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Abstract
In this paper, the oscillation of the first-order nonlinear delay difference equation
Ay() +a(Yy(1+1) +bLf(y(d(1)) =0, 1Ny,

is studied. Some explicit oscillation results of liminf and limsup are given. We obtain many new results using the comparison
between both first-order delay linear and nonlinear difference equations. We give an illustrative example to demonstrate the
strength and simplicity of our results.
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1. Introduction
Consider the first-order nonlinear difference equation
Ay(l) +a(Vy(1+1) +b(V)f(y(d(1))) =0, 1 € Ny, (1.1)
where f € C[IR, R] such that

lim inf fly) >06>0 and yf(y)>0 fory#0, (1.2)
y—0 y
and INj is the set of all nonnegative integers, Ay(l) = y(1+1) —y(l), (a(l))i>o0 is a sequence of real
numbers such that a(l) > —1, and (b(l))1>0 is a sequence of nonnegative real numbers and (9(1))1>0 is a
sequence of integers such that llim ?(1) = 0o and
—00

o) <1-1, 1 € Np.
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By a solution of Eq. (1.1) we mean a sequence of real numbers (y(1))i1>—q, d = —{niroﬁ}(h) that satisfies
1=

(1.1) for 1 > 0. For a given set of real numbers u_g4,u_q41,...,49, Eq. (1.1) has a unique solution
(Y(1))1>—q that satisfies y(—d) = u_gq,y(—d+1) = u_gq41,...,Y(0) = up. As usual, any solution to Eq.
(1.1) that is neither eventually positive nor eventually negative is called oscillatory. Equation (1.1) is said to
be oscillatory if all its solutions are oscillatory; otherwise, it is called nonoscillatory. We use the following
notation:

C(1) = sup ¥(r), liminf a(l) > «,
Ongl l—o0
-1 (1.3)
.. 1-n—+1-2n—1m2 1
y=liminf } b(v), D(n) = 5 , 0<n< s,

r=¢(1)

and

s—1 s—1
Z K(Tl) = 0, H K(Tl) =1.

T1=S T1=5

When a(l) =0 and f(y) =y, Eq. (1.1) becomes the first-order linear delay difference equation
Ay(l) +b(Ly((d(1) =0, 1 € No,

that has received a great deal of attention from many researchers to study the oscillatory behavior of all
its solutions, see [2-4, 9-11, 13, 17]. The two well-known sufficient oscillation conditions

1
lim sup Z b(r) >1, (1.4)
and
-1 1 -1
lim inf b(r) >~ and limsu b(r) < +oo, 15
oo T‘;l) () € ]'_mop T‘%l) () ( )

are due to [10] and [11], respectively. Many efforts have been made to fill the gap between conditions (1.4)
and (1.5), see [2-6, 8-14, 17]. Very recently, Attia et al. [4] established the condition

1
lim sup (P(l,ml) + Z b(Tl)nglz (C(U,ﬁ(ﬁ))) >1,

where my, mp € IN, and

1-1 1-1
Wl(l,u) = H (1 - Kb(T])) s Wer](L,u) = H (1 —b(Tl)WTTll (T],S(T]))) ’
1-1
{128 ings §

r=0(1)
and A(&) be the smaller real root of A = e®*, & > 0, and
h(l) =min{r; € Ny :1 > 1L 9(r) >1—-1},

and h(l+1)—1
S o) XL ) D) Wad (V(1), C(12)

h(l+1)-1
1 - Zrl(:l+)1 b(Tl)

P(l,m1) =
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On the other hand, some authors try to extend the above results for covering more general difference
equations, see [1, 5-7, 14, 15, 18-21]. For instance, Yan and Qian [21] studied the oscillation of the first-
order difference equation with several delays

Ay()+ Y qr(Uy(l—1r) =0, 1€Ny, (1.6)

T =1

where g, (1) is a sequence of nonnegative real numbers and T, 11 =1,2,...,m, are positive integers. The
authors [21] applied some of their results to the nonlinear difference equation

Ay + Y qr, (DF[y(l—1,)) =0, 1€Ny, (1.7)

T1 =1

where f € C[R, R] such that yf(y) > 0, y # 0. It was shown in [21, Theorem 6] that the oscillation of Eq.
(1.6) leads also to the oscillation of Eq. (1.7) when lim iglf % = 1. Tang and Yu [19] gave a counterexample
y—

to show that the assumption lim iglf % =1 of the preceding result needs more adjustment.
y—

On the other hand, Tang and Yu [19], and Jiang and Tang [16] studied the oscillation of a special case
of Eq. (1.1), i.e., the first-order nonlinear difference equation

Ay(D) +bUf(y(l—1)) =0, 1€ Ny, (1.8)

where f € C[R,R] such that yf(y) > 0, y # 0. For the nonlinear function f(y) in (1.8) the authors [16, 19]
assumed that there exists a nondecreasing continuous function that satisfies some additional assumptions.
Further, Jiang and Li [15] obtained many sufficient conditions for the oscillation of the first-order nonlinear
difference equation
kK
Ay(l) + myn—r +G(Ly(l—=m1),...,y(l—=1)) =0, 1€ Ny,

where 71, ..., T are positive integer numbers, the function G satisfies certain conditions.

In this article, we will try to extend the results in [5, 8, 12, 14, 17, 18, 20] to Eq. (1.1). We study
the oscillation of Eq. (1.1), taking into account that the oscillation of a first-order nonlinear difference
equation and the corresponding linear equation may be different even if the nonlinear function satisfies

liminf "W — 1. Finally, as we will show in Example 2.11, our results can be easily applied without the

y—0
need for any additional functions, as in [16, 19].
2. Main results
Consider the first-order difference inequality
Ay(l) +c(Vy(v(1)) <0, 1€ Ny, 2.1)

where (c(1))1>0 is a sequence of nonnegative real numbers and (v(1));>0 is a nondecreasing sequence of

integers such that v(l) < 1—1, and llim v(l) = oo. Let (y(1)) be a positive solution of inequality (2.1),
— 00

then according to [13, Lemma 3], we have

. .ooy(l+1)
it o)

>D(q) for qi<-, (22)

o | =

where

1-1
qlzhlrgg)\f Z c(r).
r=vu(l)



E. R. Attia, J. Math. Computer Sci., 35 (2024), 241-255 244

Lemma 2.1. Let (y(1)) be a positive solution of Eq. (1.1). If, for some 11,1, € N,

3 a(r) =00 or 3 b(r) = oo, (2.3)
> >

r= =1
then y(1) tends to zero as t goes to oco.

Proof. Since (y(n)) is a positive solution of Eq. (1.1). It follows that (y(1)) is nonincreasing eventually for
all sufficiently large 1. Therefore, y(1) is convergent to some d > 0, and hence, there exists a sufficiently
large 13 > 1;, i = 1,2, such that % <y, y(t+1),y@®M) < 09 for all 1 > 13, so there exists y* € [2, Odg]
such that f(y(d(1))) > f(y*) for all 1 > 13. It follows from Eq. (1.1) that,

d «
Ay(l) = —a(y(l1+1) = b()f(y(d()) < —a(1)§ —b(Uf (y").
In view of (2.3), there exist 1*,1** > 13, such that
Z a(r dy (1%) or Z b(r ) y(1). (2.4)
r=1* r=1*

Taking the sum of Eq. (2.1) from 1* to 1** — 1, and then using (2.4) we obtain

Tyxx—1 1 —1

y(") =yl )= ) alrylr+1)— Y b(r 1))
r=1* r=1*
d 1**71 1**71
<y() -5 Zl a(r) - Zl b(rf(y(d(r)) <0,
or
Lxx—1 11
Yy =y(1) = Y alry(r+1)— Y b(r)f(y(d(r)
r=1* r=1*
Lykk—1 *—1
<y)— Y aylr+1)—fy) Y b(r) <0,
r=1* r=1*
This contradiction completes the proof. 0
Let the sequence (Wi (1))x>1 be defined by
14 a(l)
=15
and
W (1) = H“() K=23,....

1—238b(l) Hr1 —o(1) Yi— 1(1“1)

Lemma 2.2. Assume that k € IN and (2.3) is satisfied, and (y(1)) is a positive solution of Eq. (1.1). Then

V) for all sufficiently large 1. (2.5)
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Proof. Dividing Eq. (1.1) by y(1), we get
y(l+1) fly(®(1))
1+afl —1+4+b(l)————=0. 2.6
1+ o) L V=5 26)
In view of Lemma 2.1, we obtain
o flytdm)) L fy)
B ey
Then
fly(d(1))) > dy(d(1)) for all sufficiently large 1. (2.7)
Substituting into (2.6), we have
1+1 1
1+ au) YD g s ¥PW) (2.8)
y(l) y(l)
Therefore,
l 1 l
(1{(431) > t—al( ) () 29)
Y 1=8b(W Il —s 1) yimrD
Using the fact that yli’r(:i)n > 1, we have
y(l) 1+a(l)
> = .
y(l+1) = 1=5b(1) Rl
Substituting into (2.9), we obtain
(1{1)1) g o = 12(b).
Y (1S ITH 2oy ¥alr))
Continuing in this fashion, one can obtain (2.5). O

We aim to extend the iterative criteria for first-order linear difference equations with several delay ar-
guments, proposed by Braverman et al. in [8], to the first-order nonlinear difference equation (1.1). A use-
ful technique for generating oscillation conditions is the following result, which gives an estimate of the

quantity %, v > u, where (y(1)) is a positive solution of Eq. (1.1). Let the sequence {Wi, «, (W, V) }i, k,>1,

v 2> u, be defined by

v—1
14 a(r)
Wik, (w,v) = T ob( 1y , k=12,...
T=u * T) ]._[rlzﬁ(r) ko (1'1)
and
v—1
1+ a(r)
W ” ’ ki = 1/2/
o (1Y) 11 1—8b(N Wi —16,00),v)"

(2.10)
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Proof. Dividing (1.1) by y(1) and taking the product from u to v —1, we get
_ v—1
T + 1) fly@®d(r
H( m)> 1T <1_bm [yl (m>.
e et y(r)
Consequently,
y(u) Hl 1+a(r)
yv) AL g e
Using (2.7), we have
v—1
e _Lret)
r=u + b(T) y(r)
That is,
: > H 1 1+:11(T) y(ry)
r=u 1 =80 [T o (r) yirem
In view of (2.5), it follows that
v—1
u 1+a(r
( ) H ( ) =Wy, (u,v).
V T=u 1 6b ) H \ykz (Tl)
Form this and (2.11), we have
y(u) 1+ a(r)
ye) ~ H 1= 8o Wi, (00, 1) 2k (V)
In the same way, continuing the process k; times, we obtain
—1
y(w _ 7 1+a(r)
> =W, u,v
v = L T=semwe, e, — W)
The proof is complete. [
The following result is an extension of [8, Theorem 3.3] to Eq. (1.1) when 1 —9(1) < oo.
Theorem 2.4. If Ny < 1—9(1) < N for all sufficiently large 1, and
1-1 N N+1
1 1 ! N
hlrgg}f Z b(r ~% <1+oc> <N+1> ’ 2.12)

r=9(1)
then, every solution of Eq. (1.1) is oscillatory.

Proof. Let the sequence (hy(1)) be defined by

Then
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In view of (2.12), it follows for sufficiently small e > 0 that

1-1 1 1 \Ni N\ N+I

% b(r) > 5 <1+“> ((N—i—l) + €> > 0 for all sufficiently large L. (2.13)

Let

Then

T=

N —N-1 N N+1
N N —u>1.
><N+1> (<N+1> +€> bl

N —N-—-1 1-1
S 8140 (N +1> b(r)
9(1)

Assume the contrary, i.e., let (y(1)) be a positive solution of Eq. (1.1). Dividing Eq. (1.1) by y(1) and

taking the sum from d(1) to 1 — 1, we have

1-1

1-1
y(r+1) > fy(d(r)))
(14a(r)—1)=— b(r) 2
r_w)< y(r) r_%u y(r)

Using (2.13), so condition (2.3) is satisfied. From (1.3), (2.7), and (2.14), we have

1-1

1-1

y(r+1) ) y(d(r))
1+a)—1) <=0 b(r)

. —%u < y(r) . —%w y(r)

(2.14)

for all sufficiently large 1. Using the relation between the arithmetic and the geometric means, we get

11 =5 1—1
B y(r+1) B B y((d(r))
==10) (T]gw e (1+oc)) 1] < 6T§mb(r) T
Therefore,
L y(r41) = o)
yir ylolr
J}lﬁ s 1) < (1 o 2 0y )
Then

1—9 (1)
y(U 1\ 5N o u00)
oo < (=) (e PER e |

Using the fact that % > 1, we have

y(l) 1\t 5 1—1 -9 (1)
T <1+cx> - lamrzl)b(r) .

(2.15)

(2.16)
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Letg:(0,1) =2 R, g(s) =s(1— s)P, 3 € IN. It is easy to see that g(s) takes it's max at s = ﬁ, and hence

[3[3

WS e

If we assume that p =1—9(1), s = %, and w =25 Z:}gm b(r), then (2.16) leads to

(et 0o () s
9(19(1)) s 1+« (1 S) 1+« 52}‘;}9(1)})(_{.)5(1 S)

Therefore,
B+1 (176(1))1—\9(1)4—]
vy ( 1 >B L ( 1 >18“J (1+1—9 (1)) 00
yOm) ~\I+a) 53 75 b(r) \l+a 5% \“o( b(r)
Then
yow) li 5(1+o<)1 W p 121 5 1—|—oc)l "W
y) ~ (- su D)

Substituting into (2.15), we get

1—9(1)
y(U 1\ =
EO (1+oc> 15 Zl)b(r) .

1-1 l 31
y® () 1—i— o) b(r) ’
y(l) Z s
Therefore,
YO Lk ke
y(l)
By (2.12), we get
1 1 1 N, N N+1
. g 11/ 1 N '
limsup b(l) > d N6<1+oc> <N+1> >0

Then there exists a sequence (1;) and a sufficiently small €1, 0 < €1 < d such that
b(ly) >dy =d—¢€; >0 forallie INj.

In view of (2.8), it follows that

<1 forallie INy.

One can choose k € N such that uk > 5%1. Then

o y®l)) 1 1 K
u < < < ——<u-.
y(k ob(ly)  ody

This contradiction completes the proof. O
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Theorem 2.5. If 1 — (1) > Ny for all sufficiently large 1, and

1-1 N
1 1 11
lim inf b(r) > = — -, (2.17)
l—00 d\1+« e

r=39(1)

then, every solution of Eq. (1.1) is oscillatory.

Proof. As in the proof of Theorem 2.4, let the sequence (h;(1)) be defined by

Therefore,

Using (2.17), then for sufficiently small € > 0, we obtain

= 1/ 1 \NM/1
Z b(r) > = <) <e + (—:) >0 for all sufficiently large 1.

ary O\1+wx
Let
(e+¢)
u=el|l-4+e¢e|>1
e
Then
1-1 1—9(1) 1-1
5(1 b 1
Z 1+« (T)>6(1+oc)N1e Z b(r)>e(-+e]=u>1
h,l(l) e
r=3(1) r=3(1)
The rest of the proof is similar to the proof of Theorem 2.4. The proof is complete. O

Theorem 2.6. Assume that kq,kz,k3 € IN and (2.3) is satisfied. If

1 1-1 1
limsup Y b(r)Wi i, (9(r), c(m>z1_>—Dm (1+oc+lilrgg1f > alm J] ‘Pk3(r1)), (2.18)

l=oo () o r=¢(1) r=r+1
then, every solution of Eq. (1.1) is oscillatory.
Proof. Let (y(1)) be a positive solution of Eq. (1.1). Then
Ay(l) +a(Vy(1+1) +b(1)oy(d(1)) < 0. (2.19)

Summing Eq. (1.1) from ((1) to 1, it follows that

1 1
y(l+ 1D —yCW)+ Y alylr+1)+ Y br)syd(r) <0.
r=¢(1) r=_(1)

Since (1) = d(r) for ¢(1) < r < 1, it follows from (2.10) that

1 1

Y+ —yCW)+ Y amylr+1)+y(l) Y br)sWi, i, (), ¢(1) <O0.
r=¢(1) r=¢(1)
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Then
1-1 1
y(l+1) (1+a)—yCW)+ Y amylr+1)+yCl) D br)sWi, i, (B(r), 1) <0.
r=¢(1) r=¢(1)
Therefore,
l 1-1
_y(+1) _ y(r+1)
T_%Ub(r)éwkl,kz(s(r), (W) < 1=y (1+e) T_%U WG
Consequently,
1 1-1 1
y(l+1) y(l+1) y(r1)
) d(r), <1-— — . .
r_%l)b(r) Wie i (9(1), €(1) < 1= T s (1+all) T_%Ua(r)y(m) ﬁgﬂy(rﬁ 5 @20

Then

1
Slimsup Y b(r)Wi 1, (9(r), (1)) < 1 —liminf <9(”1)>nminf (1+a(l)

looo .o 1— y(¢(1)) l—o00
e (2.21)
(y(1+1)>1 £y am I Y
—liminf imin a(r .
l—oo  \ Y(C(l)) /) 1-00 T St y(r+1)
In view of (2.19), it follows that
Ay(1) +8b(Ly(¢(1) < 0.
By (2.2), we obtain
.o oy(l+1)
lim inf > D(vy). 222
mat e =P 222
This together with (1.3), (2.5), and (2.21) leads to
! 1 Diy) 1-1 !
lirlrl)solip Z b(r)Wi, i, B(1), ¢(1)) < 55 1+ oc+lig(i£1f Z a(r) H Wi, (r1) |-
r=((1) r=((1) ri=r+1
This contradicts (2.18). The proof is complete. O

Theorem 2.7. Assume that kq,k2,k3 € IN and (2.3) is satisfied. If

1 1-1 1
lim sup ( D b(M)SW, i, (8(r), C(1)) + (D(y) —€) <1+a(1)+ > am J] ‘{/k3(r1)>) > 1,

=0 \r=¢(1) r=¢(1) ri=r+1
where € > 0, then every solution of Eq. (1.1) is oscillatory.

Proof. Let (y(1)) be a positive solution of Eq. (1.1). In view of (2.20) form the proof of Theorem 2.6, we
have

L 1-1 1
y(+1) y(1+1) y(r)
T_%Ub(r)zswkl,kz(s(r), W)+ (e +r§m alr) iz nl__rlﬂ TCESIRE
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Using (2.5) and (2.22), then for sufficiently small e > 0, we have

1 1-1 1
D b(r)EWig 1, (3(r), &(1) + (D(y) —€) (1+a(t)+ > am J] wmm) <1
r=((1) =

r=_(1) T1=r+1

Therefore,

1 1-1 1

limsup [ ) b(r)dWi, i, (3(r), ¢+ (D(y) =€) [1+al)+ Y alr) J] ¥l | ] <1
l—o0 r=C(1) r=_(1) r1=r+1
This contradiction completes the proof. O
Theorem 2.8. Assume that kq,k2,k3 € IN and (2.3) is satisfied. If
lim sup <6b(1+1)wk1,k2(6(l+1),1) (1+a(l))+8b(1 H Wy, (11 ) 1, (2.23)
Lo T1=C(1)

then every solution of Eq. (1.1) is oscillatory.
Proof. As before, assume that (y(1)) is a positive solution of Eq. (1.1). Therefore,

y(l+1) —y(l) + a(Vy(l+1) + b(1sy((1) < 0. (2.24)
In view of {(1) < 1—1, it follows from (2.10) that

y(l+1) —y) + a(Dy(l+1) + db (Wi, x, (C(1), 1 =1)y(1—1) < 0.

Consequently,
YU (14 ) YD so Wi i (201, 1-1) > SbUWi i (21,1 1).

y(l—1) y(l—1)

Thus "
Y
S—1) > db(L)Wi, 1, (C(1),1—1).
That is,
yg;{)l) > 5b(1+ Wi, 1, (C(L+ 1), 1), (2.25)
Using (2.24), we obtain
-1
~ _ylm)
y(l+1) =y + ay(l+1) + sb()y(1) nl_c[m TEESIR
From this and (2.5) and (2.25), we have
1-1
Ob(L+ D)Wy 1, (C(1+1),1) (1 + a(1)) y(1) + 8b(L)y(l) H Wi, (r1) < y(b).
r1=_(1)

Therefore,

lim sup <5b(1+1)wk1,kz(c(1+1),1) (1+a(l))+8b(l H WYy, r1) <1

1= r=¢(1)

Contradicting with (2.23). The proof is complete. O



E. R. Attia, J. Math. Computer Sci., 35 (2024), 241-255

252

Theorem 2.9. Assume that kq,k2, k3 € IN and (2.3) is satisfied. If

lim sup <6b(l+ 1) Wi 1, (€14 1), V[T 4 a(l) + 8b(1) (1 + a(1)) ]

l—o0

1-1 -1

1
+8b(1) Y alm) J] wk3(r1)+<62b(1) > b(M Wi, i, (0 ) H Wi, r1)
r=C(1)

r=((1) rp=r+1 T1=¢(1)
then, every solution of Eq. (1.1) is oscillatory.
Proof. Let (y(1)) be a positive solution of Eq. (1.1). Then

Ay(1) +a(l)y(1+1) +b(1)dy(d(1)) < 0.

Summing from ((1) to 1, it follows that

1 1
y(l+ D —yCW)+ Y aylr+1)+ > br)sy(d(r) <0.
r=((1) r=_(1)

Since (1) > d(r), it follows from (2.10) that

1
y(l+ 1) —yW)+ Y amylr+1) +yl) Y br)sWi, i, (9(r), ¢(1) <O0.
r=(1) r=¢(1)

Multiplying both sides by b(1),

b(L) (1+a()y(t+1) —bWy(CW)+b1) >  ay(r+1)

By (1.1), we get

Ay(D) + (a(l) +6b(1) (1+ a(l)))y(14+1)+8b(l) Z a(r)y(r+1)
r=_(1)

1
+ (6%(1) > b(M Wi, i, (9(1), cm)) y(e) <0.
r=C(1)

Therefore,

1-1 1-1

y(l+1) =y + [a(V) +8bV) 1+ aW) Jy(L+ D) +yLsbL) > ar) J]

r=c()  m=r+1Y

1 1-1
+y( (6%(1) > b Wi i (0(r), c(m) T -2 <o

y(r1)
(r1+1)

r=_(1)

Using (2.25), we get

Sb(L+1)Wi, 1, (C(1+1), 1) [T+ a(l) + 8b(1) (1 + a(1) Jy(l) —y(1)
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-1 1-1 L
+yUsbl) Y alr) J] ¥e(r)+y (6%(1) D bM)W i, (0 ) H Wi, (1)

r=¢(1) T1=1+1 r=C(1) T1=¢(1)

Then

l—o0

lim sup <6b(1+ 1) Wi 1, (C(L+1), 1) [1+ a(1) + 8b(1) (1 + a(1)) ]

1-1 1-1 L
+6b(1) Y alr) J] Y+ (5%(1) > b(M Wi, (0 ) H Wy, (11 > <1

r=((1) T1=r+1 r=((1) T1=_(1)
This contradiction completes the proof. O

Remark 2.10. It should be noted that Lemma 2.3 can provide a new estimation of a positive solution rate
of decay for a differential equation with several retarded arguments, which improves the estimation of [8,
Lemma 2.1]. Therefore, all the iterative oscillation results in [8] can be improved.

Example 2.11. Consider the first-order nonlinear difference equation

Ay(l) + a(y(1+1) + b(Uf(y(3(1)) =0, (2.26)
where a(l) > o > 0, and
1—-1, ifl=2k,
) = { 1-3, ift=2kt1, <SNo

and

[ ifle{2ki—2,2ki— 1,2k, 2k + 1,2k +2},
b(l) = { 0, otherwise, L€ No,

where (ki)i>0 is a sequence of positive integers such that ki1 > k; + 3 5, foralli € Np and lim k; = oo,
i—00

and

0, ify < —2¢q,

(61 e1—e1?) (
€1

y +€1) —01€1 +€12, ify (S [—261, —61],

fly) =< y>+d1y, ify € [—ey, €1,
5 2 .
% (y—e1)+81e1+€? ify € e, 2eq],
0, ify > 2eq,
where €1,8; > 0. Clearly,
lim inf @ =01,
y—0 y
and
-1, ifl=2k,
o) = { 1-2, ifl=2k+1, <&Mo

Then one can choose & = 61 — 101W and o = o — ﬁ (that are defined as in (1.2) and (1.3), respectively).
Let

I (1) = 8b(L+ 1)W1, (C(L+1),7) (1+ a(l)) 4 8b(1 H Wi ().

Therefore,

(1) > 8b(L+1) (1+ a(l)) + 8b(1 H\ym
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Since

then

Then

1+«
1—ud

\1’1(1) > forle {Zki —2,2ki — 1,2k, 2ki + 1, 2k +2}, i € Ny,

2
Lkt 250 (1+o0+ 09 ) ie N
(1—ud)

2
limsup 1;(1) > limsup I (2k; +1) > 5y ( (140 + -+

Consequently, condition (2.23) with k3 = 1 is satisfied and so every solution of Eq. (2.26) is oscillatory,
provided that

T+ 1
SRIET N
(1—pd) o
For example, if &; = % + ﬁ and «; = % + ﬁ, then Eq. (2.26) is oscillatory for all pu > %.

3. Conclusion

We study the oscillation of a first-order nonlinear difference equation with retarded arguments. We
have generalized, extended, and improved some methods used to study the oscillation of first-order linear
difference equations with single and several delays to study the oscillation of first-order nonlinear delay
difference equations. Many of the methods used in this work can be used to improve many oscillation
results for the corresponding linear equations. In Example 2.11, we have demonstrated the simplicity of
applying some of our results.
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