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Abstract
This paper introduces a modification to the inertial subgradient extragradient algorithm by incorporating auxiliary parame-

ters for updating, along with dynamic regularization coefficient, including the parallel viscosity algorithm. The aim is to find an
element in the common solution set of fixed points in a finite family of nonexpansive mappings and Lipschitz-type continuous
pseudomonotone equilibrium problems. This element also serves as the unique solution to a minimization problem induced
by a bounded linear operator and contraction mapping in the context of a real Hilbert space. The efficiency of the proposed
algorithm is influenced by the introduced auxiliary parameters, which are intended to leverage the value of the considered
objective bifunction at each iteration, along with the advantages of the designed regularization coefficient, which is self-adaptive
and utilizes a straightforward rule for automatic updates. The update rule avoids enforcing monotonic behavior on the dynamic
regularization coefficient and does not require prior knowledge of the Lipschitz constants of the bifunction. This flexibility
increases the algorithm’s applicability for solving a wider range of practical problems. The discussions on the numerical experi-
ments for Nash-Cournot models and image restoration problems are also provided to illustrate the computational effectiveness
of the introduced algorithm.

Keywords: Equilibrium problems, fixed point problems, pseudomonotone bifunction, nonexpansive mapping, inertial method,
subgradient extragradient method.
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1. Introduction

The fixed point problem and the equilibrium problem have intensively been studied and the spans
of the concept of these problems have a broad range of applications in mathematical problems, such as
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variational inequalities problems, minimax problems, null point problems, saddle point problems, opti-
mization problems, and Nash equilibrium problems, see [14, 25, 28], and the references therein. They also
have an influence on the development of other branches such as finance, economics, transportation, and
image restoration, see [15, 34, 35], and the references therein. One topic interesting is image restoration
which plays an important part in many fields of applied sciences including medical and astronomical
imaging. Image restoration is the process of recovering a reasonably clear image from a noisy or distorted
image. As a result, improving image quality, which is the aim of image restoration, is worth contemplat-
ing. For related topics in this work, see [16, 31, 33], and the references therein.

Firstly, the fixed point problem is a problem of finding a point x ∈ H such that Sx = x, where H is a
real Hilbert space and S : H→ H is a mapping. The set of fixed points of the mapping S will be denoted
by F(S). In order to find fixed points of a nonexpansive mapping S, Moudafi [24] proposed the following
so-called viscosity method: {

x0 ∈ H,
xk+1 = (1 −αk)Sxk +αkh(xk),

(1.1)

where {αk} ⊂ (0, 1) and h : H → H is a contraction mapping. Under certain appropriate conditions, the
author proved that the sequence {xk} generated by Algorithm (1.1) converges strongly to p∗ ∈ F(S), which
is a solution of the variational inequality

〈(I− h)p∗, x− p∗〉 > 0, ∀x ∈ F(S),

where I is an identity mapping. It is important to note that the iteration methods for finding fixed
points of nonexpansive mappings have been applied to solve convex minimization problems, see [38],
and references therein. A typical convex minimization problem is to minimize a quadratic function over
the set of the fixed points of a nonexpansive mapping S:

min
x∈F(S)

1
2
〈Ax, x〉− 〈x,b〉,

where A : H → H is a bounded linear operator and b is a point in H. Furthermore, by using the idea of
the viscosity method, Marino and Xu [21] proposed the following algorithm for finding fixed points of a
nonexpansive mapping S: {

x0 ∈ H,
xk+1 = (I−αkA)Sxk +αkγh(xk),

(1.2)

where {αk} ⊂ (0, 1), h : H → H is a contraction mapping with coefficient ρ ∈ (0, 1), and A : H → H

is a strongly positive bounded linear mapping with coefficient β > 0 such that 0 < γ < β
ρ . Under

certain appropriate conditions, they proved that the sequence {xk} generated by Algorithm (1.2) converges
strongly to p∗ ∈ F(S), where p∗ is also a solution of the variational inequality

〈(A−βh)p∗, x− p∗〉 > 0, ∀x ∈ F(S),

which is the optimality condition for the minimization problem

min
x∈F(S)

1
2
〈Ax, x〉− g(x),

when g is a potential function for βh (i.e., g ′(x) = βh(x), ∀x ∈ H). On the other hand, the equilibrium
problem introduced by Blum and Oettli [4] is stated in the following manner:

Find a point x∗ ∈ C such that f(x∗,y) > 0, ∀y ∈ C, (1.3)

where C is a nonempty closed convex subset of a real Hilbert space H, and f : H×H→ R is a bifunction.
The solution set of the equilibrium problem (1.3) will be represented by EP(f,C). A famous method for
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solving the equilibrium problem (1.3) is the proximal point method. This method was first proposed by
Martinet [22] for solving the variational inequality problem and further investigated by Moudafi [23] to
the monotone equilibrium problem. It is worth noting that the proximal point method cannot be applied
to solve the equilibrium problem if the bifunction f satisfies a weaker assumption, like pseudomonotone,
see [11]. To surmount this limitation, the extragradient method was introduced for solving the pseu-
domonotone equilibrium problem instead of the proximal point method. The extragradient method was
early proposed by Korpelevich [19] for solving the saddle point problem and later expanded by Noor [26]
to the pseudomonotone variational inequality problem. Afterward, Tran et al. [35] proposed the follow-
ing extragradient method for solving the equilibrium problem when the bifunction f is pseudomonotone
and satisfies Lipschitz-type continuous with positive constants c1 and c2:

x0 ∈ C,
yk = arg min

{
λf(xk,y) + 1

2‖y− xk‖
2 : y ∈ C

}
,

xk+1 = arg min
{
λf(yk,y) + 1

2‖y− xk‖
2 : y ∈ C

}
,

(1.4)

where 0 < λ < min
{

1
2c1

, 1
2c2

}
. They proved that the sequence {xk} generated by Algorithm (1.4) converges

weakly to a solution of the equilibrium problem (1.3). It is emphasized that the extragradient method is
a two-step iteration method and requires to solve the optimization problems on the feasible set C twice
for finding yk and xk+1 in each iteration, which affects the computational efficiency of such algorithm
when the structure of the feasible set C is complex. To overcome this drawback, Hieu [12] extended
the following so-called subgradient extragradient method, which was proposed by Censor et al. [7] in
context of the variational inequality problem, for solving the equilibrium problem when the bifunction f
is pseudomonotone and satisfies Lipschitz-type continuous with positive constants c1 and c2:

x0 ∈ H,
yk = arg min

{
λkf(xk,y) + 1

2‖y− xk‖
2 : y ∈ C

}
,

Tk = {z ∈ H : 〈xk − λkrk − yk, z− yk〉 6 0} , rk ∈ ∂2f(xk,yk),
zk = arg min

{
λkf(yk,y) + 1

2‖y− xk‖
2 : y ∈ Tk

}
,

xk+1 = αkx0 + (1 −αk)zk,

(1.5)

where 0 < λk < min
{

1
2c1

, 1
2c2

}
, {αk} ⊂ (0, 1) such that

∞∑
k=0

αk = +∞ and lim
k→∞αk = 0, and ∂2f(xk,yk) is

the subdifferential of f(xk, · ) at yk. The author proved that the sequence {xk} generated by Algorithm (1.5)
converges strongly to PEP(f,C)(x0). It is worth noting that the subgradient extragradient method converts
the optimization problem on the feasible set C in the second step to an optimization problem on the half-
space Tk for finding zk in each iteration. Consequently, the subgradient extragradient method improves
the computational efficiency of the extragradient method because it only needs to solve the optimization
problem on the feasible set C once for finding yk. Notice that the step sizes of the aforementioned
algorithms depend on the Lipschitz constants of the bifunction f. This means that these algorithms need
to know the prior information of the Lipschitz constants of the bifunction f. However, this information is
usually not easily available in practical applications.

Meanwhile, the inertial method has received a lot of attention from many researchers, for instance, see
[13, 36] and the references therein. This method is regarded to speed up the convergence properties of
the algorithm and was used in the implicit discretization algorithm of the heavy ball with friction system
[1, 2] which was first studied by Polyak [29]. The main feature of this method is that the next iterate point
is determined through the previous two iterates.

In 2022, Xie et al. [37] proposed the following algorithm by using the techniques of inertial and sub-
gradient extragradient methods together with the viscosity-type method for solving the equilibrium and
fixed point problems when the bifunction f is pseudomonotone and satisfies Lipschitz-type continuous
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and the mapping S is nonexpansive:

x0, x1 ∈ H,
wk = xk + θk(xk − xk−1),
yk = arg min

{
λkf(wk,y) + 1

2‖y−wk‖
2 : y ∈ C

}
,

Tk = {z ∈ H : 〈wk − λkrk − yk, z− yk〉 6 0} , rk ∈ ∂2f(wk,yk),
zk = arg min

{
σλkf(yk,y) + 1

2‖y−wk‖
2 : y ∈ Tk

}
,

λk+1 =

min
{
λk,

µ(‖wk − yk‖2 + ‖zk − yk‖2)

2 [f(wk, zk) − f(wk,yk) − f(yk, zk)]

}
, if f(wk, zk) − f(wk,yk) − f(yk, zk) > 0,

λk, otherwise,

xk+1 = αkh(xk) +ψkxk + (1 −ψk −αk)Szk,

(1.6)

where λ1 > 0, µ ∈ (0, 1), σ ∈ (0, 1], {αk} ⊂ (0, 1) such that
∞∑
k=1

αk = ∞, lim
k→∞αk = 0, 0 < lim inf

k→∞ψk 6

lim sup
k→∞ψk < 1, and θk ⊂ [0, θ) for some θ > 0 such that lim

k→∞ θk
αk
‖xk − xk−1‖ = 0. They proved

that the sequence {xk} generated by Algorithm (1.6) converges strongly to p̃ = PEP(f,C)∩F(S)h(p̃). It is
evident that Algorithm (1.6) used the adaptive step size to deal with the unknown knowledge of the
Lipschitz constants of the bifunction f. Moreover, the adaptive step size criteria that update the step size
of each iteration with a simple computation by using the previously known information is presented.
However, this adaptive step size is a non-increasing sequence, which may affect the efficient computation
of Algorithm (1.6).

In this paper, we will focus on the algorithm for solving the equilibrium and fixed point problems.
That is, we introduce a new iterative algorithm for finding the common solution of the pseudomonotone
equilibrium problem and the fixed point problem of a finite family of nonexpansive mappings by us-
ing the adaptive dynamic regularization coefficients. Applications to Nash-Cournot models and image
restoration problems demonstrated the efficiency of the proposed algorithm via numerical experiments.

This paper is organized as follows. Section 2 includes some basic definitions and relevant properties
to be used in subsequent sections. Section 3 contains the modified inertial subgradient extragradient with
auxiliary parameters and parallel viscosity algorithm and the corresponding strong convergence theorem.
In Section 4, we will discuss the numerical behavior of the introduced algorithm in comparison with
respect to the aforementioned interesting algorithms on test problems including Nash-Cournot models
and image restoration problems.

2. Preliminaries

This section will present some necessary definitions and results that will be used in the sequel. Let H
be a real Hilbert space with inner product 〈· , · 〉, and its corresponding ‖ · ‖. The symbols → and ⇀ will
be denoted for the strong convergence and the weak convergence in H, respectively. The notation R and
N will stand for the set of the real numbers and the natural numbers, respectively.

First, we will collect some definitions and properties that will be used in this paper.

Definition 2.1. Let C be a nonempty closed convex subset of H. A bifunction f : H×H→ R is said to be:

(i) monotone on C if f(x,y) + f(y, x) 6 0, ∀x,y ∈ C;
(ii) pseudomonotone on C if f(x,y) > 0⇒ f(y, x) 6 0, ∀x,y ∈ C;

(iii) Lipschitz-type continuous on H if there exists two positive constants c1 and c2 such that

f(x,y) + f(y, z) > f(x, z) − c1‖x− y‖2 − c2‖y− z‖2, ∀x,y, z ∈ H.

Remark 2.2. A monotone bifunction is a pseudomonotone bifunction, but the converse is not true in
general, for instance, see [17].
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Definition 2.3. A mapping T : H→ H is said to be nonexpansive if

‖Tx− Ty‖ 6 ‖x− y‖, ∀x,y ∈ H.

Remark 2.4. It is well-known that F(T) is closed and convex when T is a nonexpansive mapping, see [9].

Definition 2.5 ([5]). A mapping T : H→ H is said to be demiclosed at y ∈ H if for any sequence {xk} ⊂ H
with xk ⇀ x∗ ∈ H and Txk → y imply Tx∗ = y.

Lemma 2.6 ([9]). Let T : H→ H be a nonexpansive mapping with F(T) 6= ∅. Then, I− T demiclosed at zero.

Definition 2.7. A mapping A : H → H is said to be strongly positive bounded linear mapping with
coefficient β, if there exists a constant β > 0 such that

〈Ax, x〉 > β‖x‖2, ∀x ∈ H.

Lemma 2.8 ([21]). Let A : H → H be a strongly positive bounded linear mapping with coefficient β > 0 and
0 < α < ‖A‖−1. Then, ‖I−αA‖ 6 1 −αβ.

For each x ∈ H, we denote the metric projection of x onto a nonempty closed convex subset C of H by
PC(x), that is

‖x− PC(x)‖ 6 ‖x− y‖, ∀y ∈ C.

Lemma 2.9 ([6, 10]). Let C be a nonempty closed convex subset of H. Then,
(i) PC(x) is singleton and well-defined for each x ∈ H;

(ii) z = PC(x) if and only if 〈x− z,y− z〉 6 0, ∀y ∈ C.

For a function f : H→ R, the subdifferential of f at x ∈ H is defined by

∂f(x) = {z ∈ H : f(y) − f(x) > 〈z,y− x〉, ∀y ∈ H}.

The function f is said to be subdifferentiable at x if ∂f(x) 6= ∅.

Lemma 2.10 ([6]). For any x ∈ H, the subdifferentiable ∂f(x) of a continuous convex function f is a weakly closed
and bounded convex set.

Lemma 2.11 ([8]). Let C be a convex subset of H and f : C → R be subdifferentiable on C. Then, x∗ is a solution
to the following convex problem: min {f(x) : x ∈ C} if and only if 0 ∈ ∂f(x∗) +NC(x∗), where NC(x∗) := {z ∈ H :
〈z,y− x∗〉 6 0, ∀y ∈ C} is the normal cone of C at x∗.

We end this section by recalling some important results for proving the convergence theorems.

Lemma 2.12 ([27]). Let {ak}, {bk} and {ck} be sequences of non-negative real numbers such that ak+1 6 akbk +

ck, ∀k ∈N. If {bk} ⊂ [1,∞),
∞∑
k=0

(bk − 1) <∞, and
∞∑
k=1

ck <∞, then lim
k→∞ak exists.

Lemma 2.13 ([38]). Let {ak} and {ck} be sequences of non-negative real numbers such that

ak+1 6 (1 −αk)ak +αkbk + ck, ∀k ∈N∪ {0},

where {αk} is a sequence in (0, 1) and {bk} is a sequence in R. Assume that
∞∑
k=0

ck < ∞. If
∞∑
k=0

αk = ∞ and

lim sup
k→∞ bk 6 0, then lim

k→∞ak = 0.

Lemma 2.14 ([20]). Let {ak} be a sequence of real numbers such that there exists a subsequence {akj} of {ak} such
that akj < akj+1, for all j ∈ N. Then, there exists a nondecreasing sequence {mn} of positive integers such that
lim
n→∞mn =∞ and the following properties hold:

amn 6 amn+1 and an 6 amn+1,

for all (sufficiently large) numbers n ∈N. Indeed, mn is the largest number k in the set {1, 2, . . . ,n} such that

ak < ak+1.
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3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Now, we will consider the
following problem:

Find a point x∗ ∈ C such that Six∗ = x∗, i = 1, . . . ,M, and f(x∗,y) > 0, ∀y ∈ C, (3.1)

where {Si}
M
i=1 : H → H is a finite family of nonexpansive mappings and f : H×H → R is a bifunction.

From now on, the solution set of problem (3.1) will be denoted by Ω. That is:

Ω := (∩Mi=1F(Si))∩ EP(f,C).

For the bifunction f : H×H→ R, we are concerned with the following assumptions in this work.

(A1) f(· ,y) is sequentially weakly upper semicontinuous on C, for each fixed y ∈ C, that is if {xk} ⊂ C is
a sequence converging weakly to x ∈ C, then lim sup

k→∞ f(xk,y) 6 f(x,y);

(A2) f(x, · ) is convex, subdifferentiable and lower semicontinuous on H, for each fixed x ∈ H;
(A3) f is psuedomonotone on C;
(A4) f is Lipschitz-type continuous on H.

Remark 3.1.

(i) If the bifunction f satisfies the assumptions (A1)-(A3), then the solution set EP(f,C) is closed and
convex, see [30, 35] for more detail.

(ii) If the bifunction f satisfies the assumptions (A3) and (A4), then f(x, x) = 0, for each x ∈ C, see [36].

Next, we introduce the following modified inertial subgradient extragradient with auxiliary parame-
ters and parallel viscosity algorithm for solving the problem (3.1), when A : H → H is a strongly positive
bounded linear mapping with coefficient β > 0 and h : H → H is a contraction mapping with coefficient
ρ ∈ (0, 1) such that 0 < γ < β

ρ .

Algorithm 3.2 (Modified inertial subgradient extragradient with auxiliary parameters and parallel viscos-
ity algorithm).

Initialization: Choose parameters λ1 > 0, µ ∈ [0, 1), ϕ ∈ (0, 1), τ ∈ (0, 1), σ ∈
(
0, 1

2τ

)
, η ∈

[
σ, 1
τ

)
,

{ξk} ⊂ [1,∞) with
∞∑
k=0

(ξk − 1) < ∞, {ρk} ⊂ [0,∞) with
∞∑
k=0

ρk < ∞, {δk} ⊂ (ϕ, 1] with lim
k→∞ δk = 1,

{εk} ⊂ [0,∞), and αk ⊂ (0, 1) such that
∞∑
k=0

αk = ∞, lim
k→∞αk = 0, and lim

k→∞ εkαk = 0. Pick x0, x1 ∈ H and

set k = 1.

Step 1: Choose θk such that 0 6 θk 6 θk, where

θk =

{
min
{
µ, εk
‖xk−xk−1‖

}
, if xk 6= xk−1,

µ, otherwise,

and compute
wk = xk + θk(xk − xk−1).

Step 2: Solve the strongly convex program

yk = arg min
{
ηλkf(wk,y) +

1
2
‖y−wk‖2 : y ∈ C

}
.

Step 3. Construct a half-space

Tk = {z ∈ H : 〈wk − ηλkrk − yk, z− yk〉 6 0} ,

where rk ∈ ∂2f(wk,yk).
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Step 4: Solve the strongly convex program

zk = arg min
{
σλkf(yk,y) +

1
2
‖y−wk‖2 : y ∈ Tk

}
.

Step 5: Compute

λk+1=

min
{
ξkλk + ρk,

τδk(‖wk − yk‖2 + ‖yk − zk‖2)

2 [f(wk, zk) − f(wk,yk) − f(yk, zk)]

}
, if f(wk, zk) − f(wk,yk) − f(yk, zk) > 0,

ξkλk + ρk, otherwise.

Step 6: Compute
uik = αkγh(wk) + (I−αkA)Sizk, i = 1, 2, . . . ,M.

Step 7: The next approximation xk+1 is defined as the farthest element fromwk among uik, i = 1, 2, . . . ,M,
i.e.,

xk+1 = arg max
{
‖uik −wk‖ : i = 1, 2, . . . ,M

}
.

Step 8: Put k := k+ 1 and return to Step 1.

Remark 3.3.

(i) The auxiliary parameters η and σ in Algorithm 3.2 are proposed to modify the subgradient extragra-
dient method presented in [12]. We emphasize that the choices of parameters η and σ can significantly
impact the superior numerical performance of Algorithm 3.2. Notably, based on the choice of parameter
τ, we observe that η and σ can be selected as values strictly greater than 1. Consequently, the presence
of these two parameters introduces bias to the objective bifunction f, especially when considering steps 2
and 4. Notice that if η = σ = 1 or η = 1, σ ∈ (0, 1], then the subgradient extragradient method in Algo-
rithm 3.2 reduces to a situation as presented in [12], and the subgradient extragradient method presented
in [37], respectively.

(ii) Observe that in the case of ξk = 1, ρk = 0, and δk = 1, the step size in Algorithm 3.2 reduces to the
non-increasing step size presented in [37]. We emphasize that the property of the auxiliary parameter
δk, a sequence of real numbers converging to 1 from the left, introduces bias to the current value of the
objective bifunction f, along with the relationships among wk,yk, and zk. This bias plays a crucial role in
determining the regularized parameter λk+1, see Section 4 for discussion and experiments. Furthermore,
one sees that the regularization coefficient λk may increase from iteration to iteration and so Algorithm
3.2 reduces the dependence on the initial step size λ1. Meanwhile, the advantages of the regularization co-
efficient λk are self-adaptive which uses a simple rule to automatically update the iteration regularization
coefficient, and does not necessitate to know the Lipschitz constants of the bifunction in advance.

The following lemma is quite helpful in analyzing the convergence of Algorithm 3.2.

Lemma 3.4. Let f : H×H→ R be a bifunction which satisfies (A1)-(A4). Suppose that the solution set EP(f,C) is
nonempty. Let wk ∈ H. If yk, zk, and λk+1 are constructed as in the process of Algorithm 3.2, then the following
result holds:

‖zk − p‖2 6 ‖wk − p‖2 −

(
σ

η
−
τσδkλk
λk+1

)
‖wk − yk‖2 −

(
σ

η
−
τσδkλk
λk+1

)
‖yk − zk‖2, ∀p ∈ EP(f,C).

Proof. Firstly, we will claim that C ⊂ Tk for each k ∈N. Let k ∈N be fixed and y ∈ C. From the definition
of yk and Lemma 2.11, we get

0 ∈ ∂2

{
ηλkf(wk,yk) +

1
2
‖yk −wk‖2

}
+NC(yk).
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Thus, there exists rk ∈ ∂2f(wk,yk) and sk ∈ NC(yk) such that

ηλkrk + yk −wk + sk = 0.

It follows from sk ∈ NC(yk) that

〈wk − ηλkrk − yk,y− yk〉 = 〈sk,y− yk〉 6 0.

This implies that y ∈ Tk. Then, we had shown that C ⊂ Tk, for each k ∈ N. Consequently, this one
guarantees that Algorithm 3.2 is well-defined.

Next, we will assert the result of the Lemma by applying the above facts. Let p ∈ EP(f,C). By the
subdifferentiability of f and rk ∈ ∂2f(wk,yk), we have

f(wk,y) − f(wk,yk) > 〈rk,y− yk〉, ∀y ∈ H.

Indeed, from zk ∈ Tk ⊂ H, we have

f(wk, zk) − f(wk,yk) > 〈rk, zk − yk〉. (3.2)

Also, by using the definition of Tk and zk ∈ Tk, we get

〈wk − ηλkrk − yk, zk − yk〉 6 0.

It follows from the inequality (3.2) that

ηλk[f(wk, zk) − f(wk,yk)] > 〈yk −wk,yk − zk〉. (3.3)

In addition, from the definition of zk and Lemma 2.11, we have

0 ∈ ∂2

{
σλkf(yk, zk) +

1
2
‖zk −wk‖2

}
+NTk(zk).

Thus, there exists r ∈ ∂2f(yk, zk) and s ∈ NTk(zk) such that

σλkr+ zk −wk + s = 0. (3.4)

It follows from the subdifferentiability of f that

f(yk,y) − f(yk, zk) > 〈r,y− zk〉, ∀y ∈ H. (3.5)

So, from s ∈ NTk(zk), we obtain
〈s, zk − y〉 > 0, ∀y ∈ Tk,

which together with the equality (3.4) implies that

〈wk − zk, zk − y〉 > σλk〈r, zk − y〉, ∀y ∈ Tk.

Combining with the inequality (3.5), we get

〈wk − zk, zk − y〉 > σλk[f(yk, zk) − f(yk,y)], ∀y ∈ Tk. (3.6)

In particular, since p ∈ C ⊂ Tk, we have

〈wk − zk, zk − p〉 > σλk[f(yk, zk) − f(yk,p)].

This together with the pseudomonotonic of f yields that

〈wk − zk, zk − p〉 > σλkf(yk, zk).
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It follows from the relation (3.3) that

ησλk[f(wk, zk) − f(wk,yk) − f(yk, zk)] > η〈zk −wk, zk − p〉+ σ〈yk −wk,yk − zk〉. (3.7)

On the other hand, from the definition of λk+1, we note that

f(wk, zk) − f(wk,yk) − f(yk, zk) 6
τδk(‖wk − yk‖2 + ‖yk − zk‖2)

2λk+1
. (3.8)

Combining with the inequality (3.7), we get

η〈wk − zk, zk − p〉 > σ〈yk −wk,yk − zk〉−
τησδkλk(‖wk − yk‖2 + ‖yk − zk‖2)

2λk+1
.

Due to the above expression, we have the following relations:

η
(
‖wk − p‖2 − ‖wk − zk‖2 − ‖zk − p‖2)
= 2η〈wk − zk, zk − p〉 > 2σ〈yk −wk,yk − zk〉−

τησδkλk(‖wk − yk‖2 + ‖yk − zk‖2)

λk+1
.

This implies that

‖zk − p‖2 6 ‖wk − p‖2 − ‖wk − zk‖2 −
2σ
η
〈yk −wk,yk − zk〉+

τσδkλk(‖wk − yk‖2 + ‖yk − zk‖2)

λk+1

= ‖wk − p‖2 − ‖wk − zk‖2 +
σ

η
‖wk − zk‖2 −

σ

η
‖wk − yk‖2 −

σ

η
‖yk − zk‖2

+
τσδkλk(‖wk − yk‖2 + ‖yk − zk‖2)

λk+1

= ‖wk − p‖2 −

(
σ

η
−
τσδkλk
λk+1

)
‖wk − yk‖2 −

(
σ

η
−
τσδkλk
λk+1

)
‖yk − zk‖2 − (1 −

σ

η
)‖wk − zk‖2.

Then, by using the conditions of the parameters σ and η (observing that
σ

η
∈ (0, 1]), we conclude that

‖zk − p‖2 6 ‖wk − p‖2 −

(
σ

η
−
τσδkλk
λk+1

)
‖wk − yk‖2 −

(
σ

η
−
τσδkλk
λk+1

)
‖yk − zk‖2.

This completes the proof.

Now, we are ready to analyze the strong convergence theorem of Algorithm 3.2.

Theorem 3.5. Let f : H×H→ R be a bifunction which satisfies (A1)-(A4), and {Si}
M
i=1 : H→ H be a finite family

of nonexpansive mappings. Assume that A : H → H is a strongly positive bounded linear mapping with coefficient
β > 0, and h : H → H is a contraction mapping with coefficient ρ ∈ (0, 1) such that 0 < γ < β

ρ . Suppose
that the solution set Ω is nonempty. Then, the sequence {xk} generated by Algorithm 3.2 converges strongly to
p̃ = PΩ(I−A+ γh)(p̃).

Proof. Let p ∈ Ω. From the Lipschitz-type continuity of f on H, there exists two positive constants c1 and
c2 such that

f(wk, zk) − f(wk,yk) − f(yk, zk) 6 max {c1, c2} (‖wk − yk‖2 + ‖yk − zk‖2).

Combining with the definition of λk+1 and the assumptions on the sequences {ξk}, {ρk}, {δk}, we obtain
that

λk+1 > min
{
ξkλk + ρk,

τδk
2 max {c1, c2}

}
> min

{
λk,

τϕ

2 max {c1, c2}

}
.
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By induction, we get that the sequence {λk} has a lower bound as min
{
λ1,

τϕ

2 max {c1, c2}

}
.

On the other hand, from the definition of λk+1, one sees that λk+1 6 ξkλk+ ρk, for each k ∈N. So, by
applying Lemma 2.12 and the conditions on the sequences {ξk} and {ρk}, we have the limit of {λk} exists.
It follows from the choices of the parameters τ ∈ (0, 1), σ ∈

(
0, 1

2τ

)
, η ∈

[
σ, 1
τ

)
, and lim

k→∞ δk = 1 that

lim
k→∞

(
σ

η
−
τσδkλk
λk+1

)
= σ

(
1
η
− τ

)
> 0.

Thus, there exists k0 ∈N such that

σ

η
−
τσδkλk
λk+1

> 0, ∀k > k0.

This together with the results of Lemma 3.4 yields that

‖zk − p‖ 6 ‖wk − p‖, (3.9)

for each k > k0. Now, since lim
k→∞αk = 0, we may assume, with no loss of generality, that αk < ‖A‖−1,

for each k ∈ N. Furthermore, from the definition of xk+1, we suppose that ik ∈ {1, 2, . . . ,M} such that
uikk = xk+1 = arg max

{
‖uik −wk‖ : i = 1, 2, . . . ,M

}
. Using this one together with the expression (3.9), the

nonexpansivity of Sik , ik ∈ {1, 2, . . . ,M}, and the facts of Lemma 2.8, we obtain that

‖xk+1 − p‖ = ‖αk(γh(wk) −Ap) + (I−αkA)(Sikzk − p)‖
6 αk‖γh(wk) −Ap‖+ ‖I−αkA‖‖Sikzk − p‖
6 αk‖γh(wk) −Ap‖+ (1 −αkβ)‖zk − p‖
6 γραk‖wk − p‖+αk‖γh(p) −Ap‖+ (1 −αkβ)‖wk − p‖
= (1 − (β− γρ)αk) ‖wk − p‖+αk‖γh(p) −Ap‖,

for each k > k0. It follows from the definition of wk that, for each k > k0, we have

‖xk+1 − p‖ 6 (1 − (β− γρ)αk) ‖xk − p‖+ (1 − (β− γρ)αk) θk‖xk − xk−1‖+αk‖γh(p) −Ap‖

= (1 − (β− γρ)αk) ‖xk − p‖+ (β− γρ)αk

(
ψk +

‖γh(p) −Ap‖
β− γρ

)
,

(3.10)

where ψk =

(
1 − (β− γρ)αk

β− γρ

)
θk
αk
‖xk − xk−1‖. Combining with the choices of the sequences {θk}, we

obtain that

ψk =

(
1 − (β− γρ)αk

β− γρ

)
θk
αk
‖xk − xk−1‖ 6

(
1 − (β− γρ)αk

β− γρ

)
εk
αk

,

for each k > k0. Due to the facts that lim
k→∞ εkαk = 0 and lim

k→∞αk = 0, we have

lim
k→∞ψk = 0.

Thus, there exists a constant M1 > 0 such that

ψk =

(
1 − (β− γρ)αk

β− γρ

)
θk
αk
‖xk − xk−1‖ 6M1,

for each k > k0. This together with the inequality (3.10) yields that

‖xk+1 − p‖ 6 (1 − (β− γρ)αk) ‖xk − p‖+ (β− γρ)αk

(
M1 +

‖γh(p) −Ap‖
β− γρ

)
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6 max
{
‖xk − p‖,M1 +

‖γh(p) −Ap‖
β− γρ

}
...

6 max
{
‖xk0 − p‖,M1 +

‖γh(p) −Ap‖
β− γρ

}
.

This implies that the sequence {‖xk − p‖} is bounded. Consequently, {xk} is a bounded sequence.
Furthermore, from the definition of wk, we provide the following:

‖wk − p‖2 = ‖(1 + θk)(xk − p) − θk(xk−1 − p)‖2

= (1 + θk)‖xk − p‖2 − θk‖xk−1 − p‖2 + θk(1 + θk)‖xk − xk−1‖2

6 (1 + θk)‖xk − p‖2 − θk‖xk−1 − p‖2 + 2θk‖xk − xk−1‖2

= ‖xk − p‖2 + θk(‖xk − p‖2 − ‖xk−1 − p‖2) + 2θk‖xk − xk−1‖2,

for each k > k0. Thus, applying Lemma 3.4 to the above relation, we have

‖zk − p‖2 6 ‖xk − p‖2 + θk(‖xk − p‖2 − ‖xk−1 − p‖2) + 2θk‖xk − xk−1‖2

−

(
σ

η
−
τσδkλk
λk+1

)
‖wk − yk‖2 −

(
σ

η
−
τσδkλk
λk+1

)
‖yk − zk‖2,

for each k > k0. Using this one together with the definition of xk+1 and the nonexpansivity of Sik ,
ik ∈ {1, 2, . . . ,M}, we get

‖xk+1 − p‖2 = ‖αk(γh(wk) −Ap) + (I−αkA)(Sikzk − p)‖
2

=

∥∥∥∥αk(γh(wk) −Ap) + (1 −αk)
I−αkA

1 −αk
(Sikzk − p)

∥∥∥∥2

6 αk‖γh(wk) −Ap‖2 + (1 −αk)

∥∥∥∥I−αkA1 −αk
(Sikzk − p)

∥∥∥∥2

6 αk‖γh(wk) −Ap‖2 +
(1 −αkβ)

2

1 −αk
‖zk − p‖2

6 αk‖γh(wk) −Ap‖2 +
(1 −αkβ)

2

1 −αk
‖xk − p‖2 + 2

(1 −αkβ)
2

1 −αk
θk‖xk − xk−1‖2

+
(1 −αkβ)

2

1 −αk
θk(‖xk − p‖2 − ‖xk−1 − p‖2)

−
(1 −αkβ)

2

1 −αk

(
σ

η
−
τσδkλk
λk+1

)(
‖wk − yk‖2 + ‖yk − zk‖2) ,

for each k > k0. This implies that

(1 −αkβ)
2

1 −αk

(
σ

η
−
τσδkλk
λk+1

)
‖wk − yk‖2 +

(1 −αkβ)
2

1 −αk

(
σ

η
−
τσδkλk
λk+1

)
‖yk − zk‖2

6 ‖xk − p‖2 − ‖xk+1 − p‖2 +
(1 −αkβ)

2

1 −αk
θk(‖xk − p‖2 − ‖xk−1 − p‖2) (3.11)

+ 2
(1 −αkβ)

2

1 −αk
θk‖xk − xk−1‖2 +αk‖γh(wk) −Ap‖2 +

(
(1 −αkβ)

2

1 −αk
− 1
)
‖xk − p‖2,

for each k > k0. On the other hand, we know that PΩ(I−A+ γh) is a contraction on H. Indeed, by
applying Lemma 2.8, one sees that

‖PΩ(I−A+ γh)(x) − PΩ(I−A+ γh)(y)‖ 6 ‖(I−A+ γh)(x) − (I−A+ γh)(y)‖
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6 ‖(I−A)(x) − (I−A)(y)‖+ γ‖h(x) − h(y)‖
6 (1 −β)‖x− y‖+ γρ‖x− y‖ = (1 − (β− γρ))‖x− y‖,

for each x,y ∈ H, thus, PΩ(I−A+ γh) is a contraction on H and so we know that there exists p̃ ∈ Ω such
that p̃ = PΩ(I−A+ γh)(p̃). Now, we are in a position to show that the sequence {xk} converges strongly
to p̃ = PΩ(I−A+ γh)(p̃) by considering the following two possible cases.

Case 1. Suppose that ‖xk+1 − p̃‖ 6 ‖xk − p̃‖, for all k > k0. This means that {‖xk − p̃‖}k>k0 is a nonin-
creasing sequence. Consequently, by utilizing this fact together with the boundness property of {‖xk− p̃‖},
we obtain that the limit of ‖xk − p̃‖ exists. Using this one together with the relation (3.11), the fact that
lim
k→∞ θk‖xk − xk−1‖2 = 0, and the properties of the control sequences {αk} and {θk}, we have

lim
k→∞ ‖wk − yk‖ = 0, (3.12)

and
lim
k→∞ ‖yk − zk‖ = 0. (3.13)

These imply that
lim
k→∞ ‖wk − zk‖ = 0. (3.14)

Additionally, from the definition of wk and the fact that lim
k→∞ θk‖xk − xk−1‖ = 0, we get

lim
k→∞ ‖xk −wk‖ = 0. (3.15)

It follows from (3.12) that
lim
k→∞ ‖xk − yk‖ = 0. (3.16)

This together with (3.13) yields that
lim
k→∞ ‖xk − zk‖ = 0. (3.17)

On the other hand, from the definition of xk+1 and the expression (3.9), we have

‖xk+1 − p̃‖2

= ‖αk(γh(wk) −Ap̃) + (I−αkA)(Sikzk − p̃)‖
2

6 (1 −αkβ)
2‖zk − p̃‖2 + 2αk〈γh(wk) −Ap̃, xk+1 − p̃〉

6 (1 −αkβ)
2‖wk − p̃‖2 + 2αk〈γh(wk) −Ap̃, xk+1 − p̃〉

= (1 −αkβ)
2‖wk − p̃‖2 + 2αk〈γh(wk) − γh(p̃), xk+1 − p̃〉+ 2αk〈γh(p̃) −Ap̃, xk+1 − p̃〉

6 (1 −αkβ)
2‖wk − p̃‖2 + 2γραk‖wk − p̃‖‖xk+1 − p̃‖+ 2αk〈γh(p̃) −Ap̃, xk+1 − p̃〉

6 (1 −αkβ)
2‖wk − p̃‖2 + γραk

(
‖wk − p̃‖2 + ‖xk+1 − p̃‖2)+ 2αk〈γh(p̃) −Ap̃, xk+1 − p̃〉

=
(
(1 −αkβ)

2 + γραk
)
‖wk − p̃‖2 + γραk‖xk+1 − p̃‖2 + 2αk〈γh(p̃) −Ap̃, xk+1 − p̃〉,

(3.18)

for each k > k0. Besides, in view of the definition of wk, we observe that

‖wk − p̃‖2 6 (‖xk − p̃‖+ θk‖xk − xk−1‖)2

6 ‖xk − p̃‖2 + 2θk‖xk − p̃‖‖xk − xk−1‖+ θk‖xk − xk−1‖2

6 ‖xk − p̃‖2 + 3M2θk‖xk − xk−1‖,

where M2 = sup
k>k0

{‖xk − p̃‖, ‖xk − xk−1‖}. Combining with the relation (3.18), we get

‖xk+1 − p̃‖2 6

(
(1 −αkβ)

2 + γραk
1 − γραk

)
‖xk − p̃‖2 + 3M2

(
(1 −αkβ)

2 + γραk
1 − γραk

)
θk‖xk − xk−1‖
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+

(
2αk

1 − γραk

)
〈γh(p̃) −Ap̃, xk+1 − p̃〉

6

(
1 −

2(β− γρ)αk
1 − γραk

)
‖xk − p̃‖2 +

2(β− γρ)αk
1 − γραk

(
β2αk‖xk − p̃‖2

2(β− γρ)

+ 3M2

(
(1 −αkβ)

2 + γραk
2(β− γρ)

)
θk
αk
‖xk − xk−1‖+

1
β− γρ

〈γh(p̃) −Ap̃, xk+1 − p̃〉

)

6

(
1 −

2(β− γρ)αk
1 − γραk

)
‖xk − p̃‖2 +

2(β− γρ)αk
1 − γραk

(
β2αkM3

2(β− γρ)

+ 3M2

(
(1 −αkβ)

2 + γραk
2(β− γρ)

)
θk
αk
‖xk − xk−1‖+

1
β− γρ

〈γh(p̃) −Ap̃, xk+1 − p̃〉

)
,

where M3 = sup
k>k0

{
‖xk − p̃‖2

}
. Put ζk =

2(β− γρ)αk
1 − γραk

. This together with the above inequality yields that

‖xk+1 − p̃‖2 6 (1 − ζk)‖xk − p̃‖2 + ζk

(
3M2

(
(1 −αkβ)

2 + γραk
2(β− γρ)

)
θk
αk
‖xk − xk−1‖

+
β2αkM3

2(β− γρ)
+

1
β− γρ

〈γh(p̃) −Ap̃, xk+1 − p̃〉

)
,

(3.19)

for each k > k0. Furthermore, by the assumption on the sequence {αk}, one sees that

∞∑
k=1

ζk =∞. (3.20)

Now, let x∗ ∈ ωw(xk) and {xkn} be a subsequence of {xk} such that xkn ⇀ x∗, as n → ∞. We know that,
by utilizing (3.16) and (3.17), we also have ykn ⇀ x∗ and zkn ⇀ x∗, as n → ∞. Since C is closed and
convex set, so C is weakly closed, therefore, x∗ ∈ C.

Next, due to the relations (3.3), (3.6), and (3.8), we get

σλknf(ykn ,y) > σλknf(ykn , zkn) + 〈wkn − zkn ,y− zkn〉

> σλknf(wkn , zkn) − σλknf(wkn ,ykn) −
στδknλkn

2λkn+1
‖wkn − ykn‖

2

−
στδknλkn

2λkn+1
‖ykn − zkn‖

2 + 〈wkn − zkn ,y− zkn〉

>
σ

η
〈ykn −wkn ,ykn − zkn〉−

στδknλkn
2λkn+1

‖wkn − ykn‖
2 −

στδknλkn
2λkn+1

‖ykn − zkn‖
2

+ 〈wkn − zkn ,y− zkn〉,

for each y ∈ C. Using this one together with (3.12), (3.13), (3.14), and the boundedness of {zk}, we have the
right-hand side of the above inequality tends to zero. Thus, by applying the sequentially weakly upper
semicontinuity of f and the parameters σ, λkn > 0, we obtain that

0 6 lim sup
n→∞ f(ykn ,y) 6 f(x∗,y), ∀y ∈ C.

This means that x∗ ∈ EP(f,C). On the other hand, from the definition of wk, one sees that

θk‖xk − xk−1‖ = ‖wk − xk‖.
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Combining with the fact (3.15), we have

lim
k→∞ ‖xk − xk−1‖ = 0. (3.21)

In addition, since ‖xk+1 −wk‖ 6 ‖xk+1 − xk‖+ ‖xk −wk‖, it follows from (3.15) and (3.21) that

lim
k→∞ ‖xk+1 −wk‖ = 0.

This together with the definition of xk+1 yields that

lim
k→∞ ‖uik −wk‖ = 0, (3.22)

for each i = 1, 2, . . . ,M. Furthermore, by the definition of uik, we get

‖uik − Sizk‖ = αk‖γh(wk) −ASizk‖, (3.23)

for each i = 1, 2, . . . ,M. Using this one together with the boundedness of {ASizk}, {h(wk)}, and the
condition that lim

k→∞αk = 0, we have

lim
k→∞ ‖uik − Sizk‖ = 0,

for each i = 1, 2, . . . ,M. Moreover, since ‖Sizk − zk‖ 6 ‖Sizk − uik‖+ ‖uik −wk‖+ ‖wk − zk‖, it follows
from (3.14), (3.22), and (3.23) that

lim
k→∞ ‖Sizk − zk‖ = 0,

for each i = 1, 2, . . . ,M. This together with the demiclosedness at 0 of I− Si, i = 1, 2, . . . ,M, and zkn ⇀ x∗,
as n→∞, gives x∗ ∈ F(Si), for each i = 1, 2, . . . ,M. Then, we had shown that x∗ ∈ Ω, and soωw(xk) ⊂ Ω.
Finally, by the properties that p̃ = PΩ(I−A+ γh)(p̃) and x∗ ∈ ωw(xk) ⊂ Ω, we have

lim sup
k→∞ 〈Ap̃− γh(p̃), p̃− xk+1〉 = lim

n→∞〈Ap̃− γh(p̃), p̃− xkn+1〉 = 〈Ap̃− γh(p̃), p̃− x∗〉 6 0. (3.24)

Hence, by using (3.19), (3.20), (3.24), and Lemma 2.13, we obtain that

lim
k→∞ ‖xk − p̃‖ = 0,

This completes the proof for the first case.

Case 2. Suppose that there exists a subsequence {‖xkj − p̃‖} of {‖xk − p̃‖} such that

‖xkj − p̃‖ < ‖xkj+1 − p̃‖, ∀j ∈N.

According to Lemma 2.14, there exists a nondecreasing sequence {mn} ⊂ N such that lim
n→∞mn = ∞,

and
‖xmn − p̃‖ 6 ‖xmn+1 − p̃‖ and ‖xn − p̃‖ 6 ‖xmn+1 − p̃‖, ∀n ∈N. (3.25)

Using this one together with the relation (3.11), we get

(1 −αmnβ)
2

1 −αmn

(
σ

η
−
τσδmnλmn

λmn+1

)
‖wmn − ymn‖2 +

(1 −αmnβ)
2

1 −αmn

(
σ

η
−
τσδmnλmn

λmn+1

)
‖ymn − zmn‖2

6 ‖xmn − p‖2 − ‖xmn+1 − p‖2 +
(1 −αmnβ)

2

1 −αmn

θmn(‖xmn − p‖2 − ‖xmn−1 − p‖2)

+ 2
(1 −αmnβ)

2

1 −αmn

θmn‖xmn − xmn−1‖2 +αmn‖γh(wmn) −Ap‖2 +

(
(1 −αmnβ)

2

1 −αmn

− 1
)
‖xmn − p‖2
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6
(1 −αmnβ)

2

1 −αmn

θmn(‖xmn − p‖2 − ‖xmn−1 − p‖2) +

(
(1 −αmnβ)

2

1 −αmn

− 1
)
‖xmn − p‖2

+ 2
(1 −αmnβ)

2

1 −αmn

θmn‖xmn − xmn−1‖2 +αmn‖γh(wmn) −Ap‖2.

Following the proof of Case 1, we can show that for each i = 1, 2, . . . ,M,

lim
n→∞ ‖wmn − ymn‖ = 0, lim

n→∞ ‖ymn − zmn‖ = 0, lim
n→∞ ‖wmn − zmn‖ = 0,

lim
n→∞ ‖xmn − ymn‖ = 0, lim

n→∞ ‖xmn − zmn‖ = 0, lim
n→∞ ‖Sizmn − zmn‖ = 0,

(3.26)

lim sup
n→∞ 〈Ap̃− γh(p̃), p̃− xmn+1〉 = 〈Ap̃− γh(p̃), p̃− x∗〉 6 0, ∀x∗ ∈ ωw(xn) ⊂ Ω, (3.27)

and

‖xmn+1 − p̃‖2 6 (1 − ζmn)‖xmn − p̃‖2 + ζmn

(
3M2

(
(1 −αmnβ)

2 + γραmn

2(β− γρ)

)
θmn

αmn

‖xmn − xmn−1‖

+
β2αmnM3

2(β− γρ)
+

1
β− γρ

〈γh(p̃) − p̃, xmn+1 − p̃〉

)
.

where M2 = sup
n∈N

{‖xmn − p̃‖, ‖xmn − xmn−1‖} and M3 = sup
n∈N

{
‖xmn − p̃‖2

}
. It follows from the expres-

sions (3.25) that

‖xmn+1 − p̃‖2 6 (1 − ζmn)‖xmn+1 − p̃‖2 + ζmn

(
3M2

(
(1 −αmnβ)

2 + γραmn

2(β− γρ)

)
θmn

αmn

‖xmn − xmn−1‖

+
β2αmnM3

2(β− γρ)
+

1
β− γρ

〈γh(p̃) − p̃, xmn+1 − p̃〉

)
.

Combining with the expressions (3.25) again, we obtain

‖xn − p̃‖2 6 3M2

(
(1 −αmnβ)

2 + γραmn

2(β− γρ)

)
θmn

αmn

‖xmn − xmn−1‖+
β2αmnM3

2(β− γρ)

+
1

β− γρ
〈γh(p̃) − p̃, xmn+1 − p̃〉.

Then, by using the relation (3.27), the choices of the sequences {θk}, and the condition that lim
k→∞αk = 0,

we have
lim sup
n→∞ ‖xn − p̃‖2 6 0.

Hence, we can conclude that the sequence {xn} converges strongly to p̃ = PΩ(I − A + γh)(p̃). This
completes the proof.

4. Numerical experiments

This section will consider some examples and numerical results to verify and justify the presented
Theorem 3.5. In Example 4.1, we will provide to demonstrate the effectiveness of the proposed Algorithm
3.2. In the case M = 1, we will compare the introduced Algorithm 3.2 with Algorithm (1.6) in Example
4.2. All the numerical experiments are carried out using Matlab R2021b and executed on an Apple M1
with 8.00 GB RAM. In both two Examples 4.1 and 4.2, the ‖ · ‖ represents the spectral norm for each
considered matrix.
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Example 4.1. Let H = Rn be n-dimensional vector space equipped with the Euclidean norm. For the
constrained box C = {x ∈ Rn : −5 6 xj 6 5, ∀j = 1, 2, . . . ,n}, we will consider a classical form of the
bifunction which arises from the Nash-Cournot models, see [18],

g(x,y) = 〈Px+ rn(y+ x),y− x〉, ∀x,y ∈ Rn,

where

P =


0 r r · · · r

r 0 r · · · r

r r 0 · · · r

· · · · · · ·
r r · · · · 0


n×n

,

when r is a positive real number. Following [3], we know that the bifunctions g is pseudomonotone and
it is not monotone on C. Next, we consider the bifunction f which is given by

f(x,y) =

{
g(x,y), if (x,y) ∈ C×C,
0, otherwise,

see [32]. Observe that f satisfies Lipschitz-type continuous. On the other hand, for the boxes Qi, i =
1, 2, . . . ,M, which are taken by

Qi = {x ∈ Rn : −qi 6 xj 6 qi, ∀j = 1, 2, . . . ,n}, i = 1, 2, . . . ,M,

where qi are the positive real numbers, the nonexpansive mappings Si, i = 1, 2, . . . ,M, are generated by

Si = PQi , i = 1, 2, . . . ,M.

Furthermore, we set A(x) = x
3 and h(x) = x

5 which are the strongly positive bounded linear mapping
with coefficient 1

3 and the contraction mapping with coefficient 1
5 , respectively and choose γ = 0.9.

The numerical experiments are considered under the following details regarding control parameters
setting: λ1 = 0.9, µ = 0.5, ϕ = 0.4, τ = 0.3, αk = 1

k+1 , εk = 1
(k+1)2 , and θk = θk. Besides, the

positive real number r is generated randomly in the interval (1, 1.001) and the positive real numbers
qi, i = 1, 2, . . . ,M, are generated randomly in the interval (0, 3). The starting points x0 = x1 ∈ Rn

are generated randomly with its elements being in the interval [−5, 5]. Also, by randomly 10 starting
points and the reported results are average. The stopping criterion used for the numerical computation
of Algorithm 3.2 is ‖xk+1−xk‖

‖xk‖+1 < 10−6 when n = 10 and M = 50.
To see the optimum values of the control parameters, the first experiment was carried out taking into

account the variation of the control parameters σ = 1, 1.2, 1.4, 1.6 and η = 1, 1.2, 1.4, 1.6, 1.8 by fixing the
control parameters ξk = 1 + 1

(k+1)1.2 , ρk = 1
(k+1)1.2 , and δk = k

k+1 . We omit the combinations that do not
satisfy the assumption in Theorem 3.5 and label it by −.

Table 1: Numerical behavior of Algorithm 3.2 with different parameters σ and η, where ξk = 1 + 1
(k+1)1.2 ,

ρk = 1
(k+1)1.2 , and δk = k

k+1 in Example 4.1.

η = 1 η = 1.2 η = 1.4 η = 1.6 η = 1.8
σ Iter Time Iter Time Iter Time Iter Time Iter Time
1 47.1 1.08 50.9 0.87 55.2 0.95 60.1 1.05 63.7 1.08

1.2 - - 43.6 0.78 47.7 0.84 50.7 0.89 55.1 0.96
1.4 - - - - 43.5 0.74 45.6 0.78 48.1 0.85
1.6 - - - - - - 40.5 0.69 43.8 0.74
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From Table 1, the number of iterations (Iter) and the CPU time (Time) in seconds are presented. It is
important to highlight that the careful selection of relevant parameters in Algorithm 3.2, specifically the
values of σ and η, hold significance. The optimal choices for these parameters are found to be σ = 1.6
and η = 1.6, considering both the number of iterations and CPU time across all examined cases. We
note that choosing τ = 0.3 allows σ and η to take on values greater than 1. One can observe that,
for each fixed η, both the iteration number and CPU time efficiency of the algorithm show improved
behavior with respect to σ. However, the situation appears to reverse when we fix each σ and consider
the efficiency with respect to η. This observation supports the overall choice of σ and η mentioned above,
which establishes the superiority of the algorithm. Nevertheless, the results presented in Table 1 indicate
that the algorithm’s superiority does not exhibit a monotonic trend correlated to τ, as τ = 0.27 gives 1

2τ
approximately to 1.85. This suggests that just roughly reducing the parameter value of τ to a positive
real number less than 0.3 and then choosing the possible highest value of σ, may not ensure an improved
behavior of the constructed sequence.

In the upcoming experiment, we examine the numerical behavior of the control parameters ξk, ρk,
and δk while maintaining fixed values for the control parameters σ = 1.6 and η = 1.6. The numerical
results are presented for various values of control parameters ξk = 1, 1 + 1

(k+1)1.2 , and ρk = 0, 1
(k+1)1.2 ,

and δk = 1, k
k+1 . We observe that when ξk = 1, ρk = 0, and δk = 1, the step size considered in Algorithm

3.2 reduces to a form equivalent to Algorithm (1.6).

Table 2: Numerical behavior of Algorithm 3.2 with different parameters ξk, ρk, and δk,with fixed values
for σ = 1.6 and η = 1.6.

δk = 1 δk = k
k+1

ξk = 1 ξk = 1 + 1
(k+1)1.2 ξk = 1 ξk = 1 + 1

(k+1)1.2

ρk Iter Time Iter Time Iter Time Iter Time
0 68.0 1.38 44.4 0.79 75.4 1.35 43.8 0.82
1

(k+1)1.2 41.6 0.74 41.0 0.74 40.2 0.71 39.0 0.69

From Table 2, for each fixed parameter ξk, ρk, and δk, we observe that the chosen parameters ξk =
1 + 1

(k+1)1.2 , ρk = 1
(k+1)1.2 , and δk = k

k+1 exhibit better performance than the parameters ξk = 1, ρk = 0,
and δk = 1, respectively, in terms of both iteration number and CPU time. This demonstrates that
opting for the suggested alternatives of parameters ξk, ρk, and δk, in Algorithm 3.2, as proposed in this
paper, leads to improved performance in solving this kind of problem. Indeed, it is evident that choosing
ξk = 1 + 1

(k+1)1.2 , ρk = 1
(k+1)1.2 , and δk = k

k+1 results in the highest performance for Algorithm 3.2.

Example 4.2. In the case M = 1, we perform some computational experiments to solve the image restora-
tion problems by comparing Algorithm 3.2 with Algorithm (1.6). It is known that all images have
n := N1 ×N2 pixels and each pixel value is in the range [0, 255]. Here, let H = Rn be a real Hilbert
space equipped with the Euclidean norm and C = {x ∈ Rn : 0 6 xj 6 255, ∀j = 1, 2, . . . ,n} be a con-
strained box.

Let us consider the image restoration problem, which can be modeled by the following linear equation
system:

v = Ux+w, (4.1)

where x ∈ Rn is the original image, v ∈ Rn is the degraded image, w ∈ Rn is additive noise, and
U ∈ Rn×n is the blurring matrix. In order to solve (4.1), we aim to approximate the original image, vector
x, by minimizing the additive noise, by using the following minimization problem:

min
x∈C

1
2
‖Ux− v‖2,

see [34]. To be considered here is the bifunction f, which is defined by

f(x,y) = g(y) − g(x), ∀x,y ∈ Rn,
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where g(x) := 1
2‖Ux− v‖

2. It is clear that

f(x,y) + f(y, x) = 0, ∀x,y ∈ Rn.

Thus, the bifunction f is a monotone. Observe that the bifunction f satisfies Lipschitz-type continuous.
On the other hand, the nonexpansive mapping S is given by Sx = x, ∀x ∈ Rn.

Consider the following details regarding control parameters setting: λ1 = 0.9, γ = 0.9, µ = 0.5, ϕ = 0.4,
τ = 0.3, σ = 1.6, η = 1.6, αk = 1

k+1 , εk = 1
(k+1)2 , ξk = 1 + 1

(k+1)1.2 , ρk = 1
(k+1)1.2 , δk = k

k+1 , and θk = θk

by using the strongly positive bounded linear mapping A and the contraction mapping h as in Example
4.1. The starting points x0 = x1 ∈ Rn are generated randomly with its elements being in the interval
[0, 1]. Algorithm 3.2 was tested along with Algorithm (1.6) by using the stopping criteria as the number of
iterations 1000. In all comparisons, we will work for two grayscale images, Lena and Barbara with sizes
of 343× 343 and 512× 512, respectively as the original images. The degraded images are obtained by
adding motion blur with a motion length of 15 pixels and motion orientation 60◦ to the original images.
The quality of the restored image is measured by the signal-to-noise ratio (SNR) in decibel (dB), which is
defined by

SNR = 20 log10
‖x‖

‖x− xk‖
,

where x is the original image and xk is the restored image at iteration k. A higher SNR value means
that the restored image is of higher quality. That is, the SNR value increases when the restored image xk
tends to the original image x. The restored images of the 1000th iteration are shown in Figures 1 and 2,
respectively. Meanwhile, the SNR values are presented in Figure 3.

(a) Original image (b) Degraded image (c) Algorithm 3.2
SNR = 31.59 dB

(d) Algorithm (1.6)
SNR = 20.82 dB

Figure 1: Comparison of the restored images of Lena at 1000th iteration in Example 4.2.

(a) Original image (b) Degraded image (c) Algorithm 3.2
SNR = 37.10 dB

(d) Algorithm (1.6)
SNR = 23.47 dB

Figure 2: Comparison of the restored images of Barbara at 1000th iteration in Example 4.2
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(a) The Lena image with size 343× 343 (b) The Barbara image with size 512× 512

Figure 3: The behavior of SNR values of the images with different sizes in Example 4.2.

From Figures 1 and 2, one can observe that Algorithm 3.2 yields higher SNR values compared to
Algorithm (1.6) for both considered images. Furthermore, the plots in Figures 3 show that Algorithm 3.2
provides a more efficient solution than Algorithm (1.6) at each iteration. These observations lead to the
conclusion that making alternative choices for auxiliary parameters τ, σ, η, and ξk, ρk, δk, as allowed in
Algorithm 3.2, can enhance the performance in solving problems such as restoring images in this example.

5. Conclusions

We propose an algorithm aimed at identifying a unique solution to a minimization problem induced
by a bounded linear operator and contraction mapping. This problem involves common elements found
in the set of fixed points of a finite family of nonexpansive mappings and the solution set of a pseu-
domonotone equilibrium problem within the context of a real Hilbert space. By incorporating auxiliary
parameters and utilizing the parallel viscosity concept in the modification of the inertial and subgradient
extragradient methods, we establish a sequence that strongly converges to the unique solution of the
aforementioned minimization problem. Numerical experiments demonstrate that auxiliary parameters,
such as τ, σ, η, along with the sequences ξk, ρk, and δk, enhance the efficiency of Algorithm 3.2 itself, as
well as improving other relevant algorithms. We observe that the efficiency of the constructed sequence
appears to follow the choice of these auxiliary parameters, as discussed in Section 4. Hence, it would be
interesting in future research papers to explore the behavior of these auxiliary parameters that lead to
the superior convergence behavior of the sequence induced by Algorithm 3.2. Another aspect of future
research directions involves refining the auxiliary parameters to enhance convergence speed and investi-
gating the convergence rate of the iteration. Additionally, extending the scope of this work to encompass
applications in signal processing and other domains is also a promising avenue for further exploration.
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