[=]

(x 1 €2 ox—1
— d — t— d
le ﬂkL Tk —5) S To) (t—s) s

(t—s)*1ds, e > €.

oc 1 €1
2 _ d i
n ﬂkj (T —s) s — ()
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Thus

t
2e
1 1 -1
Ve, (t) <D r| E nkJ (T —s)* "ds +r((x)J (t—s)* "ds.

Thus, as €1 — 0, [D¢, (t)l1, < [Pe, (t)]lL, for €2 < €1. By a same way for e > €1 > €3 > -+ > €,

e, (W, < IWe (Wl < < Pe; (W, < We(tlli,

Finally, Theorem 4.1 shows that the family of solutions V¢(t) defined by equation (5.1) is uniformly

bounded and equi-continuous functions. Hence, by Arzela-Ascoli theorem [21], there exists a decreasing

sequence €, such that e -+ 0 asn — oo and 1i_r>n Ve, (t) exists uniformly in C and denote this limit by
n—oo

9(t) from the continuity of the solutions ¥, and by applying Lebesgue dominated convergence theorem,

¥(t) = lim B¢, (t),

which proves that 9(t) is a solution of the problem (3.2). Finally, we show that 9(t) is the maximal solution
of the problem (3.2). Let 9(t) be any solution of problem (3.2) such that

t

Bt = (‘W;WC;W anj (i — $)°1V(s)ds ) e | (9 VIS,

a

where D*PJ(t) = V(t) and V(t) = Uc(t) + A, such that A > 0 is a real positive number. We can get
[ 9e(t) > D(t) fIr, -

From the uniqueness of the maximal solution (see [8]), it is clear that ¥¢(t) tends to d(t) uniformly as
e — 0. This finishes the proof. O

The minimal solution of the problem (3.2) can be defined in the same fashion as done above, it means
that for € > e1 > €,
Ue. () =Ue(t)—ei, i=1,2, 0<er<ey.

1

Thus U, (t) > Ug, (t) > U, (t). Also, it is clear that the function U, (t), 1 = 1,2 satisfies the conditions
(i)-(ii), i.e., the function U(t) is assumed to satisfy the Definition 5.4. Now, for the problem (3.3), the
non-standard Brownian motion can be shown as a maximal solution.

Theorem 5.6. Let the assumptions of Theorem 4.2 be satisfied. If G(t,f3(t)) satisfies the Definition 5.3, then there
exists a maximal solution of problem (3.3).

Proof. Firstly, for proving the existence of the maximal solution of the problem, let € > 0 be given, consider
the integral equation

Be(t)a(@azfikjﬂs, ds—Zakj ())AW(s ))
k=1 3

. . (5.2)
—i—JEF(s,U(s))ds + J G(s,Bc(s))dW(s)

and for € > €1 > €y,
9(tlgel(t)):9(t186(t))+€1/ i:1/2/ 0<€2<€1-
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Clearly, the functions §(t, 8¢, (t)), i = 1,2, satisfy the conditions (i)-(ii). Then equation (5.2) is a solution
of problem (3.3) according to Theorem 4.2. Now,

ﬁel(t)a(ﬁaZakJ&f(s, ds—ZakJ $)) — e1ldW(s ))

t
+J9 ds+J[9(S,f§e(S))—€ﬂdW(S),
SO
D+ ert Y ElWin) — Wia)l — e [W(t) — W(a)
m Tk t t
¢ (ﬁa =3 e | 5t utshas - Z £ J DEVIE )) + [ 35 Uds + [ 565, Belsaws),
k=1 a a a
and hence,

t)+e1& ) ExW(t) —W(a)l+ e [W(t) — W(a)]
=

m Tk t t
> £ (@a =) | Sl U - Z i j AW (s )) + [ 35 utsnas + [ 5(s,Belspaws)
k=1 a a

a a

In the same way, but for the opposite inequality,

t) - elaZ ExW(T) = W(a)] — e1W(t) — W(a)]

t t
(B — Z & J ))ds — Z & J ))dW (s )) —i—JS"(s,U(s))ds—i—JS(s,Be(s))dW(s).

a

This implies that, for e; > e,

t)+e1& ) ExlW(t) —W(a)l + e [W(t) — W(a)]
> Be, (1) — €26 ) &W(T) = W(a)] — e2[W(t) — W(a)]

t) —e1& Z ExW(t) = W(a)] —e1[W(t) = W(a)], —ex > —ey.
Thus

Bey(t) < Be, (1) +2e18 Y Ex[Wltic) — W(a)] +2e1[W(t) — W(a)].
k=1

Thus, as €1 — 0, [|B¢, (t)ll, < 1B, (t)]lr, for e2 < €1. By a same way for e > €1 > €3 > -+ > €,

1Be, (DI, < lBe,,  (Vll, < < IBey (M), < lIBe (B,
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Finally, as shown before in the proof of Theorem 4.1, the family of functions 3 (t) defined by equation

(5.2) is uniformly bounded and equi-continuous functions. Hence, by Arzela-Ascoli theorem [21], there

exists a decreasing sequence €, such that € -+ 0 as n — oo and lijn 3¢, (t) exists uniformly in C and
n—oo

denote this limit by B(t). By the continuity of the function ¢, in the second argument and applying
Lebesgue dominated convergence theorem, we get

B(t) = lim B¢, (t),

n—oo

which proves that £(t) is a solution of th~e problem (3.3). Finally, we shall show that £3(t) is the maximal
solution of problem (3.3). To do this, let £5(t) be any solution of problem (3.3) such that

Rt (@ —Zakj ds—ZakJ $))dW(s ))

t t
—i—J”f ds—l—JS(s,fg(s))dW(s),

where G(s,B(s)) = (s, B(s)) + A;, such that A; > 0 is a real positive number. We get
I Be () [, > B() e,

From the uniqueness of the maximal solution (see [8]), it is clear that £ (t) tends to £(t) uniformly as
€ — 0. This finishes the proof. O

The minimal solution of the problem (3.3) can be defined in the same fashion as done above, it means
that for € > ¢1 > €,
9t Be, (1) = S(t, Be(t)) —ei, i=1,2, 0<ex<er

Thus Ue(t) > Ue, (1) > U, (t) Also, it is clear that the functions U, (t), i = 1,2 satisfy the conditions
(i)-(ii), i.e., the function §(t,5(t)) is assumed to satisfy the Definition 5.4.

6. Uniqueness theorem

For discussing the uniqueness of the solution, consider the following assumption.

(iii) The functions F(t,d(t)) : I x [2(Q) — L[2(Q) and G(t,d(t)) : I x [2(Q) — L2(Q) are Caratheodory
and satisfy the second argument, Lipschitz condition

[ F(H) =T YY) [, < [ 1) =Y() [, 1 >0,
| S(t,9(t)) = G(t, Y(t) ||, < m2 || 9(t) =Y(t) [|r,, m2>0,
where pu = max{py, 1o}

Theorem 6.1. Let assumption (iii) be satisfied, then the stochastic integral equation (3.2) has a unique solution
d(t) € C(I, L2(Q)).

Proof. Let 91(t) and 9, (t) be two solutions of (3.2), then
\f 2V2 _
1 —Dallc < I+n an —a)I" %91 —Dllc] < W[H(T— a) I %Dy —Dallcl.
Thus
91 —2llc =0.

Then the solution of (3.2) is unique. Consequently, the solution 9(t) of the problem (1.3) with the nonlocal
initial condition (1.2) is unique. O
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Theorem 6.2. Let the assumption (iii) be satisfied, then the stochastic integral equation (3.3) has a unique solution
Bt) € C(L, L2(Q)).

Proof. Let £31(t) and £55(t) be two solutions of (3.3), then

By (t) — fEZ ék] (s, B1(s)) — (s, B2(s))]dW(s) +I[9(S,81(S)) — S(s,B2(s))]dW(s).
So, a a
181 — Ballc < V2 (1 + éi £k> ulIB — Balle VT — a < 2v2ulIB) — Balle VT —a.
k=1
Hence

187 —2/lc = 0.
Then the solution of (3.3) is unique. Consequently, the solution (t) of the problem (1.1)-(1.3) is unique.
O
7. Continuous dependence

Firstly, we discuss the continuous dependence of the solution of the stochastic integral equation (3.2)
on ¥, and 1.

Theorem 7.1. The unique solution of the stochastic integral equation (3.2) depends continuously on 9.

Proof. Let || 9q — 9% ||, < 81, 9(t) is the solution of (3.2) and d*(t) be the solution of

t
9*(t) =n <8a(tr_(ycg)y anJ T —s) X TU*(s )ds) + F(lcx)J (t—s)*1U*(s)ds.

So

Bq — O t—a)y!
|w—swc<n<¢?'“ slel =l 2ol s Z]nj Tk—s“lr“nm%

t
-+HW—8ﬂkr&QJ(t—sVH%1ms

(T—a)¥(T-a) o (T—a)(T—a)®
281A1 +2 2 -
(\[ 171+ 2|9 — 9 ”CZ“k M+ o)l (1 — o) >+ =¥l g ra— o
2<1+n 2 nk> 4
< V25 AM + 19— F e SV2BAM R = fle ——— .
V2851 Am + || HCF(l—Hx)F(l—oc) V25,A M +| Hcomcsc(om)

Thus
\ V2A
|w—s|c<<£‘ 51,
- ot esce( oert)

where 1 > ————. This finishes the proof. O

XTT CSC
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Theorem 7.2. The unique solution of the stochastic integral equation (3.2) depends continuously on ny.

Proof. Let | nx —ny |< 82, 9(t) be the solution of (3.2), and 9*(t) be the solution of

t

9 () =’ (‘9“(tr_(;;)y 1 anj (e — s U (s )ds> o [ o

(o)
a
Now,
. aoa(t—a)Y™
§(1) = 9*(t) = Iy —n7 et %) anj (ri — s)%1U(s)ds
r'y)
1 & ;
+n* ZﬂkJ (T —s)* 1U*(S)dS+J (t—s)* HU(s) — U*(s)]ds
M) &= " Ja o)
- a
Since
N 1
1+) m>1 — <1,
k=1 1+ 2 mx
k=1
SO
m
1 kzl(nk—nk) m
In—m*|= — | = = <D Mmp—mi)| < méy,
T+ me 1+ 3 ng <1+an> <1+an> k=1
k=1 k=1 k=1 k=1
also
m m
m 1T]k p 1ni
k= =
n) m—n*) ni S
=1 I+ > me 14 Y n§
k=1 k=1
m
Zl(n?;—nk) m
= n]fi = < Z(Tﬁi M| < mda,
<1+ > nk> (l+ > nl’g) k=1
k=1 k=1
and
m Tk m Tk
w3 i [ (- 9% W slds < Y [ (me s TUls)ds
k=1 k=1 a
m Tk m Tk
=n* <1+an> J(Tk s)*1U*(s)ds —n <1+an> J(Tk—s)“ U(s)ds
k=1 2 k=1

-n* J (T — $)* U (s)ds +1 J (T —s)*1U(s)ds

a

Tk Tr
] j(wk—s)“—lu*(s)ds—nn - j(wk—s)“—lu(s)ds
a

a
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Tk Tk
-n* J (T — $)*TU*(s)ds +1 J (T —s)*1U(s)ds
a a
Tk Tk
= =9 )~ us(sias +n [ (me— ) Mus)ds
a a
Tk Tk Tk
-1 J (T —s)* U (s)ds —n* J (T —s)* 'U(s)ds +n* J (T —s)*1U(s)ds
a a a
Tk Tk Tk
= [me= )™ Ut~ s+ In =] [ me— ) MUl | (= ) U(s) - U (5],
a a a
Then
9 T
__n* t_
r'y) F( )
a
2 t
U= Wl +21 | (e=9)* s
(o)
a
+2 N
< VISl allcAr + 252U cAy + 2Ty ey
7t esc( o)
Hence
« 2| allcAr+4llUl[c Az
||8719 ||C < ( 1— 2[m*|+2] 62/
7t esc( o)
2[In* \+2
where 1 > 2275 This finishes the proof. O

Now, we consider some continuous dependencies of the solution of equation (3.3) on 84, W(t), &,

and also on U(t).

Theorem 7.3. The unique solution of the stochastic integral equation (3.3) depends continuously on f3 .

Proof. Let |84 — B |1, < 83, B(t) be the solution of (3.3) and 8" (t) be the solution of
m Tk
8*(t)5<{3’gz&kj?(5, dS_ZE’kJ s, 8%(s )dW(s))
t t
+J97 ds+J9(s,f§*(s))dW(s).

Thus

t
B(t) — B (1) = £ (ﬁ —gY) Zakj S(S,B*(S))]dW(S))+ J[g(s,e(s))—s;(s,ﬁ*(s

)]AW(s).
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So

15 —8"llc < \[£53+2£Zéka—a)ullﬁ B*llc +2(t— a)ullB — B*lc < V2E83 +4(T — a)ullB — 8%lc.

k=1
. V2E
||B_B ||C < <14(TG)H 63/

where 1 > 4(T — a)p. This finishes the proof. O

Then

Theorem 7.4. The unique solution of the stochastic integral equation (3.3) depends continuously on W(t).

Proof. Let [[W(t) — W*(t)ll, < 84, B(t) be the solution of (3.3), and £7(t) be the solution of

B*(t)&(BaZEkJ? ds—Z&kJ S(s, B (s dW*(s))

a a

t
+J3" ds+J9(s,B*(s))dW*(s).
Here,
B~ 8(1) = £ ) & | 5(s,8(6)) +aZakJ $))aW" (s)
k=1 a a
m Tk t
+eY b [ 9l aZ £ J DAW(s) + | 515, Bls))aW(s)
k=1 a a
t t t
—jg(s,fs*(sndw*(s) +J9(s,8*(s))dW(s) —Jg(s,ﬁ*(s))dW(s)
& e [ 1505, 8(5)) ~ 55, 8°(s +aZ i J AW (5) — W(s)]
k=1 a a
t t
+j[9(s,ﬁ(s)) 5(s, 8 (s))]dW(s) Jg(s B*(s))dIW*(s) — W(s)]
Then
18— B¥llc < V2E Y Exlmic— a)ullB—B*llc +26 S &y lv + IR I W* (i) — Wiy )
k=1 k=1
L2Vl — )l — Bl + 2Vl 4 R ] W () — W(L)]
< VAT — a8 —B7lc + v2Iv + 87l cI5s
Thus

. V2[4 w8 ]
-1 < d4,
18— & < (1_ﬁm_a)> .

where 1 > v2u(T — a). This finishes the proof. O
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Theorem 7.5. The unique solution of the stochastic integral equation (3.3) depends continuously on &y

Proof. Let |&x — &5 (t)] < 85, B(t) be the solution of (3.3), and 87(t) be the solution of

B*(t) = £ (&Za{zj ds—ZakJ 5(s,8"(s dW(s))
k=1 a a

t t
+J§(S,U(s))ds + J G(s,B%(s))dW(s).

Now,

fg(t)—@*(t)z[a—a*]ﬁa—[aZak—a*Za;; J ds—aZz,kJ s))dW(s)
= k=1

a

e Zﬁkj §(s,B"(5))AW(s) + | [S(s, B(s)) — §(s, 8" (s))]AW(s).

Since
i 1
1+ &=1 — <1,
k=1 1+ > &
k—1

as the steps followed in Theorem 7.2,

|E— &7 [<mds and

E) E—E) &
k=1 k=1

< mds,
and
& i & TfS(s,B*(S))ds - Ei Ex TS(S B8(s))ds
PECE k=1 5
= —T[S(s,B(SJ) —G(s,8%(s))lds + [ — £7] Tg(s,fg(s))dera* T[S(s,ﬁ(sn —S(s,8%(s))]ds
Then a a a
B(t) —8"(t) = [ = &"]Ba — [&Z & — & Zék J )ds—]k[9(s,ﬁ(8))—9(8,8*(8))]ds

a a
Tk T

t
+E—E7] j G(s,B(s))ds + & J[g(s,B(sn —9(s,ﬁ*(s))]ds+J[9(s,ﬁ(s)) — 5(s, 8% (s))]dW/(s).

a a
So

I8 —8*[lc < V2851Ballr, +2mdslv + pliUllc] (T — @) +2v2p (1 4 [E*]) 1B — 8¢ (Tic — a)
+405[v + plUllc] (T — @) +4pli — 8%llc vV W(t) — W(a)

< 8 [V2lBalle, + (4 -+ 2m)v + WU (T = @)] +2v24 (14 £7]) |8~ #llc (T~ )
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+4pll — 8%llc v W(T) = W(a).

Thus
B < [ V2Ball 4+mmw+ummd( ) .
1—2vV2p (1 +[85) (T—a) — 4py/W
where 1 > 2v2u (1+[£%]) (T — a) + 4py/W ). This finishes the proof. O

Theorem 7.6. The unique solution of the stochastic integral equation (3.3) depends continuously on U(t).

Proof. Let [|[U(t) —U*(t)llr, < 86, B(t) be the solution of (3.3), and 8" (t) be the solution of

aQ% }:q, ck—quJ S(s, B*(s MWBO
k=1

t t
+J"f ds+J9(s,{3*(s))dW(s).
Now
B —8(1) = —£ ) &x | 1715, Us) — 515, U (s a—a}jaj — 5(s, 8" (5))1aW(s)
t t
+ [i5s,Uts)) = 15, U (511 + [ 1505, Bls)) S, 8" (511 W),
So

I8 —8*lc < V2 <1+£Z Ek) U —U*lc(T—a) + V2 <1+£Z &k) W8 —B7[c v WI(T) — W(a).

k=1 k=1
Thus
. 2V2u(T—a
18— 8*llc < nl—a) 5,
1—2v2u/W(T) —W(a)
where 1 > 2v/2u/W(T) — W(a). This finishes the proof. O]

8. Application
Consider as an application, the stochastic problem

dR(t) = DY29(t) + S(t, B(t))AW(L), te (0,T], 8.1)

with the random initial condition
$3(0) +215(2) =15 (8.2)

and
3(0) +29(2) +39(3) = 9. (8.3)
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For getting the solution, let
1
U(t) = D2 9(t). (8.4)
We see that the problem (8.1)-(8.3) is as the same as our problem (1.1)-(1.3), wherex =y =1, = %, a=0.

Thus the solution of the stochastic fractional differential equation (8.1) with the initial condition (8.3) can
be transformed by Lemma 3.1 as

2 3 t
d¥t) = % (SOZJU(s)dsE&JU(s)ds) +J U(s)ds (8.5)
0 0 0
and the solution of the stochastic problem (8.1)-(8.3) with (8.4) is gotten by Lemma 3.2,
2 2 t t
1
B(t) = 3 (Bo -2 J U(s)ds —2 J S(t,ﬁ(t))dW(s)) + J U(s)ds + J G(t, B8(t))dW(s). (8.6)
0 0 0 0

In this example if

and §(t,8(t)) = §(t+ W(t)) is a function of non-standard Brownian motion called the Brownian motion
started at 1 € L,(Q) (see [17]), we will get

U(t)-Dé’+< (0—\/> 48\/>> 162)_\?#

NI—=

Thus, we finally get

2 , ot
B(t) = 3 (Bo ?\/EZJS(L-FW(S))dW(S)) + :15?;; +J9(L+W(s))dW(s).
0 0

It is clearly that the assumptions (i)-(ii) of Theorems 4.1 and 4.2 are satisfied with 4(T —a)* < T'(x+1) and
m<g ﬁ\}f these conditions tend to T < } and p < 1 W’ respectively. By the assumption of Theorems
5.5 and 5.6, the maximal solution of equations (8.5) and (8.6) can be gotten. The unique solution is so
trivial using Caratheodory condition (iii), all continuous dependencies discussed before can be proved.

9. Conclusions

In this paper, in Theorems 4.1 and 4.2, the existence of solutions d(t) and £(t) € C([a, T],L2(Q)) of
the non-local stochastic fractional differential equation (3.1) with the non-local condition (1.3) and the
generalized stochastic problem (1.1)-(1.3), respectively are proved. In Definitions 5.1-5.4, the meanings
of stochastically decreasing functions, stochastically increasing functions, maximal solution, and minimal
solution of the stochastic problem are all discussed. After that, in Theorems 5.5 and 5.6, the assumptions
for the solution to be a maximal solution of equation (3.2) and equation (3.3) are discussed.

In the second part of the paper, the sufficient conditions for the uniqueness of the solution of (3.2) and
(3.3) has been given in Theorems 6.1 and 6.2, respectively. The continuous dependence of the solution
on ¥4 and ny, of the solution of equation (3.2) and the continuous dependence on 84, &x, W(t), also on
U(t) of the solution of equation (3.3) are all proved.
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