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Abstract 
Support vector machines (SVMs) have been widely applied in regression analysis. In this 
paper, the application of SVM in regression for interval samples is proposed. The standard 
support vector regression (SVR), is a quadratic optimization problem that is formulated 
according to the form of training samples and optimal hyperplane is obtained. In real world, 
the parameters are seldom known and usually are estimated. In this paper we propose an 
interval support vector regression (ISVR) problem which the training samples are interval 
values. Using duality theorem and applying variable transformation theorem the problem is 
solved and two hyperplanes correspond to the upper bound and the lower bound of 
solution set is obtained. Efficiency of our approach is confirmed by a numerical example.  
 
Keywords: Support vector machine, Regression analysis, Interval quadratic optimization 
problem. 
 

1. Introduction 
Recently, a novel machine learning technique, is called SVM, drawn much attention in the 
fields of pattern classification and regression forecasting. SVM was first introduced by Vapnik 
in 1995 [2]. SVM is a kind of classifier’s studing method on statistic study theory.  
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This algorithm derives from linear classifier, and can solve the problem of two kind 
classifier, later this algorithm applies in non-linear fields, that is to say, we can find the 
optimal hyperplane (large margin) to classify the samples set. It is an approximate 
implementation to the structure risk minimization method [9]. SVM has been very 
successful in pattern recognition and function estimation problems. Linear regression 
models are widely used today in business, administration, economics, engineering, as well 
as in many other traditionally no quantitative fields such as social, health, and biological 
sciences.  
For the last few years, there has been an increasing interest in fuzzy systems which 
incorporate tools well-known from the statistical learning theory. Fuzzy clustering with a 
weighted (or fuzzy)  -insensitive loss function is introduced in [3, 4, 5]. The above method 
leads to improved robustness of outliers with respect to the traditional fuzzy clustering 
methods. The support vector fuzzy regression machines have been introduced in [8]. The 
support vector interval regression network has been established in [6]. A differentiable 
approximation of the misclassification rate with the use of the empirical risk minimization 
principle to improve learning of a neuro-fuzzy classifier is proposed in [7].  
In all of references, the training samples are proposed as crisp points. But, in fact, these 
samples are undetermined. Then we suppose the samples as interval values which resulting 
in an interval quadratic optimization problem. A numerical solution to interval quadratic 
programming was described by Liu and Wang (2007) [1]. In the proposed method by Liu 
and Wang since the parameters are interval-valued, the objective value is achieved interval-
valued by solving a pair of two-level mathematical programs. In this paper we solve the 
ISVR problem by solving a quadratic program problem. 
 

2. The problem 
The SVM can be successfully applied to regression as follows:  

Given training data  m

nn yxyxyx ),(),...,,(),,( 2211  where mx   is a data point in 

input space and iy  is the corresponding target of the model output. The goal is to find 

an approximation function )(xf , which has at most    deviation from the actual target iy  

for all the training data. In the  -SV regression [Vapnik, 1995], any deviation that is less 

than   is allowed. Consider a linear function, bxwxf T )(  where mw   and b  

are unknown. The objective of SVR is to minimize the Euclidean norm of w  as long as 

deviation from the actual target iy  is less than  . This convex optimization problem is 

shown as follows: 
 

2

2

1
wMin  

ii

T

i bxwyts  .     ni ,...,1                                                                              (1) 


 iii

T ybxw       ni ,...,1             

 
The implicit assumption in (1) is that the problem is feasible as the function )(xf  that 

approximates all input data, )},(),...,,(),,{( 2211 nn yxyxyx  whit   deviation exists. To 

construct a support vector machine for approximating a target, d , the following loss 
function is used: 
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Where   is a predetermined parameter with positive value. 
 
The loss function in (2) is called the  -insensitive loss function. This loss function 
implies that this function has a value only when the deviation of output, y , from the 

desired target, d , is greater than the deviation parameter,  . It is graphically 
presented as shown in figure 1. 

 
Figure 1. The  -insensitive loss function 

 

To deal whit the feasible constraints of the optimization problem (1), slack 

variables, 


ii  , , are introduced to form the following problem: 
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0, 


ii                              ni ,...,1  
Where C  is a given large real number as the coefficient of penalty.  

In this paper, we suppose that ),( ii yx , ni ,...,1 , are interval samples named 

]),[],,([)~,~(
u

i

l

i

u

i

l

iii yyxxyx  , ni ,...,1 . Now the goal is to find the approximation function 

bxwxf T  ~)~(  which has at most   deviation from the actual target iy  for all the training 

data. Then the problem (3) is converted to the following problem: 
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lxy)(  and 

uxy)(  are achieved by solving the following two optimization problems: 
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And we define ],[~~ uull yxyxyx  . 

The Lagrange function is as follows: 
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Thus; a necessary and sufficient condition for minimum the lagrangian function over the 
variables  bw, , is that the gradient vanishes, that is:  

                               









































0

0

0

0

i

P

i

P

P

P

L

L

b

L

w

L





            or        


















































n

i

i

n

i

i

n

i

ii

n

i

iii

C

C

xw

1

1

1

1

0

0

0)(

~)(









                                                                    (5) 

Therefore; under the above optimality conditions, maximize   PL  over  0  is equivalent 

to solve the following problem: 
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The above problem is a quadratic program with interval coefficients )~~( j

T

i xx , so we replace 

the upper and lower bounds of )~~( j

T

i xx  in the objective function such that the objective 

function take its maximum value. For this goal, at first we write the objective function 
sentence by sentence as follows: 
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Where ),...,,,,...,,( 2121


 nn  , ),...,1( nii   corresponds to the slack variables 

i , and ),...,1( nii 


  corresponds to the constraint whit slack 


i . 

The terms with negative coefficient must take their lower bound and the terms whit 
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Problem (7) is a conventional quadratic problem with constant objective coefficients and 
can be shown as following matrix form: 

 TT fH 
2

1
min  
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With the previous problem constraints, 
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By the optimization conditions (5) we find the lower and upper bounds of the weight vector 
w  as follows: 
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By definition the index sets }0:{  iiI   and }0:{  iiI   and paying attention to 

this point that 0


ii , so  II  .  So we can rewrite the equations (8) and (9) as 

follows: 
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Considering    
  Ii

l

iIi

u

i xx   as a standard training sample set one can find the optimized 

bias ub  correspond to the weight vector uw , and similarly by considering 

   
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u

iIi

l

i xx   as a standard training sample set one can find the optimized bios lb  

correspond to the weight vector lw . Note that an arbitrary SV point, ),(
SV

i

SV

i yx , satisfies in 

equivalence  bxwy i

T

i , so substituting the above obtained values in (10) and (11), 

the related bias is achieved. 
 

3. Experimental results 
 
Some interval samples are generated randomly around the hyperplane 43  xy , and in 

the figure 2 the center of samples are shown, ),( ii yx , for all },...,2,1{ ni  we set: 

1.0 i

l

i xx , 1.0 i

u

i xx , 1.0 i

l

i yy  and 1.0 i
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i yy . 

Solving the problem (6) the optimized weight vector w  is obtained as the interval 

]24.3,06.3[],[ ul ww  the optimal bias 05.4lb  correspond to 06.3lw  and the optimal 

bias 85.3ub  correspond to 24.3uw . In the figure the hyperplane 

85.324.3)(  xbxw uTu
 and the hyperplane 05.406.3)(  xbxw lTl

are shown. 
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Figure 2.  
 

 
4. Conclusion  
In this work, we solved ISVR problem using SVM, obviously constant samples can be shown 
as intervals, so this version contains conventional SVR as well. Since in the real world, the 
parameters are seldom known and have to be estimated, almost, every problem with real 
parameters can be extended to a program with interval or fuzzy parameters. Clearly, we can 
extend ISVM to every kind of SVM, in the next work, we are going to solve interval support 
vector machine in One Class classification problem. 
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