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Abstract

This paper discusses the controllability of bilinear control systems by considering the spectrum
of the system and controllability of the projection onto the projective space. Necessary and sufficient
conditions are presented for two dimensional systems with bounded and unbounded control range.
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1. Introduction

Bilinear control systems provide a large class of systems with a wide range of applications, includ-
ing nonlinear systems linearized at a fixed point with respect to the state variable. Controllability is a
key property of any control system, describing the sets within which it is possible to steer the system
between any two points using an appropriate control function. Controllability of bilinear systems has
received a substantial amount of interest over the last 30 years or so, but general characterizations
of complete controllability for this class of systems are still not available. Most of the approaches to
this problem are algebraic in nature, compare, e.g. [3].

In [2] the authors presented an analytic approach to the study of control systems that can be
applied to bilinear systems. In this paper we use some of their setup to obtain new characterizations
of controllability for bilinear systems in dimension 2 with bounded and unbounded control range.
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The contents is as follows: in Section 2, we introduce bilinear control systems together with
their projection onto the projective space and their spectrum. We also review a key result from [2]
about controllability of bilinear systems with bounded control range. In Section 3 we characterize
controllability of the projected system on the projective space P1 for bounded and unbounded one-
dimensional control range. In Section 4 we obtain a second characterization of controllability for
these systems in terms of the associated Lie brackets. The case of multidimensional control ranges
is discussed in Section 5, and Section 6 is dedicated to a discussion of spectral properties of bilinear
control systems in dimension 2. Together, the results from these sections deliver insights regarding
the controllability of bilinear systems in R2.

2. Bilinear control systems

For the following definitions and results we refer to [2, Chapters 7 and 12]. We consider a bilinear
control system in Rd given by a family of differential equations

Σ : ẋ(t) =

(
A+

m∑
i=1

ui(t)Bi

)
x(t) = A(u)x(t), t ∈ R, x(t) ∈ Rd, (2.1)

where A,B1, . . . , Bm ∈ gl(d,R) are real d× d matrices and

u ∈ U = {u : R→ U ⊂ Rm, u is locally integrable}

is the set of the admissible controls. The solutions of (2.1) are denoted by ϕ(t, x, u) for the initial
value ϕ(0, x, u) = x ∈ Rd.

The system Σ has the following associated systems:

a) The angle system PΣ is defined by the projection of Σ onto the projective space Pd−1,

PΣ : ṡ(t) = h(A, s(t)) +
m∑
i=1

ui(t)h(Bi, s(t)), s ∈ Pd−1, (2.2)

where h(A, s) = (A− sTAsI)s, with I the identity matrix and u ∈ U .

b) The radial system is defined on R+ by

r(t) = ||ϕ(t, x, u)|| ,

where ‖ · ‖ denotes the Euclidean norm in Rd.

The solutions of the projected system (2.2) are denoted by Pϕ(t, s, u) for the initial value
Pϕ(0, s, u) = s ∈ Pd−1.

For an arbitrary control system on the state space M we recall the definition of the (positive and
negative) orbit of a point: O+(x) = {y ∈ M , there exists u ∈ U and t > 0 with ϕ(t, x, u) = y} and
O−(x) = {y ∈ M , there exists u ∈ U and t > 0 with ϕ(t, y, u) = x}. A control system is called
(completely) controllable on M , if for every point x ∈ M we have O+(x) = O−(x) = M . A control
system is said to be accessible from x ∈ M if O+(x) and O−(x) have nonvoid interior in M . It is
locally accessible from x ∈M if the orbits up to time T have nonvoid interior for all T > 0. If these
properties hold for all x ∈M , the system is called accessible, and locally accessible, respectively.
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The Lie algebra of (2.1) is given by LA{A +
∑m

i=1 uiBi, u ∈ U} ⊂ gl(d,R). In general, for each
x ∈ Rd, we have

LA{A+
m∑
i=1

uiBi, u ∈ U}(x) ⊂ TxRd,

the tangent space of Rd at x ∈ Rd. We recall the following definition.

Definition 2.1. The bilinear control system (2.1) satisfies the Lie algebra rank condition at x ∈ Rd

if

dim(LA{A+
m∑
i=1

uiBi, u ∈ U}(x)) = dimRd = d. (2.3)

If (2.3) holds for all x ∈ Rd\{0}, we say that the bilinear system satisfies the Lie algebra rank
condition (LARC).

Note that bilinear control systems, as well as the induced angle systems on the projective space
are real analytic systems. It is well-known that for these systems the Lie algebra rank condition,
accessibility, and local accessibility are equivalent, see e.g. [4]. Hence the Lie algebra rank condition
is necessary for controllability of a bilinear system. Note that if (2.1) satisfies (2.3) for all x ∈
Rd \ {0}, then the projected system (2.2) satisfies a corresponding Lie algebra rank condition for all
s ∈ Pd−1. But, of course, the converse does not necessarily hold true: just consider a system with
skew symmetric matrices A,B1,..., Bm.

Throughout this paper we will assume that the bilinear control system in Rd satisfies the Lie
algebra rank condition (2.3).

For a matrix A ∈ gl(d,R) we denote its real Jordan form by J (A). Note for all A ∈ gl(d,R) there
exists an invertible matrix P ∈ Gl(d,R) such that J (A) = P−1AP . The following lemma shows the
invariance of controllability, the Lie algebra rank condition, and the eigenvalues of a bilinear system
under the real Jordan transformation.

Lemma 2.2. Consider the bilinear control system (2.1) and let J (A) = P−1AP be the real Jordan
form of A. Let

ẏ(t) =

(
J (A) +

m∑
i=1

ui(t)P
−1BiP

)
y(t) (2.4)

be the transformed system under J . Then the following facts hold:

1. If ϕ(t, x, u(·)) is a trajectory of (2.1) with initial value ϕ(0, x, u(·)) = x, then ψ(t, y, u(·)) =
P−1ϕ(t, x, u(·)) is the trajectory of (2.4) for the initial value y = P−1x.

2. J preserves controllability of the system in Rd \ {0} and of the projected system on Pd−1.
3. J preserves the Lie algebra rank condition of the system in Rd \ {0}.
4. J preserves the eigenvalues of the system for constant controls u(t) ≡ u ∈ U .

Proof.

1. This follows from linearity of the system ẋ = A(u)x.
2. Suppose that bilinear control system (2.1) is controllable in Rd \{0}. Let y1, y2 ∈ Rd \{0}, then

there exist x1, x2 ∈ Rd\{0}, such that y1 = P−1x1 and y2 = P−1x2. If (2.1) is controllable, there
exist t > 0 and u ∈ U such that ϕ(t, u(t), x1) = x2. Applying the transformation J and using
linearity of the r.h.s. of (2.1) we obtain y2 = P−1x2 = P−1ϕ(t, u(t), x1) = ϕ(t, u(t), P−1x1) =
ϕ(t, u(t), y1). Therefore (2.4) is controllable. Using the fact that P(P−1(Px)) = P(P−1x) for
all x ∈ Rd \ {0}, this same argument shows that J preserves controllability of the projected
system on Pd−1.
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3. Assume that the Lie algebra rank condition (2.3) holds for the system (2.1). Then we have for
all y ∈ Rd \ {0}

dim

(
LA

{
J (A) +

m∑
i=1

uiP
−1BiP, u ∈ U

}
(y)

)

= dim

(
LA

{
P−1AP +

m∑
i=1

uiP
−1BiP, u ∈ U

}
(y)

)

= dim

(
P−1LA

{
A+

m∑
i=1

uiBi, u ∈ U

}
P (y)

)

= dim

(
P−1LA

{
A+

m∑
i=1

uiBi, u ∈ U

}
(Py)

)
= d.

4. This part is standard.

Different spectral concepts have been defined for bilinear control systems to characterize the
behavior of the radial component, and hence stability and stabilizability. These include the Floquet,
the Lyapunov, and the Morse spectrum. As it turns out, the spectra also serve for a characterization
of controllability of bilinear systems in Rd, in combination with controllability of the angle system.
We will need the following spectral concepts.

The spectrum Spec(C) of a constant matrix C ∈ gl(d,R) is defined as the set of eigenvalues of
C. The distinct (complex) eigenvalues of C will be denoted by µ1, . . . , µr. The real version of the
generalized eigenspace is denoted by E(C, µk) ⊂ Rd or simply Ek for k = 1, . . . , r ≤ d. We order
the distinct real parts of the eigenvalues as λ1 < · · · < λl, 1 ≤ l ≤ r ≤ d, and define the Lyapunov
space of λj as L(λj) = ⊕Ek, where the direct sum is taken over all (generalized) real eigenspaces
associated to eigenvalues with real part equal to λj. Note that

⊕lj=1L(λj) = Rd .

Let ϕ(·, x0) be a solution of the linear differential equation ẋ = Cx with ϕ(0, x0) = x0. Its
Lyapunov exponent for x0 6= 0 is defined as

λ(x0) = lim sup
t→∞

1

t
log ‖ϕ(t, x0)‖ ,

where log denotes the natural logarithm and ‖ · ‖ is any norm in Rd. The Lyapunov exponents are
determined on the Lyapunov space L(λj), j = 1, ..., l of C in the following way: we have that the
Lyapunov exponent λ(x) of a solution ϕ(·, x) (with x 6= 0) satisfies λ(x) = limt→±∞

1
t

log ‖ϕ(t, x0)‖ =
λj if and only if x ∈ L(λj). Hence, associated to a matrix C ∈ gl(d,R) there are exactly l Lyapunov
exponents, which correspond to the different real parts of the eigenvalues of C.

The Lyapunov exponents of a linear differential equation ẋ = Cx can also be recovered from the
projected system on Pd−1, which is given by ṡ = h(C, s) = (C − q(C, s) · I)s with q(C, s) = sTCs,
compare (2.2). The Lyapunov exponents satisfy λ(x) = lim supt→∞

1
t

∫ t
0
q(C,Pϕ(τ, x))dτ .

For bilinear control systems we need the following concepts.
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For a solution ϕ(t, x, u) of (2.1) with x 6= 0 and u ∈ U the Lyapunov exponent is defined as

λ(u, x) = lim sup
t→∞

1

t
log ‖ϕ(t, x, u(·))‖ .

Note that λ(u, x) = lim supt→∞
1
t

∫ t
0
q(A(u(τ)),Pϕ(τ, x, u(·)))dτ . For the bilinear control system (2.1)

its Lyapunov spectrum consists of all Lyapunov exponents, i.e.,

ΣLy = {λ(u, x), (u, x) ∈ U × Pd−1}.
A subset of the Lyapunov spectrum is the Floquet spectrum: let u ∈ Upc,T := {u : [0, T ] → U ,

piecewise constant}. For a point x ∈ Pd−1 and u ∈ Upc,T for some T ≥ 0 let the solution Pϕ(·, x, u)
of (2.2) be T -periodic. Then the Floquet exponent of ϕ(·, x, u) is the Lyapunov exponent λ(u, x).
For the bilinear control system (2.1) the Floquet spectrum ΣFl consists of all its Floquet exponents.

For the following control analysis of bilinear systems in Rd, certain extremal Lyapunov exponents
play a crucial role. Extremal Lyapunov exponents are those exponential growth rates that are defined
globally as suprema and/or infima over the initial values and the control. We need the following
quantities for the bilinear system (2.1):

κ = sup
u∈U

sup
x 6=0

λ(u, x), κ∗ = inf
u∈U

inf
x 6=0

λ(u, x).

Note that in case of a compact control range U we have −∞ < κ∗ ≤ κ <∞.
The following result clarifies the relation between the different spectral concepts in case the

projected system (2.2) is completely controllable:

Theorem 2.3. Consider the bilinear control system (2.1) and its projected system (2.2) satisfying
(2.3). We assume that the control range U ⊂ Rm is compact and that projected system (2.2) is
completely controllable on Pd−1. Then the spectra satisfies

[κ∗, κ] = Cl(ΣFl) = ΣLy.

This theorem is part of Corollary 7.3.23 in [2].
The following result shows that controllability of the bilinear system (2.1) can be characterized

via the entire spectral interval [κ∗, κ].

Theorem 2.4. Consider the bilinear control system (2.1) and its projected system (2.2) satisfying
(2.3). We assume that the control range U ⊂ Rm is compact. Then the following statements are
equivalent:

1. The bilinear system (2.1) is completely controllable in Rd\{0}.
2. (a) The projected system PΣ (2.2) is completely controllable on Pd−1, and

(b) 0 ∈ int[κ∗, κ], where int(A) denotes the interior of a set A.

This theorem is a special case of Corollary 12.2.6 in [2].
In the spirit of Theorem 2.4 we analyze in the following sections the controllability of the projected

system (2.2) and the spectrum of a bilinear control system in R2.

3. Controllability of bilinear systems on the projective space P1

We consider the bilinear control system (2.1) on R2, given by:

˙(
x1
x2

)
=

((
a1 a2
a3 a4

)
+

m∑
i=1

ui(t)

(
b
(i)
1 b

(i)
2

b
(i)
3 b

(i)
4

))(
x1
x2

)
, (3.1)

and we will use the notation
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n = a1 +
m∑
i=1

ui(t)b
(i)
1 , m = a2 +

m∑
i=1

ui(t)b
(i)
2 ,

p = a3 +
m∑
i=1

ui(t)b
(i)
3 , q = a4 +

m∑
i=1

ui(t)b
(i)
4 .

Thus the bilinear control system is,

˙(
x1
x2

)
= Q(t)

(
x1
x2

)
, Q =

(
n m
p q

)
.

Projecting (3.1) onto the projective space P1 results in the angle system (written in coordinates of
P1 ⊂ S1 ⊂ R2)

˙(
s1
s2

)
=

(
n(1− s21)− (m+ p)s1s2 − qs22 m

p −ns21 − (m+ p)s1s2 + q(1− s22)

)(
s1
s2

)
. (3.2)

The following discussion provides motivation for our results: assume that Q(t) is constant. Then
the projected system is controllable on P1 iff Q is skew-symmetric, i.e., it is of the form Q =(

a b
−b a

)
for some b 6= 0, iff the solutions of (3.1) are rotations. In this section we will show that

for a bilinear control system on P1 with one-dimensional control range satisfying the Lie algebra rank
condition (2.3) in R2, this sufficient condition is also necessary.

We consider the following type of systems having one control input:

Σ2
u : ẋ = (A+ uB)x, x ∈ R2, A,B ∈ gl(2,R), u(t) ∈ U ⊂ R. (3.3)

Definition 3.1. For the bilinear system (3.3) the associated discriminant polynomial (for constant
u ∈ U) is defined as y[A+uB](u) = αu2 + βu+ γ, α = (tr(B))2 − 4 det(B), β = 2tr(AB)− tr(A)tr(B)
and γ = (tr(A))2− 4 det(A), where tr(A) denotes the trace of a matrix A. We will often use y(u) for
the polynomial y[A+uB](u).

The following lemma establishes that the discriminant polynomial is invariant under a change of
basis.

Lemma 3.2. We consider the set of matrices {A+ uB, u ∈ U} and the real Jordan transformation
of A in the form J : gl(d,R)→ gl(d,R), J (C) = P−1CP . Then

y[A+uB](u) = y[J (A)+P−1BP ](u).

Proof. The discriminant polynomial of J (A+ uB) is

y[J (A)+P−1BP ](u) = α1u
2 + β1u+ γ1,

where α1 = (tr(P−1BP ))2 − 4 det(P−1BP ), β1 = 2tr(J (A)P−1BP ) − tr(J (A))tr(P−1BP ), and
γ1 = (tr(J (A)))2 − 4 det(J (A)). With tr(XY ) = tr(Y X) and det(XY ) = det(X) det(Y ), we obtain
α1 = α, β1 = β, and γ1 = γ, where α, β, γ are the coefficients of y[A+uB](u) from Definition 3.1.
Hence, y[A+uB](u) = y[J (A+uB)](u).
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The following theorem will be established in a series of lemmas.

Theorem 3.3. Consider the bilinear control system (3.3) with U = R and assume that the Lie
algebra rank condition (2.3) holds for the system Σ2

u on R2. Then Σ2
u is controllable on P1 if and

only if there exists a constant control u ∈ R such that the matrix A+ uB has a complex eigenvalue,
i.e., iff inf{(a4 + ub4 − (a1 + ub1))

2 + 4(a2 + ub2)(a3 + ub3), u ∈ U} < 0.

Lemma 3.4. The matrix A+ uB has a complex eigenvalue iff inf{(a4 + ub4 − (a1 + ub1))
2 + 4(a2 +

ub2)(a3 + ub3), u ∈ U} < 0.

Proof. The discriminant of the characteristic polynomial of the matrix A + uB is the polynomial
y(u) = αu2 + βu + γ from Definition 3.1, with critical point u0 = −β

α
, and y(u0) = γ − β2

α
. This

proves the claim.

Note that the short discussion above after equation (3.2) establishes that the system Σ2
u is con-

trollable on P1 if there exists a control u ∈ U ⊂ R such that the matrix A + uB has a complex
eigenvalue. To see the converse, we now examine the different cases characterizing the coefficients of
y(u) = αu2 + βu+ γ for unbounded control range U = R.

Case 1: α < 0

In this case inf{y(u), u ∈ R} = −∞, B has a pair of complex eigenvalues, and the system Σ2
u is

controllable on P1.

Case 2: α = 0 and β 6= 0

In this case inf{y(u), u ∈ R} = −∞, B has a pair of equal real eigenvalues, and the system Σ2
u

is controllable on P1.

Case 3: α = 0 and β = 0

In this case y(u) ≡ γ with three subcases:

Case 3a: α = 0, β = 0, and γ < 0

In this case inf{y(u), u ∈ R} = γ < 0, B has a pair of equal real eigenvalues and A has a complex
pair of eigenvalues, and the system Σ2

u is controllable on P1.

Case 3b: α = 0, β = 0 and γ = 0

In this case the system Σ2
u does not satisfy the Lie Algebra rank condition (2.3) in R2: note that

γ = 0 implies that A has a pair of equal real eigenvalues and according to Lemma 2.2 we may assume
that A is in real Jordan form, i.e., a3 = 0. Assume first that a2 6= 0, then the condition β = 0 forces
b3 = 0, so α = 0 implies b1 = b4.

That is:

A =

(
a1 a2
0 a1

)
and B =

(
b1 b2
0 b1

)
.

Observe that the Lie bracket satisfies [A,B] = 0. Thus LA{A+ uB, u ∈ R} = span{A,B} and

(A,B)

(
x1
x2

)
=

(
a1x1 + a2x2 b1x1 + b2x2

a1x2 b1x2

)
,

hence dim(LA{A+ uB, u ∈ R}
(

1
0

)
) = 1 and the control system does not satisfy (2.3).
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If a2 = 0 and b1 = b4 then b2 = 0 or b3 = 0, which together with A diagonal implies that A and
B are simultaneously triangular. Hence the system does not satisfy the Lie algebra rank condition
(2.3). If a2 = 0 and b1 6= b4 then b2b3 < 0; let us suppose w.l.o.g. that b2 < 0 and b3 > 0. We have
[A,B] = 0, and

(A,B)

(
x1
x2

)
=

(
a1x1 b1x1 + b2x2
a1x2 b3x1 + b4x2

)
.

Note that det((A,B)x) = a1(b3x
2
1 + (b1 − b4)x1x2 − b2x22), and with (b1 − b4)2 = 4(−b2)b3 we have

det((A,B)x) = (
√
b3x1 +

√
−b2x2)2a1. For x = (−

√
−b2/

√
b3, 1) 6= 0, this implies det((A,B)x) = 0,

so the control system does not satisfy (2.3).

Case 3c: α = 0, β = 0, and γ > 0

In this case y(u) > 0 for all u ∈ R, and we show that the system Σ2
u does not satisfy the Lie

Algebra rank condition (2.3) in R2: the assumption γ > 0 means that A has real and distinct
eigenvalues, hence its real Jordan form is diagonal. Now β = 0 implies b1 = b4, hence we have shown
that b2 = 0 or b3 = 0 holds.

If b2 = 0 and b3 = 0, then B = b1I where I is the identity matrix, hence [A,B] = 0 and

(A,B)

(
x1
x2

)
=

(
a1x1 b1x1
a4x2 b1x2

)
,

hence dim(LA{A+ uB, u ∈ R}
(

1
0

)
) = 1 and the control system does not satisfy (2.3).

If b2 6= 0 and b3 = 0, then the matrices are of the form

A =

(
a1 0
0 a4

)
and B =

(
b1 b2
0 b1

)
.

The Lie brackets are computed as

[A,B] =

(
0 b2(a1 − a4)
0 0

)
, [A, [A,B]] = (a1 − a4)[A,B], [B, [A,B]] = 0.

Therefore LA{A+ uB, u ∈ R} = span{A,B, [A,B]} and

(A,B, [A,B])

(
x1
x2

)
=

(
a1x1 b1x1 + b2x2 b2(a1 − a4)x2
a4x2 b1x2 0

)
,

hence dim(LA{A+ uB, u ∈ R}
(

1
0

)
) = 1 and the control system does not satisfy (2.3).

A similar computation establishes the case b2 = 0 and b3 6= 0.

Case 4: α > 0

In this case we consider three subcases depending on γ − β2

α
:

Case 4a: α > 0 and γ − β2

α
< 0

In this case we have y(u0) < 0 for u0 = −β
α

and the system is controllable on P1.

Case 4b: α > 0 and γ − β2

α
> 0

In this case we have y(u) > 0 for all u ∈ R and A+uB has distinct real eigenvalues. This implies
that the control sets of the projected system (3.2) on P1 are determined by the eigendirections for



V. Ayala, et al., J. Math. Computer Sci. 16 (2016), 554–575 562

constant controls u ∈ R, compare [2, Chapter 8.2]. We will show that the ranges of the eigendirections
are disjoint, hence the projected system has two disjoint control sets and therefore is not controllable.

The condition αγ > β2 implies γ > 0. We may assume that A is in Jordan canonical form, i.e.,
a2 = a3 = 0, and

A =

(
a1 0
0 a4

)
, B =

(
b1 b2
b3 b4

)
.

The eigenvalues of the system for constant controls are:

λ1(u) =
(a1 + ub1 + a4 + ub4) +

√
y(u)

2
,

λ2(u) =
(a1 + ub1 + a4 + ub4)−

√
y(u)

2
,

where y(u) = αu2 + 2βu+ γ > 0.
If b2 = 0 and b3 = 0, then B is diagonal matrix and the control system does not satisfy the Lie

algebra rank condition (2.3).
If b2 6= 0 and b3 = 0, or b2 = 0 and b3 6= 0, then the analysis is similar to Case 3.c and the control

system does not satisfy (2.3).
If b2 6= 0 and b3 6= 0 we need to analyze the eigendirections of the system for constant controls.

W.l.o.g. we may normalize the x1−component of the eigenvectors to 1, the case with x1 = 0 and x2
normalized to 1 is similar.

The eigendirections for u 6= 0 are:

x2 =
λ1(u)− (a1 + ub1)

b2u
=

(a4 + ub4) +
√
y(u)− (a1 + ub1)

2b2u
,

x2 =
λ2(u)− (a1 + ub1)

b2u
=

(a4 + ub4)−
√
y(u)− (a1 + ub1)

2b2u
.

In polar coordinates with θ = arctan
(
x2
x1

)
we obtain

θ1(u) = arctan

(
(a4 + ub4) +

√
y(u)− (a1 + ub1)

2b2u

)
,

θ2(u) = arctan

(
(a4 + ub4)−

√
y(u)− (a1 + ub1)

2b2u

)
.

Claim: The ranges of the eigendirections have empty intersection, i.e., for all u1, u2 in R \ {0}
with u1 6= u2, we have θ1(u1) 6= θ2(u2).

Proof. Suppose that there exist u1, u2 in R \ {0} with u1 6= u2 such that θ1(u1) = θ2(u2). Then

arctan

(
(a4 + u1b4) +

√
y(u1)− (a1 + u1b1)

2b2u1

)
= arctan

(
(a4 + u2b4)−

√
y(u2)− (a1 + u2b1)

2b2u2

)
,
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which yields by applying the tan-function

(a4 + u1b4) +
√
y(u1)− (a1 + u1b1)

2b2u1
=

(a4 + u2b4)−
√
y(u2)− (a1 + u2b1)

2b2u2
,

u2(a4 − a1) + u2
√
y(u1) = u1(a4 − a1)− u1

√
y(u2),

u2
√
y(u1) + u1

√
y(u2) = (u1 − u2)(a4 − a1),

u22y(u1) + 2u2u1
√
y(u1)

√
y(u2) + u21y(u2) = (u1 − u2)2(a4 − a1)2.

Since A is diagonal matrix, γ = (a4 − a1)2 and we obtain in terms of y(u)

αu21u
2
2 + 2βu1u

2
2 + γu22 + αu22u

2
1 + 2βu2u

2
1 + γu21 + 2u2u1

√
y(u1)

√
y(u2) = γu21 + γu22 − 2γu1u2,

2u1u2

(
αu1u2 + β(u1 + u2) +

√
y(u1)

√
y(u2)

)
= −2γu1u2,

αu1u2 + β(u1 + u2) +
√
y(u1)

√
y(u2) = −γ,

αu1u2 + β(u1 + u2) + γ = −
√
y(u1)

√
y(u2),

(αu1u2)
2 + 2αβu1u2(u1 + u2) + β2(u1 + u2)

2 + 2αγu1u2 + 2βγ(u1 + u2) + γ2 = y(u1)y(u2).

Comparing both sides we have
α2u21u

2
2 + 2αβu21u2 + 2αβu1u

2
2

+β2u21 + 2β2u1u2 + β2u22
+2αγu1u2 + 2βγu1 + 2βγu2 + γ2

 =


α2u21u

2
2 + 2αβu21u2 + αγu21

+2αβu1u
2
2 + 4β2u1u2 + 2βγu1

+αγu22 + 2βγu2 + γ2

 ,

and therefore

β2u21 + β2u22 + 2αγu1u2 = αγu21 + 2β2u1u2 + αγu22,

β2(u21 − 2u1u2 + u22) = αγ(u21 − 2u1u2 + u22),

β2(u1 − u2)2 = αγ(u1 − u2)2.

For u1 6= u2, we have, β2 = αγ, which contradicts the assumption αγ > β2.

Case 4c: α > 0 and γ − β2

α
= 0

In this case we have y(u0) = 0 for u0 = −β
α

and y(u) > 0 for all u ∈ R \ {u0}.
Case 4.c.i: β = 0. This implies γ = 0 and hence y(u) = αu2 ≥ 0. Therefore, the A matrix has
real and equal eigenvalues. Without loss of generality, we may assume that A is in Jordan canonical
form, i.e., a3 = 0 and a1 = a4. Consider first the case a2 6= 0. Then the condition β = 0 forces
b3 = 0, and the control system does not satisfy (2.3), compare the proof of Case 3.b.

On the other hand, if a2 = 0, then A is a diagonal matrix. If the coefficients of B satisfy b2 = 0
or b3 = 0, then the control system does not satisfy (2.3); the proof is similar to Case 3.c.

If b2 6= 0 and b3 6= 0, then the matrices A and B are given as

A =

(
a1 0
0 a1

)
and B =

(
b1 b2
b3 b4

)
.

Therefore, the eigenvalues of the control system are:

λ1(u) =
(2a1 + ub1 + ub4) +

√
y(u)

2
, λ2(u) =

(2a1 + ub1 + ub4)−
√
y(u)

2
,
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where y(u) = αu2 ≥ 0. For the eigenvectors xi =

(
xi1
xi2

)
corresponding to these eigenvalues we may

assume, without loss of generality, that xi1 = 1. For u 6= 0 we have

x12 =
λ1(u)− (a1 + ub1)

b2u
=
u(b4 − b1) +

√
αu2

2b2u
,

x22 =
λ2(u)− (a1 + ub1)

b2u
=
u(b4 − b1)−

√
αu2

2b2u
,

or in polar coordinates

θ11(u) = arctan

(
(b4 − b1) +

√
α

2b2

)
,

θ22(u) = arctan

(
(b4 − b1)−

√
α

2b2

)
.

These are different constants and hence the ranges of the eigendirections have empty intersection
and the control system (3.2) on P1 is not controllable.

Case 4.c.ii: β 6= 0. In this case we have γ > 0 and the A matrix has real distinct eigenvalues.
Without loss of generality, we may assume that A is in Jordan canonical form with a2 = a3 = 0 and
a1 6= a4. The condition αγ = β2 implies b2b3 = 0. If b2 = b3 = 0, then A, B are simultaneously
diagonal, and the control system obviously does not satisfy (2.3). If b2 6= 0 and b3 = 0, or b2 = 0
and b3 6= 0, then the system does not satisfy (2.3) since the matrices A and B are simultaneously
triangularizable, compare the proof of Case 3.b.

This completes the discussion of the discriminant y(u) for unbounded control range U = R. We
summarize our findings in the proof of Theorem 3.3:

Proof of Theorem 3.3. The discussion above after equation (3.2) establishes that the system Σ2
u is

controllable on P1 if there exists a control u ∈ U ⊂ R such that the matrix A + uB has a complex
eigenvalue. To see the converse, note that the cases discussed above constitute a complete list of
possible cases. The Cases 1, 2, 3.a or 4.a are valid if and only if there exists u ∈ R such that
the A + uB has complex eigenvalues. These are also the only cases for which the system (3.2) is
controllable.

The following corollary establishes conditions for the controllability when the range of the control
is a subset U ⊂ R. We consider the following bilinear control system

ẋ = (A+ uB)x, x ∈ R2, u : R→ U = [u, u] ⊂ R, (3.4)

which we denote by Σ2
ub. Here u = −∞ and u =∞ are allowed. We obtain the following corollary.

Corollary 3.5. Consider the bilinear control system (3.4) with U = [u, u] ⊂ R and assume that
the Lie algebra rank condition (2.3) holds for the system Σ2

up in R2. Then Σ2
up is controllable on P1

if and only if there exists a constant control u ∈ [u, u] such that the matrix A + uB has a complex
eigenvalue.

Proof. Obviously, the projection of system Σ2
ub is not controllable on P1 if the system Σ2

u with control
range U = R is not controllable on P1. This restricts the proof to the Cases 1, 2, 3.a and 4.a as
discussed above. But these arguments go through when the discriminant polynomial y(u) is restricted
to U = [u, u] ⊂ R.
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We next discuss a few examples to illustrate Theorem 3.3 and Corollary 3.5.

Example 3.6. Let us consider the bilinear control system,

˙(
x1
x2

)
=

((
2 0
0 1

)
+ u

(
2 2
2 1

))(
x1
x2

)
=

(
2(1 + u) 2u

2u 1 + u

)(
x1
x2

)
.

The discriminant polynomial reads y(u) = 17u2 + 2u+ 1 = (1 + u)2 + 16u2 > 0 with αγ > β2. This
is the Case 4.b, and we have to analyze the eigendirections: the eigenvalues are

λ1(u) =
3(1 + u) +

√
(1 + u)2 + 16u2

2
, λ2(u) =

3(1 + u)−
√

(1 + u)2 + 16u2

2
,

and for u 6= 0, we obtain as eigendirections (with xi1 = 1) for λ1(u)

x12 =

3(1+u)+
√

(1+u)2+16u2

2
− 2(1 + u)

2u
=

√
(1 + u)2 + 16u2 − (1 + u)

4u
,

and for λ2(u)

x22 =

3(1+u)−
√

(1+u)2+16u2

2
− 2(1 + u)

2u
=
−
√

(1 + u)2 + 16u2 − (1 + u)

4u
.

In polar coordinates,

θ1(u) = arctan

(√
(1 + u)2 + 16u2 − (1 + u)

4u

)
for λ1(u) and x1 = 1,

θ2(u) = arctan

(
−
√

(1 + u)2 + 16u2 − (1 + u)

4u

)
for λ2(u) and x1 = 1.

The graph of the eigendirections, parametrized by the angle θ ∈ [−π
2
, π
2
), is shown in the following

figure. Since the eigendirections do not overlap, we see that the bilinear control system is not
controllable on P1.

Figure 1
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Example 3.7. We consider the bilinear control system

˙(
x1
x2

)
=

((
2 0
0 1

)
+ u

(
2 2
0 1

))(
x1
x2

)
=

(
2(1 + u) 2u

0 1 + u

)(
x1
x2

)
.

The discriminant polynomial reads y(u) = u2 + 2u + 1 = (1 + u)2 > 0 for all u ∈ R, with αγ = β2.
This is the Case 4.c.ii. This control system does not satisfy the Lie algebra rank condition (2.3),
since

[A,B] =

(
0 2
0 0

)
, [A, [A,B]] = [A,B], [B, [A,B]] = [A,B],

and hence

(A,B, [A,B])

(
x1
x2

)
=

(
2x1 2x1 + 2x2 2x2
x2 x2 0

)
has rank 1 for x =

(
1
0

)
.

Example 3.8. Consider the bilinear control system,

˙(
x1
x2

)
=

((
5 −1
1 3

)
+ u

(
3 −1
1 1

))(
x1
x2

)
=

(
5 + 3u −1− u
1 + u 3 + u

)(
x1
x2

)
.

The discriminant polynomial reads y(u) ≡ 0 and hence we are in Case 4.c.ii. The eigenvalues are
λ(u) = 2(2 + u). We analyze the Lie algebra rank condition for this system using the real Jordan
form of A. The similarity matrix is

P =

(
1 1
0 1

)
, with P−1 =

(
1 −1
0 1

)
.

With z = P−1x we have the bilinear control system P−1ẋ = (P−1AP + uP−1BP )P−1x, i.e.,

˙(
z1
z2

)
=

((
4 0
1 4

)
+ u

(
2 0
1 2

))(
z1
z2

)
=

(
4 + 2u 0
1 + u 4 + 2u

)(
z1
z2

)
.

Computing the Lie bracket we obtain [P−1AP, P−1BP ] = 0, and therefore

(P−1AP, P−1BP, [P−1AP, P−1BP ])

(
z1
z2

)
=

(
4z1 2z1 0

z1 + 4z2 z1 + 2z2 0

)
,

which has rank 1 for z =

(
0
1

)
.

4. The Lie bracket of the bilinear system

In this section we give a characterization of the controllability of the angular system (2.2) in
terms of the Lie bracket of the bilinear system.

We denote by LA{A,B} the Lie algebra generated by the two matrices A, B ∈ gl(2,R). The set
LA{A,B}(x) is a subspace of the tangent space Tx at x ∈ R2r {0}, the basis of which can be found
among the vectors Ax, Bx, [A,B]x, [A, [A,B]]x, [B, [A,B]]x, · · · . Note that if the matrices A and
B have a common eigenvector, then the condition LARC (2.3) cannot be satisfied for the bilinear
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system: if v ∈ R2 r {0} is an eigenvector for both matrices, then [A,B]v = 0 and the sequence of
vectors is reduced to the two linear dependent ones Av and Bv.

Recall that the characteristic polynomial of A + uB is λ2 + tr(A + uB)λ + det(A + uB) with
eigenvalues

λ1,2 =
1

2

(
tr(A+ uB)±

√
[tr(A+ uB)]2 − 4 det(A+ uB)

)
and discriminant y[A+uB](u) = [tr(A+ uB)]2 − 4 det(A+ uB). Using

det(A+ uB) = det(B)u2 + [tr(AB)− tr(A)tr(B)]u+ det(A)

we can write
y[A+uB] = y[B]u

2 + 2[2tr(AB)− tr(A)tr(B)]u+ y[A], (4.1)

where y[A], y[B] are the discriminants of the characteristic polynomials of A and B, respectively.
To simplify matters we will work with trace zero matrices, i.e., we consider ξ : gl(2,R)→ sl(2,R)

defined by

ξ(X) = X − 1

2
tr(X)I.

Since the characteristic polynomial of a matrix X is given by p(λ) = det(X − λI) = λ2 − tr(X)λ +
det(X), we obtain

det ξ(X) = p

(
1

2
tr(X)

)
= −1

4
(tr2(X)− 4 det(X)) = −1

4
y[X].

Proposition 4.1. Let A,B ∈ sl(2,R). Then it holds:

a) AB +BA = tr(AB)I;

b) det[A,B] = 4 det(AB)− tr2(AB) = −y[AB];

c) The discriminant of det(A+ uB) is − det[A,B].

Proof.

a) This follows directly from the definition of the trace.

b) From a) we have [A,B] = tr(BA)I − 2BA, hence

det[A,B] = det(2BA− tr(BA)I)

= 4 det

(
BA− 1

2
tr(BA)I

)
= 4 det ξ(BA)

= −tr2(BA) + 4 det(BA).

c) It follows directly from (4.1) that the discriminant of det(A+ uB) is tr2(AB)− 4 det(AB).

Part b) of Proposition 4.1 can be generalized to arbitrary matrices:

Proposition 4.2. Let A,B ∈ gl(2,R). Then it holds:
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a) det[A,B] = 1
4
y[A]y[B] − 1

4
(2tr(AB)− tr(A)tr(B))2.

b) The discriminant of y[A+uB] is −16 det[A,B].

Proof.

a) Proposition 4.1 yields

det[ξ(A), ξ(B)] = 4 det(ξ(A)ξ(B))− tr2(ξ(A)ξ(B)).

We observe that

[ξ(A), ξ(B)] =

[
A− 1

2
tr(A)I, B − 1

2
tr(B)I

]
= [A,B]

and therefore

4 det(ξ(A)ξ(B))− tr2(ξ(A)ξ(B)) = 4

(
−1

4
y[A]

)(
−1

4
y[B]

)
−
(

tr(AB)− 1

2
tr(A)tr(B)

)2

=
1

4
y[A]y[B] −

1

4
(2tr(AB)− tr(A)tr(B))2.

b) This follows directly from a) and (4.1).

The formulas obtained above allow us to characterize the cases in which the matrix A+ uB has
complex eigenvalues, i.e., to characterize the situation in which the control system (3.3) ẋ = (A+uB)x
is controllable on the projective space P1. We note first of all that the sign of y[A+uB] is determined
by the sign of det[A,B]. Hence the only cases in which A+ uB has complex eigenvalues are

I. det[A,B] < 0,

II. det[A,B] > 0 and y[B] < 0,

III. det[A,B] = 0 and y[A] < 0 or y[B] < 0.

In these cases controllability on P1 follows immediately since we have a u ∈ U such that the
solutions of ẋ = (A+ uB)x are rotations. Next we discuss the converse.

Consider the case det[A,B] > 0: by Proposition 4.2, the matrices A and B have either complex
eigenvalues, or the eigenvalues are real. If y[B] > 0, then we also have y[A] > 0. It suffices to look at

A =

(
a1 a2
a3 a4

)
and B =

(
b1 0
0 b4

)
.

From Proposition 4.2 we see that det[A,B] = a2a3(b1− b4)2 and hence a2a3 > 0. On the other hand,
the eigenvectors of A are

(x1,2, 1) =

(
(a1 − a4)±

√
y[A]

2a2
, 1

)
,

and therefore

x1x2 =
1

4a22
[(a1 − a4)2 − y[A]] = −a3

a2
.

We obtain that x1x2 > 0 iff a2a3 < 0, yielding a contradiction.
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Next consider det[A,B] > 0 and y[B] = 0, so we have to look at

A =

(
a1 a2
a3 a4

)
and B =

(
b1 b2
0 b1

)
.

This means that det[A,B] = −(a3b2)
2. Hence we do not have controllability on P1 if det[A,B] > 0

and y[B] ≥ 0.
Note that the cases y[A] = 0 or y[B] = 0 immediately imply that the system ẋ = (A + uB)x

does not satisfy the Lie algebra rank condition (2.3). Hence we only need to consider y[A] > 0 and
y[B] > 0 with

A =

(
a1 0
0 a4

)
and B =

(
b1 b2
b3 b4

)
.

In this case det[A,B] = b2b3(a1 − a2)
2 and hence b2b3 = 0. Therefore A and B have common

eigenvector and hence the system cannot satisfy the Lie algebra rank condition (2.3).
From this discussion we obtain the following result, which is parallel to Theorem 3.3.

Theorem 4.3. Consider the bilinear system ẋ = (A + uB)x and assume that it satisfies the Lie
algebra rank condition (2.3). Then the following statements are equivalent:

a) The angular system on P1 is controllable.

b) Either det[A,B] < 0, or det[A,B] ≥ 0 and A or B have complex eigenvalues.

5. Controllability with multiple inputs

In this section we consider the bilinear control system

ẋ(t) =

(
A+

m∑
i=1

ui(t)Bi

)
x(t) = A(u)x(t), t ∈ R, x(t) ∈ Rd

with multiple inputs u ∈ U = {u : R→ U ⊂ Rm, u is locally integrable}, where U ⊂ Rm is compact,
and convex with 0 ∈ intU . We continue to assume the Lie algebra rank condition (2.3), and are again
interested in controllability of the projected system (2.2) on the projective space P1. The following
example shows that we cannot expect the characterization via complex eigenvalues to hold in this
case.

Example 5.1. Consider

˙(
x1
x2

)
=

((
2 0
0 1

)
+ u(t)

(
0 1
1 2

)
+ v(t)

(
1 −1
−1 1

))(
x1
x2

)
=

(
2 + v(t)) u(t)− v(t)
u(t)− v(t) 1 + 2u(t) + v(t)

)(
x1
x2

)
.

(5.1)

Let us look at two subsystems, Σ1 given by v = 0, i.e.,

˙(
x1
x2

)
=

((
2 0
0 1

)
+ u(t)

(
0 1
1 2

))(
x1
x2

)
=

(
2 u(t)
u(t) 1 + 2u(t)

)(
x1
x2

)



V. Ayala, et al., J. Math. Computer Sci. 16 (2016), 554–575 570

and Σ2 given by u = 0

˙(
x1
x2

)
=

((
2 0
0 1

)
+ v(t)

(
1 −1
−1 1

))(
x1
x2

)
=

(
2 + v(t)) −v(t)
−v(t) 1 + +v(t)

)(
x1
x2

)
.

One easily checks that these two subsystems satisfy the Lie algebra rank condition for U as given
above. The eigenvalues are computed as

Σ1 : λ1,2(u) =
3

2
+ u± 1

2

√
(1− 2u)2 + 4u2,

Σ2 : λ1,2(v) =
3

2
+ v ± 1

2

√
1 + 4v2

and hence by Section 2 neither subsystem is controllable on the projective space P1.
Computing the eigenvalues of the combined system (5.1) we obtain

λ(u, v) =
3

2
+ u+ v ± 1

2

√
(1− 2u)2 + 4(u− v)2.

These values are all real and the combined system has no rotation.
We take as control range the set, U ×V = [−2, 2]× [−6, 6]. For v = 0 we obtain eigenvalues of Σ1

as follows: for u = 0 we have λ1(0, 0) = 1 and λ2(0, 0) = 2, and for u = 2 we obtain λ1(2, 0) = 1 and
λ2(2, 0) = 6. Computing the corresponding eigenvectors shows that the set D1 = (π/2, 7π/8) ⊂ P1

is contained in the smaller control set of Σ1, while D2 = [0, π/3] is contained in the greater control
set of Σ1. (Here “smaller” and “greater” refer to the order of control sets, compare [2, Chapter 7]).

Now consider the constant control u = 0 and v = 5. The eigenvalues for this control are
λ1,2(0, 5) = 3

2
+5± 1

2

√
101, and the eigenspaces (in radians of the projective space) are PE(λ1(0, 5)) =

0.835 and PE(λ2(0, 5)) = 2.399. Note that PE(λ1(0, 5)) ⊂ D2 and PE(λ2(0, 5)) ⊂ D1, hence D1 can
be reached from D2 using the constant control (u, v) = (0, 5) and the system (5.1) is controllable on
the projective space.

Our characterization of controllability of the system (2.2) on the projective space is in terms of
the location of eigenspaces on P1. We will use the notation Pϕ(t, ·, u) for the solutions at time t ∈ R
of (2.2) for constant controls u ∈ U . The maps {Pϕ(t, ·, u), t ∈ [0, T ]} are called a directed family
for x ∈ P1 if Pϕ(·, x, u) : [0, T ]→ P1 is injective. This means, intuitively, that {Pϕ(·, x, u), t ∈ [0, T ]}
wraps around (a part of) P1 in one direction. Note that if there is a control u(·) ∈ U and a time
t ≥ 0 with y = Pϕ(t, x, u) then there exists a piecewise constant control v(·) ∈ Upc and s ≥ 0 with
y = Pϕ(s, x, v). This motivates the following definition.

Definition 5.2. The family of maps {Pϕ(t, ·, u), t ∈ [0, T ]} for some u(·) ∈ Upc is called a controlled
rotation if there exists x ∈ P1 such that {Pϕ(t, ·, u), t ∈ [0, T ]} is a directed family for x, and
{Pϕ(t, x, u), t ∈ [0, T ]} = P1.

Proposition 5.3. The system (2.2) is controllable on P1 iff there exists a controlled rotation of
(2.2).

Proof. If there exists a controlled rotation, then the system is obviously controllable. To see the con-
verse, let x ∈ P1 and denote byA+(x) the points of P1 that can be reached from x via counterclockwise
angular motion, and by A−(x) the points of P1 that can be reached from x via clockwise motion.
Since the system is assumed to be controllable, we have A+(x)∩A−(x) 6= ∅. Let y ∈ A+(x)∩A−(x),
then x ∈ A+(y) or x ∈ A−(y). In any case we obtain a controlled rotation anchored at x.
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It remains to describe controlled rotations in simple ways. We will use the following notation:
let M := {A(u) := A +

∑m
i=1 uiBi, u ∈ U} denote the set of system matrices, and let A(u) ∈ M

with two distinct real eigenvalues λ1 < λ2 and associated eigenspaces E1 and E2. Note that the flow
{Pϕ(t, ·, u), t ≥ 0} on P1 is always from PE1 to PE2. For two points x, y ∈ P1 the set [x, y] denotes
the interval of P1 in the “counterclockwise” order.

1. The set of matrices M contains a matrix with a complex pair of eigenvalues, iff the system
admits an actual rotation. In this case we have ’controlled’ rotation with one constant u ∈ U .

2. Assume now that M contains only matrices with real eigenvalues, and that there is a ma-
trix A(u0) with double real eigenvalue and only one eigendirection E0, such that (w.l.o.g.)
{Pϕ(t, ·, u0), t ≥ 0} follows counterclockwise motion on P1. Then part of {Pϕ(t, ·, u0), t ≥ 0}
belongs to a controlled rotation iff there exists u1 ∈ U such that {Pϕ(t, ·, u1), t ≥ 0}moves coun-
terclockwise in a neighborhood of PE0. This occurs iff (i) A(u1) has a double real eigenvalue
and only one eigendirection E1 6= E0, such that {Pϕ(t, ·, u1), t ≥ 0} moves counterclockwise
on P1, or (ii) A(u1) has two distinct real eigenvalues with PE0 ∈ [PE1

1 ,PE1
2 ]. In both cases

we obtain a controlled rotation with two control values and two switches of the control value.
Note that matrices A(u) ∈ M with one double real eigenvalue and two linearly independent
eigenvectors cannot be part of a controlled rotation.

3. Assume finally that M contains only matrices with two distinct real eigenvalues. In this
case there obviously exists a controlled counterclockwise rotation if there are u1, ..., un, un+1 =
u1 ∈ U such that PE1(u

2) < PE2(u
1) < PE1(u

3) < PE2(u
2) < · · · < PE2(u

n) < PE1(u
2) <

PE2(u
1) = PE2(u

n+1), and analogously for clockwise controlled rotations.

With these observations we obtain the following result.

Theorem 5.4. For the system (2.2) under the Lie algebra rank condition (2.3) the following state-
ments are equivalent:

1. The system is controllable.

2. The system admits a controlled rotation.

3. The matrix set M := {A+
∑m

i=1 uiBi, u ∈ U} satisfies at least one of the following conditions:

(a) M contains a matrix with a pair of complex eigenvalues, or
(b) M contains a matrix A(u0) with double real eigenvalue and only one eigendirection E0,

and a second matrix A(u1) whose flow moves in the same direction as {Pϕ(t, ·, u0), t ≥ 0}
in a neighborhood of PE0, or

(c) M contains a finite sequence {A(ui), i = 1, ..., n} of matrices with distinct real eigen-
values whose eigenspaces satisfy either PE1(u

2) < PE2(u
1) < PE1(u

3) < PE2(u
2) <

· · · < PE2(u
n) < PE1(u

2) < PE2(u
1) in case of a counterclockwise controlled rotation, or

PE1(u
2) > PE2(u

1) > PE1(u
3) > PE2(u

2) > · · · > PE2(u
n) > PE1(u

2) > PE2(u
1) in case

of a clockwise controlled rotation.

Proof. All we need to show is that the existence of a controlled rotation implies one of the three
situations in 3. If the set M contains a matrix with a pair of complex eigenvalues, we are done.
Hence we now assume that all matrices A(u) ∈ M have real eigenvalues. Furthermore, we assume
(w.l.o.g.) that the given controlled rotation flows counterclockwise on P1.

Let x ∈ P1 and denote U+(x) := {u ∈ U , the flow of A(u) on P1 at x is counterclockwise}. This
means that (i) x ∈ (PE1(u),PE2(u)) for all u ∈ U+(x) for which A(u) has two (distinct) eigenvalues,
and (ii) x ∈ (PE0(u),PE0(u)) for all u ∈ U+(x) for which A(u) has a double real eigenvalue and only
one eigendirection E0.
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We first consider the case that there is a u ∈ U+(x) such that (ii) holds. By assumption of the
existence of a counterclockwise controlled rotation, U+(PE0) 6= ∅, which together with smoothness
of the vector fields on P1 implies the existence of a controlled rotation as in 3 (b).

We now assume that for all u ∈ U+(x) the matrix A(u) has two distinct eigenvalues. Denote
y1 := sup{PE2(u), u ∈ U+(x)}, with the supremum taken in the counterclockwise order on P1.
Note that the supremum is well-defined since x ∈ (PE1(u),PE2(u)) for all u ∈ U+(x). Define
y2 := sup{PE2(u), u ∈ U+(y1)}, and so on until the first n ∈ N with x ∈ (yn, yn+1). We need to
show that such an n exists: assume to the contrary that y := limk→∞ y

k ≤ x. Then by assumption
on the existence of a controlled rotation there exists v ∈ U+(x) and Pϕ(·, y, v) is counterclockwise
in a neighborhood of y, which is a contradiction. Note that by construction yn+1 = y1. Using again
the smoothness of the vector fields of (2.2) for constant u ∈ U , we arrive at a finite sequence of
control values u1, ..., un, un+1 = u1 and switch points z1, ..., zn on P1 with x ∈ (zn, z1) such that the
flow defined by the vector fields PA(ui+1) on the intervals [zi, zi+1) is a controlled, counterclockwise
rotation.

Note that by construction we have the following order of the eigenspaces of the A(ui) ∈ M on
P1: PE1(u

2) < PE2(u
1) < PE1(u

3) < PE2(u
2) < · · · < PE2(u

n) < PE1(u
2) < PE2(u

1) = PE2(u
n+1).

Analogously, all arguments for clockwise controlled rotations can be described.

We close this section by giving an example for a bilinear system with two controls for which the
subsystems do not satisfy the Lie algebra rank condition (2.3), but the complete system does and,
moreover, it is controllable.

Example 5.5. Consider the bilinear control system with one control

˙(
x1
x2

)
=

((
2 0
0 1

)
+ u(t)

(
2 2
0 1

))(
x1
x2

)
=

(
2(1 + u(t)) 2u(t)

2u(t) 1 + u(t)

)(
x1
x2

)
.

The projected angular system on S1 satisfies the differential equation

θ̇ = (1 + u(t)) sin(θ) cos(θ)− 2u(t) sin2(θ),

which for all u ∈ R has a common fixed point θ = 0, and hence the system does not satisfy the Lie
algebra rank condition (2.3). In particular, the system is not controllable on P1. The same holds
true for the following system

˙(
x1
x2

)
=

((
2 0
0 1

)
+ v(t)

(
1 0
2 1

))(
x1
x2

)
=

(
2 + v(t) 0

2v(t) 1 + v(t)

)(
x1
x2

)
.

Now we combine the two systems as

˙(
x1
x2

)
=

((
2 0
0 1

)
+ u(t)

(
2 2
0 1

)
+ v(t)

(
1 0
2 1

))(
x1
x2

)
,

˙(
x1
x2

)
=

(
2 + 2u(t) + v(t) 2u(t)

2v(t) 1 + u(t) + v(t)

)(
x1
x2

)
.

This system has the projected angular equation on S1

f((u(t), v(t)), α) = −(1 + u(t) sin(α) + 2(u(t) + v(t)) cos(α) + 2(u(t)− v(t))



V. Ayala, et al., J. Math. Computer Sci. 16 (2016), 554–575 573

and one can check easily that (2.3) is satisfied. Computing the eigenvalues for constant (u, v) we
obtain

λ(u, v) =
3

2
+

3

2
u+ v ± 1

2

√
(1 + u)2 + 16uv.

For u = 1 and v = −1 the eigenvalue is a complex pair and hence the system is controllable on P1 if,
e.g., (1,−1) ∈ U .

6. The spectrum of bilinear systems

In this section we consider the Lyapunov spectrum ΣLy of the bilinear control system (3.3)
ẋ = (A+ uB)x, x ∈ R2, A,B ∈ gl(2,R), u(t) ∈ R, i.e., we consider the set of Lyapunov exponents

ΣLy = {λ(u, x), (u, x) ∈ U × (R2 \ {0}) },

λ(u, x) = lim sup
t→∞

1

t
log ‖ϕ(t, x, u)‖ ,

where ϕ(t, x, u) is a solution of (3.3).
We continue to assume the Lie algebra rank condition (2.3), and we work under the condition that

the projected system (2.2) on P1 is controllable. According to Theorem 2.4 we need to characterize
the situation 0 ∈ Int(ΣLy).

The eigenvalues, whose real parts are the Lyapunov exponents for constant u ∈ U , are given by

λ1,2(u) =
1

2

(
tr(A+ uB)±

√
[tr(A+ uB)]2 − 4 det(A+ uB)

)
.

For u ∈ U we define the discriminant

y(u) = [tr(A+ uB)]2 − 4 det(A+ uB),

and obtain y(u) = αu2 + 2βu+ γ, with

α = tr2(B)− 4 det(B),

β = 2tr(AB)− tr(A)tr(B),

γ = tr2(A)− 4 det(A) .

We will use the notation
ΣRe := {Re(λ1,2(u)), u ∈ U}

for the real parts of the eigenvalues of the system matrices, and

C− := y−1[(−∞, 0)], C0 := y−1[{0}], C+ := y−1[(0,+∞)]

for u ∈ U with negative, zero, and positive discriminant, respectively. Note that ΣRe ⊂ ΣLy.

Lemma 6.1. If the system (2.2) is controllable on P1 and if tr(B) 6= 0, then 0 ∈ int(ΣLy).

Proof. The real parts of the eigenvalues of A+ uB are

Re(λ1,2(u)) =
1

2
(tr(A) + utr(B)± χC+(u)

√
y(u)) ,

where χS denotes the characteristic function of a set S. Note that these values cover all of R.
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Lemma 6.2. Assume that the system (2.2) is controllable on P1 and that tr(B) = 0. Then 0 ∈
int(ΣRe) iff 0 < tr2(AB)− 4 det(AB), i.e., the matrix AB has distinct real eigenvalues.

Proof. We distinguish three cases according to the sign of det(B).

1. Let det(B) > 0. The maximum of y(u) is y
(
−β
α

)
= γ − β2

α
. Note that there exist matrices in

{A+ uB, u ∈ R} with different sign of the real parts of eigenvalues iff

tr(A)−

√
y

(
−β
α

)
< 0 < tr(A) +

√
y

(
−β
α

)
,

i.e.,

|tr(A)| <

√
y

(
−β
α

)
,

which is equivalent to 4 det(AB) < tr2(AB).

2. Let det(B) = 0. In this case we have y(u) = 4tr(AB)u + (tr2(A) − 4 det(A)) and hence
0 < tr2(AB) implies 0 ∈ int(ΣRe). Note that if tr(AB) = 0, then all eigenvalues have the same
real part, i.e., int(ΣRe) = ∅.

3. Let det(B) < 0. One shows that 0 < tr2(AB) − 4 det(AB) implies 0 ∈ int(ΣRe) following
the proof of Lemma 9 in [1]. To see the converse consider

λ1(u)λ2(u) =
1

4

{
tr2(A+ uB)−

(√
y(u)

)2
, u ∈ C ∪ C+,

|λ1(u)|2 , u ∈ C−,

=
1

4

{
4 det(A+ uB) , u ∈ C ∪ C+,
tr2(A+ uB) +

(√
−y(u)

)2
, u ∈ C−,

= det(A+ uB).

This is a quadratic polynomial with different real roots and det(B) < 0 implies that C− 6= ∅.
Hence we have det(A+ u0B) > 0 for some u0 ∈ C−. Again with det(B) < 0, we arrive with

det(A+ uB) = det(B)u2 + [tr(AB)− tr(A)tr(B)]u+ det(A) ,

at the conclusion
4 det(AB) < tr2(AB).

We summarize these observations in the following theorem.

Theorem 6.3. Assume that the bilinear system (3.3) satisfies the Lie algebra rank condition in R2

and that the projected system (2.2) is controllable on P1. Then

(1) 0 ∈ int(ΣRe) iff tr(B) 6= 0 or 0 < tr2(AB)− 4 det(AB).

(2) In particular, the system (3.3) is controllable in R2\{0} if tr(B) 6= 0, or if tr(B) = 0 and
0 < tr2(AB)− 4 det(AB).
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