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Abstract
For the analysis of singularly perturbed delay differential equations exhibiting layer or oscillatory behaviour and a slight

negative shift in the reaction term, this study introduces a second order numerical approach via Stormer’s method. To approxi-
mate the term with negative shift, we use Taylor series, which in turn changes the equation into a singular perturbation problem
with the same asymptotic behaviour. Finally, we have a recurrence relation with five terms that can be resolved using the Gauss
elimination method. The computational results are shown by solving some model problems for different delay and perturbation
parameters. The rate of convergence, both theoretically and numerically, has been demonstrated and is compatible with the
present approach. The findings acquired using the new approach are shown to be more accurate than those obtained using the
earlier investigations.
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1. Introduction

Singularly perturbed delay differential equation (SPDDE) is a developing field of mathematics with a
considerable history and a bright future full of significant applications in science and engineering. SPDDE
is one that restricts the class of delay differential equations to those in which the highest derivative is
multiplied by a very small parameter. The SPDDEs model is widely used to describe most processes in
bioscience, control theory, economics and engineering. Due to their applications in numerous scientific
and technical fields, such as micro-scale heat transfer [7], control theory [21], hydrodynamics of liquid
helium [14], the first exit-time problem [19], describing the human pupil-light reflex [22], models for differ-
ent physiological processes or diseases [23], the theory of plates and shells [17], magneto-hydrodynamic
flow [12], etc, there has been an increase in interest in the numerical study of singularly perturbed delay
differential equations in recent years.

Lange and Miura [20] investigated a class of boundary-value problems and discussed an asymptotic
method to approximatively solve this type of differential equation. Vaid and Arora [30] developed a
numerical method utilizing trigonometric cubic B-spline functions, in which the derivatives are approx-
imated as a sum of the basis functions. Chakravarthy and Kumar [3] approached these problems via
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Numerov’s method and the study in [29] developed non-polynomial cubic spline approximations. The
work in [1] proposed an exponentially fitted method by use of Taylor series expansion to derive the
scheme. Ranjan and Prasad [26] developed an exponentially fitted three term finite difference scheme by
using Taylor series approach. Swamy et al. [28] employed numerical integration and the linear interpo-
lation technique after converting the singularly perturbed delay differential equation to a neutral delay
differential equation. Kumar and Kumari [18] suggested B-spline functions on a piecewise-uniform mesh
to solve singularly perturbed problems with an integral boundary condition. Sharma et al. [27] devel-
oped Liouville-Green transformation technique to solve singularly perturbed delay differential equations
by the use of Taylor series expansion. Erdogan and Sakar [8] suggested a numerical technique based on
a piecewise uniform Shishkin mesh with an exponentially fitted difference scheme for each time subin-
terval. Phaneendra et al. [25] suggested a numerical integration approach for singularly perturbed delay
differential equations with layer or oscillatory behaviour. Amiraliyev and Cimen [2] carried out an expo-
nentially fitted difference scheme on a uniform mesh. This is achieved by the use of the method of integral
identities, which involves the utilization of exponential basis functions and interpolating quadrature rules
that are formulated with the weight and remainder term in integral form. Kadalbajoo and Sharma [15]
developed a standard upwind finite difference scheme on a special type of mesh to tackle the delay argu-
ment. The researchers developed a piecewise uniform mesh of Shishkin type to solve singularly perturbed
problems of linear [5] and non-linear [4] second order delay differential equations. Cimen and Cakir [6]
introduced an exponentially fitted difference scheme on a uniformly spaced grid, constructed through in-
tegral identities employing exponential basis functions and interpolating quadrature rules incorporating
weight and remainder terms in integral form.

All of these works deal with second-order singularly perturbed delay differential equations, and they
show the effectiveness of the methods by analysing them from various angles and producing good, ac-
curate numerical solutions that correspond to a variety of rates of convergence. However, the obtained
approximate solution and the corresponding order of convergence are not more satisfactory, indicating
that other numerical methods must be developed in order to solve singularly perturbed delay reaction-
diffusion problems and produce a more precise numerical solution. Traditional numerical methods often
struggle to provide accurate and efficient solutions for such equations, especially when the perturbation
parameter is small, leading to numerical instability or excessive computational costs. The motivation for
this work is to develop advanced computational technique that specifically target SPDDEs, with a focus
on achieving second-order accuracy. By improving the accuracy and efficiency of numerical solutions for
SPDDEs, significant implications across various scientific and engineering disciplines can be developed.
Furthermore, it enables researchers to model and analyze complex systems more effectively. In this work,
we take into account reaction diffusion problems, which fall under the category of singularly perturbed
delay differential equations. In Section 2, we define the problem and assumptions on the parameter. In
Section 3, we employ Stormer’s method to arrive at its numerical solution. Using Taylor series, an equiv-
alent equation is developed to approximate the given problem to get a recurrence relation, which is then
solved by Thomas Algorithm. The convergence analysis of the proposed method is also discussed in Sec-
tion 4. In Section 5, four model examples are computed with varying delay and perturbation parameters,
and their results are shown. Discussion and conclusion follow in Section 6.

2. Statement of the problem

We consider the following singularly perturbed delay differential equation of reaction diffusion type:

µω ′′(ϑ) + c(ϑ)ω(ϑ− η) + d(ϑ)ω(ϑ) = g(ϑ), 0 < ϑ < 1, (2.1)

together with interval and boundary conditions,

ω(ϑ) = ψ(ϑ), −η 6 ϑ 6 0, ω(1) = γ, (2.2)

where µ (0 < µ << 1) is the perturbation parameter and η is the delay parameter (0 < η < 1). Here
c(ϑ),d(ϑ),g(ϑ), and ψ(ϑ) are bounded smooth functions in (0, 1) and γ is a fixed constant. The above
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assumptions guarantee the existence of unique solution (refer to [10]) and it is also discussed in [11].
The above problem depends on a small positive parameter in a way that causes the solution to vary

slowly in certain regions of the domain and fast in others. As a result, the solution usually behaves
regularly and changes slowly outside of narrow transition layers, where it jumps or fluctuates quickly.
For η 6= 0, the sign of c(ϑ) + d(ϑ) acts as a discriminant for the solution of the problem (2.1)-(2.2). If the
sign is positive, then the solution is oscillatory and if the sign is negative, the solution behaves in layers.
Consequently, if the solution is having layers, it will be at ϑ = 0 and ϑ = 1. We have discussed the solution
of the problems having layer behaviour as well as oscillatory behaviour. Applying the expansion of Taylor
series in the region around ϑ, we obtain

ω(ϑ− η) = ω(ϑ) − ηω ′(ϑ) +O(η2). (2.3)

By substituting (2.3) into (2.1), we develop the following problem, containing small perturbation parame-
ter µ,

µω ′′(ϑ) + p(ϑ)ω ′(ϑ) + q(ϑ)ω(ϑ) = f(ϑ), (2.4)

under the boundary conditions,
ω(0) = ψ(0) and ω(1) = γ, (2.5)

where
p(ϑ) = −ηc(ϑ), q(ϑ) = c(ϑ) + d(ϑ), and f(ϑ) = g(ϑ).

3. Derivation of the method

The objective of this section is to introduce a special kind of mesh such that the terms containing those
parameters will be located on the nodal points and the numerical approach that is being examined in this
article. Let Γ̄N = {ϑi}

N
i=0 be the discretized domain with N mesh -intervals on the domain Γ̄ = [0, 1], where

N is as an even positive integer. Let 0 = ϑ0, ϑ1, . . . , ϑN = 1 be the mesh points obtained while dividing
[0, 1], such that the step size hi = ϑi − ϑi−1 for i = 1, 2, . . . ,N− 1.

3.1. Numerical algorithm
The subsequent procedure is suggested for acquiring the numerical solution of the problem.

Step 1: Introduce the uniform mesh by partitioning the domain [0, 1] into N mesh intervals.
Step 2: Stormer’s technique is applied to the statement problem to arrive at a five term recurrence rela-

tion.
Step 3: We make use of Taylor series expansion of first order derivatives in the system obtained in Step 2

to obtain a scheme.
Step 4: Using reduced problem and the given history function, an initial value problem is formed to find

the solution at ϑ = N+ 1.
Step 5: We employ the scheme obtained in Step 3 and we use the value ω(N+ 1) obtained in Step 4 to

find the solution of the problem using Gauss elimination method.

3.2. The proposed numerical scheme
Consider the equation

µω ′′(ϑ) + p(ϑ)ω ′(ϑ) + q(ϑ)ω(ϑ) = f(ϑ), ϑ ∈ [0, 1]. (3.1)

We rearrange the differential equation (3.1) as

µω ′′(ϑ) = r(ϑ,ω(ϑ),ω ′(ϑ)), ϑ ∈ [0, 1], (3.2)

where r(ϑ,ω(ϑ),ω ′(ϑ)) = f(ϑ) − q(ϑ)ω(ϑ) − p(ϑ)ω ′(ϑ).
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Now, we consider the Stormer’s method [13] to solve the equation (3.2) and this equation is approxi-
mated by the finite difference scheme:

ωi+1 − 2ωi +ωi−1 =
h2

12
[
13ω ′′i − 2ω ′′i−1 +ω

′′
i−2
]

,

µ

h2 (ωi+1 − 2ωi +ωi−1) =
1
12

[13ri − 2ri−1 + ri−2] . (3.3)

Using the definition of ri in equation (3.3), we get

µ

h2 (ωi+1 − 2ωi +ωi−1) =
1
12
[
13(fi − qiωi − piω ′i)

]
−

1
12
[
2(fi−1 − qi−1ωi−1 − pi−1ω

′
i−1) + (fi−2 − qi−2ωi−2 − pi−2ω

′
i−2)

]
.

(3.4)

Now, the finite difference approximation for ω ′i, ω
′
i−1, and ω ′i+1 is derived with the help of Taylor’s

series of ωi+1 and ωi−1 upto O(h5),

ωi+1 = ωi + hω
′
i +

h2

2!
ω ′′i +

h3

3!
ω

(3)
i +

h4

4!
ω

(4)
i +O(h5),

ωi−1 = ωi − hω
′
i +

h2

2!
ω ′′i −

h3

3!
ω

(3)
i +

h4

4!
ω

(4)
i +O(h5).

The following approximations for the first derivative of ω are used to substitute in (3.4),

ω ′i '
ωi+1 −ωi−1

2h
−
h2

6
ω

(3)
i +O(h4),

ω ′i−1 '
−ωi+1 + 4ωi − 3ωi−1

2h
+
h2

3
ω

(3)
i −

h3

12
ω

(4)
i +O(h4),

ω ′i−2 '
−ωi+2 + 4ωi − 3ωi−2

4h
+

4h2

3
ω

(3)
i −

2h3

3
ω

(4)
i +O(h4).

We obtain the following scheme:(
h2qi−2

12
−
hpi−2

16

)
ωi−2 +

(
µ−

h2qi−1

6
−

13hpi
24

+
hpi−1

4

)
ωi−1

+

(
−2µ+

13h2qi
12

−
hpi−1

3
+
hpi−2

12

)
ωi +

(
µ+

hpi−1

12
+

13hpi
24

)
ωi+1

+

(
−
hpi−2

48

)
ωi+2 =

h2

12
(13fi − 2fi−1 + fi−2).

Finally we obtain a five term recurrence relation,

LN ≡ Aiωi−2 +Biωi−1 +Ciωi +Diωi+1 + Eiωi+2 = Fi, (3.5)

where

Ai =
h2qi−2

12
−
hpi−2

16
, Bi = µ−

h2qi−1

6
−

13hpi
24

+
hpi−1

4
,

Ci = −2µ+
13h2qi

12
−
hpi−1

3
+
hpi−2

12
, Di = µ+

hpi−1

12
+

13hpi
24

,

Ei = −
hpi−2

48
, Fi =

h2

12
(13fi − 2fi−1 + fi−2).
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We have the following reduced problem by putting the perturbation parameter µ = 0 in (3.1),

p(ϑ)ω ′0 + q(ϑ)ω0 = f(ϑ), ϑ ∈ [0, 1],

subject to ω(ϑ) = ψ(ϑ), ϑ ∈ [−1, 0]. ω0(ϑ− η) = ψ(ϑ− η), since ω(ϑ) = ψ(ϑ) in the interval [−1, 0]. So, by
using the above condition, we get p(ϑ)ω ′0 + q(ϑ)ω0 = f(ϑ), which gives

ω ′0 =
1
p(ϑ)

[f(ϑ) − q(ϑ)ω0] ,

with ω0(0) = ψ(0). We make use of Runge-Kutta method to get the solution at ϑ = N+ 1, say γ̄ (i.e.,
ω0(N+ 1) = γ̄). The scheme (3.5) gives a system of (N− 1) equations, which is solved using the numerical
algorithm mentioned in Section 3.1, with the help of MATLAB R2022a mathematical software.

4. Stability and convergence analysis

Lemma 4.1. For the case of β(ϑ̄) = c(ϑ̄) + d(ϑ̄) < 0, for all ϑ̄ ∈ (0, 1), the operator LN has the discrete minimum
principle, if ω0 > 0 and Lω(ϑ̄) 6 0, for all ϑ̄ ∈ (0, 1), then ω(ϑ̄) is non-negative, for all ϑ̄ ∈ (0, 1).

Proof. Suppose x ∈ (0, 1), such that ω(x) = minϑ∈(0,1)ω(ϑ) and ω(x) < 0. Since x is not contained in {0, 1}
and is a point of minima, the first derivative of ω attains zero at the point x and ω ′′(x) is non-negative.
Since by assumption ω(x) is strictly negative and q(x) < 0, we obtain

Lω(ϑ) = µω ′′(x) + p(x)ω(x) + q(x)ω(x) > 0.

But this gives a contradiction to our assumption. Therefore, it follows that ω(ϑ) > 0 for ϑ ∈ (0, 1).

Theorem 4.2. For the case of layer behaviour, i.e., β(ϑ̄) < 0, the operator in (3.5) is stable and satisfies

| ω(ϑ̄) |6 K1 max
{
| ω0 |, max

ϑ̄∈(0,1)
| Lω(ϑ̄) |

}
for some constant K1 > 1.

Proof. Let

τ±(ϑ̄) = K1 max
{
| ω0 |, max

ϑ̄∈(0,1)
| Lω(ϑ̄) |

}
±ω(ϑ̄).

Hence, τ±(0) is non-negative and

Lτ±(ϑ̄) = K1β(ϑ̄)max
{
| ω0 |, max

ϑ̄∈(0,1)
| Lω(ϑ̄) |

}
±Lω(ϑ).

Note that Lτ±(ϑ̄) is non-positive, since β(ϑ̄) < 0 and for appropriate value of K1. Then by Lemma 4.1, we
obtain τ±(ϑ̄) > 0, for all ϑ̄ ∈ (0, 1). Thus

| ω(ϑ̄) |6 K1 max
{
| ω0 |, max

ϑ̄∈(0,1)
| Lω(ϑ̄) |

}
.

So for the case of layer behaviour, solution’s stability is proved.

Lemma 4.3. For the case of β(ϑ̄) = c(ϑ̄) + d(ϑ̄) > 0, for all ϑ̄ ∈ (0, 1), the operator LN has the discrete maximum
principle, if ω0 and Lω(ϑ̄) are non-negative, for all ϑ̄ ∈ (0, 1), then ω(ϑ̄) > 0 for all ϑ̄ ∈ (0, 1).

Proof. Suppose x ∈ (0, 1), such that ω(x) = maxϑ∈(0,1)ω(ϑ) and ω(x) < 0. Since x is not contained in {0, 1}
and is a point of maxima, the first derivative of ω attains zero at the point x and ω ′′(x) is non-positive.
Since by assumption ω(x) is strictly negative and q(x) > 0, we obtain

Lω(ϑ) = µω ′′(x) + p(x)ω(x) + q(x)ω(x) < 0.

But this gives a contradiction to our assumption. Therefore, it follows that ω(ϑ) > 0 for ϑ ∈ (0, 1).
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Theorem 4.4. For the case of oscillatory behaviour, i.e., β(ϑ̄) > 0, the operator in (3.5) is stable and satisfies

| ω(ϑ̄) |6 K1 max
{
| ω0 |, max

ϑ̄∈(0,1)
| Lω(ϑ̄) |

}
for some constant K1 > 1.

Proof. Let

τ±(ϑ̄) = K1 max
{
| ω0 |, max

ϑ̄∈(0,1)
| Lω(ϑ) |

}
±ω(ϑ̄).

Hence, τ±(0) is non-negative and

Lτ±(ϑ̄) = K1β(ϑ̄)max
{
| ω0 |, max

ϑ̄∈(0,1)
| Lω(ϑ̄) |

}
±Lω(ϑ).

Note that Lτ±(ϑ̄) is non-positive, since β(ϑ̄) > 0 and for appropriate value of K1. Then by Lemma 4.3, we
obtain τ±(ϑ̄) > 0 for all ϑ̄ ∈ (0, 1). Thus,

| ω(ϑ̄) |6 K1 max
{
| ω0 |, max

ϑ̄∈(0,1)
| Lω(ϑ̄) |

}
.

So for the case of oscillatory behaviour, solution’s stability is proved.

Lemma 4.5. The bound for derivative of the solution ω(ϑ) of the problem (2.1)-(2.2) when ϑ ∈ (0, 1) is given by | ωk(ϑ) |6 C
(

1 + µ−kexp
(
−αϑ
µ

))
, for left layer,

| ωk(ϑ) |6 C
(

1 + µ−kexp
(
−α(1−ϑ)

µ

))
, for right layer,

for 0 6 k 6 4, where p(ϑ) > α > 0 for right boundary layer case and p(ϑ) 6 α < 0 for left boundary layer case.

Proof. For the proof, refer to [16, 24].

Theorem 4.6. Let ω(ϑi) be the analytical solution of the problem in (2.4) and (2.5) and WN be the computational
solution of the discretized problem in (3.5). Then, for sufficiently large N, the following parameter uniform error
estimate holds:

sup
06µ61

| ω(ϑi) −W
N |6 C1N

−2.

Proof. We write (3.5) in matrix form as
MW = Y, (4.1)

where M = (mij), i = 1(1)N− 1, is a square matrix of order N− 1. So from (3.5), we can write as

mii−2 =
h2qi−2

12
−
hpi−2

16
, mii−1 = µ−

h2qi−1

6
−

13hpi
24

+
hpi−1

4
,

mii = −2µ+
13h2qi

12
−
hpi−1

3
+
hpi−2

12
, mii+1 = µ+

hpi−1

12
+

13hpi
24

, mii+2 = −
hpi−2

48
,

and the column vector Y = (yi) is given by

y1 = F1 −A1ψ−1 −B1ψ(0), y2 = F2 −A2ψ(0), yi = Fi, i = 3, 4, . . . ,N− 3,
yN−2 = FN−2 − EN−2γ, yN−1 = FN−1 −DN−1γ− EN−1γ̄.

Truncation error Te(h) obtained is:

Te(h) = h
4
[

13
72
piω

(3)
i +

1
18
pi−1ω

(3)
i −

1
9
pi−2ω

(3)
i

]
+O(h5).

Equation (4.1) can also be written in error form as MW − Te(h) = Y, where W =
(
w1 w2 · · · wN−1

)t
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is the exact solution and Te(h) =
(
Te1(h) Te2(h) · · · TeN−1(h)

)t is the truncation error. Then we obtain

ME∗ = Te(h), (4.2)

where
E∗ =W −W =

(
e∗1 e∗2 · · · e∗N−1

)t .

Now, let S̄i be the sum of elements of ith row of the matrix M. Then

S1 = −µ+ h2
[

13qi
12

]
+ h

[
−
pi−1

4
+

13pi
24

+
pi−2

16

]
, S2 = h2

[
13qi
12

−
qi−1

6

]
+ h

[pi−2

16

]
.

For i = 3 to N− 3,
Si = h

2Q∗i ,

where Q∗i =
[
qi−2

12 + 13qi
12 − qi−1

6

]
,

SN−2 = h2
[
qi−2

12
−
qi−1

6
+

13qi
12

]
+ h

[pi−2

48

]
,

SN−1 = −µ+ h2
[
qi−2

12
−
qi−1

6
+

13qi
12

]
+ h

[
pi−2

48
−

13pi
24

−
pi−1

12

]
.

From (4.2),
E∗ =M−1Te(h), (4.3)

which implies,
‖E∗‖ 6 ‖M−1‖‖Te(h)‖, (4.4)

where the norm ‖.‖ denotes the maximum norm. Let the (i,k)-th element of M−1 be denoted by mi,k,
which are non-negative. Then,

N−1∑
k=1

mi,kS̄i = 1, i = 1, 2, . . . ,N− 1.

Hence,
N−1∑
k=1

mi,k 6
1

min16k6N−1 Sk
6

1
h2 | Q∗k0 |

, (4.5)

for some k0 between 1 and N− 1. From Equations (4.1), (4.3), (4.4), and (4.5), we have,

ek =

N−1∑
i=1

mi,jTek(h),k = 1, 2, . . . ,N− 1,

which gives

ei 6

(
N−1∑
i=1

mi,j

)
max

16k6N−1
| Tek(h) |6

1
h2 | Q∗k0 |

×O(h4) = O(h2).

As a result, ‖E‖ = O(h2) and hence our method is of second order convergent.

5. Numerical Experiments

We took four numerical experiments into consideration to demonstrate the applicability of the sug-
gested technique. Tables are given to show the computed solution for different values of µ as well as
different values of η. Maximum absolute errors are determined by applying the double mesh princi-
ple [9] to the presented examples
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ENµ = max
06i6N

| ωNi −ω2N
2i |,

where ωNi represents the numerical solution of the problem on N number of mesh points and ω2N
2i

represents the numerical solution of the problem on 2N number of mesh points. For a value of N, the µ
-uniform maximum absolute error is calculated by the formula

EN = max
µ
ENµ .

The computational rate of convergence ρ is also obtained by using the double mesh principle defined as

ρ =
log(ENµ ) − log

(
E2N
µ

)
log 2

.

Example 5.1. Consider
µω ′′(ϑ) − 2ω(ϑ− η) −ω(ϑ) = 1,

together with the boundary conditions

ω(ϑ) = 1, −η 6 ϑ 6 0, ω(1) = 0.

Table 1 gives the maximum absolute error for different values of delay parameter with µ = 0.1 and Table 2
presents the maximum absolute error for different values of perturbation parameter with η = 0.03. The
results are compared with the existing method in [25, 28] and it is found that results by our method
are better as compared to the discussed method. Also, we present Figure 1, which gives the computed
solution of the problem for different values of µ with η = 0.05 and the graphs of point-wise absolute
errors for different values of N with µ = 0.1 and η = 0.05. Figure 2 represents the graphs of maximum
absolute error for different values of η with µ = 0.1 and loglog plot of the maximum pointwise error.
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Figure 1: The numerical solution and point-wise absolute errors of Example 5.1.
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Figure 2: The maximum absolute error and loglog plot of maximum point-wise errors of Example 5.1.
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Table 1: The maximum absolute error of Example 5.1 for different values of η with µ = 0.1.

η N

100 200 300 400 500

0.03 3.5633e-05 7.1880e-06 2.9299e-06 1.5725e-06 9.7719e-07
0.05 5.0425e-05 1.0984e-05 4.6314e-06 2.5337e-06 1.5939e-06
0.09 8.2623e-05 1.9300e-05 8.3673e-06 4.6463e-06 2.9503e-06
Results in [28]
0.03 3.1674e-03 1.6058e-03 1.0754e-03 8.0837e-04 6.4760e-04
0.05 3.1437e-03 1.5949e-03 1.0685e-03 8.0338e-04 6.4367e-04
0.09 3.0784e-03 1.5660e-03 1.0502e-03 7.9000e-04 6.3310e-04
Results in [25]
0.03 9.3352e-03 4.9360e-03 3.3540e-03 2.5398e-03 2.0438e-03
0.05 8.7514e-03 4.7344e-03 3.2355e-03 2.4561e-03 1.9803e-03
0.09 7.2037e-03 4.1449e-03 2.8840e-03 2.2111e-03 1.7913e-03

Table 2: The maximum absolute error of Example 5.1 for different values of µ and η = 0.03.

µ N

24 25 26 27 28

2−4 6.2767e-03 1.1691e-03 2.1426e-04 4.1713e-05 8.8041e-06
2−5 1.3232e-02 2.5312e-03 4.3864e-04 7.7501e-05 1.4801e-05
2−6 2.6939e-02 5.6764e-03 9.7927e-04 1.6134e-04 2.7788e-05
2−7 5.0289e-02 1.2574e-02 2.2910e-03 3.6818e-04 5.8595e-05
2−8 8.2700e-02 2.6293e-02 5.3857e-03 8.8697e-04 1.3579e-04
Results in [28]
2−4 2.1118e-02 1.1692e-02 6.1941e-03 3.1887e-03 1.6178e-03
2−5 2.7872e-02 1.6023e-02 8.6367e-03 4.4957e-03 2.2948e-03
2−6 3.5711e-02 2.1293e-02 1.1869e-02 6.2731e-03 3.2240e-03
2−7 4.6679e-02 2.8350e-02 1.6107e-02 8.6728e-03 4.5120e-03
2−8 5.4895e-02 3.6018e-02 2.1373e-02 1.1929e-02 6.2847e-03

Table 3: Rate of convergence ρ of Example 5.1 for µ = 0.1 and η = 0.05.

h h
2 Eh

h
4 Eh

2
ρ

1/100 1/200 5.0425e-05 1/400 1.0984e-05 2.1987
1/200 1/400 1.0984e-05 1/800 2.5337e-06 2.1161
1/300 1/600 4.6314e-06 1/1200 1.0940e-06 2.0819

Example 5.2. Consider
µω ′′(ϑ) + 0.25ω(ϑ− η) −ω(ϑ) = 1,

together with the boundary conditions

ω(ϑ) = 1, −η 6 ϑ 6 0, ω(1) = 0.

Table 4 gives the maximum absolute error for different values of delay parameter with µ = 0.1 and Table 5
presents the maximum absolute error for different values of perturbation parameter with η = 0.03. The
results are compared with the existing method in [25, 28] and it is found that results by our method
are better as compared to the discussed method. Also, we present Figure 3, which gives the computed
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solution of the problem for different values of µ with η = 0.05 and the graphs of point-wise absolute
errors for different values of N with µ = 0.1 and η = 0.05. Figure 4 represents the graphs of maximum
absolute error for different values of η with µ = 0.1 and loglog plot of the maximum pointwise error.

Table 4: The maximum absolute error of Example 5.2 for different values of η with µ = 0.1.

η N

100 200 300 400 500

0.03 1.0763e-06 1.7460e-07 1.0331e-07 7.4030e-08 5.3509e-08
0.05 1.1497e-06 4.2418e-07 2.4509e-07 1.5386e-07 1.0463e-07
0.09 2.6753e-06 1.0485e-06 5.2303e-07 3.1032e-07 2.0481e-07
Results in [28]
0.03 2.1999e-03 1.1041e-03 7.3705e-04 5.5315e-04 4.4269e-04
0.05 2.2012e-03 1.1049e-03 7.3749e-04 5.5345e-04 4.4293e-04
0.09 2.1999e-03 1.1038e-03 7.3676e-04 5.5289e-04 4.4247e-04
Results in [25]
0.03 8.9194e-03 4.5468e-03 3.0511e-03 2.2959e-03 1.8404e-03
0.05 8.9177e-03 4.5440e-03 3.0482e-03 2.2934e-03 1.8382e-03
0.09 8.8966e-03 4.5252e-03 3.0345e-03 2.2825e-03 1.8292e-03

Table 5: The maximum absolute error of Example 5.2 for different values of µ and η = 0.03.

µ N

100 200 300 400 500

2−4 1.1995e-03 1.4607e-04 1.4217e-05 8.9545e-07 2.5132e-07
2−5 3.2019e-03 4.1123e-04 4.1149e-05 2.7127e-06 7.9697e-07
2−6 7.9709e-03 1.0995e-03 1.1406e-04 7.9924e-06 2.3986e-06
2−7 1.8647e-02 2.8360e-03 3.0884e-04 2.3396e-05 7.0218e-06
2−8 4.0268e-02 7.0258e-03 8.1909e-04 6.9265e-05 2.0561e-05
Results in [28]
2−4 1.8632e-02 9.6189e-03 4.8865e-03 2.4643e-03 1.2376e-03
2−5 2.8161e-02 1.4818e-02 7.6255e-03 3.8713e-03 1.9509e-03
2−6 3.7958e-02 2.0967e-02 1.0977e-02 5.6273e-03 2.8498e-03
2−7 5.0640e-02 2.8316e-02 1.5267e-02 7.9105e-03 4.0287e-03
2−8 6.3580e-02 3.7706e-02 2.0984e-02 1.1012e-02 5.6555e-03
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Figure 3: The numerical solution and point-wise absolute errors of Example 5.2.
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Figure 4: The maximum absolute error and loglog plot of maximum point-wise errors of Example 5.2.
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Figure 5: The numerical solution and point-wise absolute errors of Example 5.3.

100 150 200 250 300 350 400 450 500

N

0

0.5

1

1.5

2

2.5

3

M
a
x

im
u

m
 A

b
s
o

lu
te

 E
rr

o
r

10
-5

=0.03

=0.05

=0.09

100 150 200 250 300 350 400 450 500

N

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

M
a
x

im
u

m
 A

b
s
o

lu
te

 E
rr

o
r

=2
-2

=2
-4

=2
-6

Figure 6: The maximum absolute error and loglog plot of maximum point-wise errors of Example 5.3.
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Figure 7: The numerical solution and point-wise absolute errors of Example 5.4.
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Figure 8: The maximum absolute error and loglog plot of maximum point-wise errors of Example 5.4.

Table 6: Rate of convergence ρ of Example 5.2 for µ = 0.1 and η = 0.05.

h h
2 Eh

h
4 Eh

2
ρ

1/100 1/200 2.6753e-06 1/400 1.0485e-06 1.7566
1/200 1/400 1.0485e-06 1/800 3.1032e-07 1.8498
1/300 1/600 5.2303e-07 1/1200 1.4511e-07 1.8913

Table 7: Rate of convergence ρ of Example 5.3 for µ = 0.1 and η = 0.05.

h h
2 Eh

h
4 Eh

2
ρ

1/100 1/200 1.9359e-05 1/400 3.5266e-06 2.2917
1/200 1/400 3.5266e-06 1/800 7.2028e-07 2.2147
1/300 1/600 1.3758e-06 1/1200 2.9640e-07 2.1698

Example 5.3. Consider the following singularly perturbed delay differential equation with oscillatory
behaviour

µω ′′(ϑ) + 0.25ω(ϑ− η) +ω(ϑ) = 1,

together with the boundary conditions

ω(ϑ) = 1, −η 6 ϑ 6 0, ω(1) = 0.

Table 8: The maximum absolute error of Example 5.3 for different values of η with µ = 0.1.

η N

100 200 300 400 500

0.03 1.5067e-05 2.5073e-06 9.3074e-07 4.7221e-07 2.8256e-07
0.05 1.9359e-05 3.5266e-06 1.3758e-06 7.2028e-07 4.4045e-07
0.09 2.9131e-05 5.8582e-06 2.3953e-06 1.2891e-06 8.0268e-07
Results in [28]
0.03 2.5991e-03 1.2872e-03 8.5528e-04 6.4039e-04 5.1179e-04
0.05 2.6270e-03 1.3013e-03 8.6474e-04 6.4750e-04 5.1749e-04
0.09 2.6813e-03 1.3289e-03 8.8320e-04 6.6139e-04 5.2863e-04
Results in [25]
0.03 7.1024e-02 3.5558e-02 2.3661e-02 1.7721e-02 1.4163e-02
0.05 6.9203e-02 3.4790e-02 2.3181e-02 1.7373e-02 1.3890e-02
0.09 6.6055e-02 3.3490e-02 2.2377e-02 1.6794e-02 1.3439e-02
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Table 9: The maximum absolute error of Example 5.4 for different values of η with µ = 0.1.

η N

100 200 300 400 500

0.03 7.2895e-05 1.4158e-05 5.6838e-06 3.0253e-06 1.8702e-06
0.05 9.9020e-05 2.0821e-05 8.6635e-06 4.7061e-06 2.9476e-06
0.09 1.4505e-04 3.2864e-05 1.4090e-05 7.7787e-06 4.9217e-06
Results in [28]
0.03 1.5929e-02 7.4850e-03 4.8816e-03 3.6202e-03 2.8764e-03
0.05 1.5470e-02 7.2782e-03 4.7473e-03 3.5209e-03 2.7975e-03
0.09 2.1396e-02 1.0097e-02 6.5922e-03 4.8916e-03 3.8879e-03
Results in [25]
0.03 1.9740e-01 1.0467e-01 7.0844e-02 5.3521e-02 4.2985e-02
0.05 2.5749e-01 1.3585e-01 9.2035e-02 6.9554e-02 5.5884e-02
0.09 1.5004e-00 7.1504e-01 4.6444e-01 3.4319e-01 2.7196e-01

Example 5.4. Consider the following singularly perturbed delay differential equation with oscillatory
behaviour

µω ′′(ϑ) +ω(ϑ− η) + 2ω(ϑ) = 1,

together with the boundary conditions

ω(ϑ) = 1, −η 6 ϑ 6 0, ω(1) = 0.

The maximum absolute error obtained for Examples 5.3 and 5.4 for different values of delay parameter
with µ = 0.1 are presented in Tables 8 and 9, respectively. The results are compared with the existing
method in [25, 28] and it is found that results by our method are better as compared to the discussed
method. Also, Figures 5 and 7 represent the graphs of the computed solution of Examples 5.3 and 5.4
for different values of µ with η = 0.05 and the graphs of point-wise absolute errors for different values
of N with µ = 0.1 and η = 0.05. Figures 6 and 8 represents the graphs of maximum absolute error for
different values of η with µ = 0.1 and loglog plot of the maximum pointwise error of Examples 5.3 and
5.4, respectively.

Table 10: Rate of convergence ρ of Example 5.4 for µ = 0.1 and η = 0.05.

h h
2 Eh

h
4 Eh

2
ρ

1/100 1/200 9.9020e-05 1/400 2.0821e-05 2.2497
1/200 1/400 2.0821e-05 1/800 4.7061e-06 2.1454
1/300 1/600 8.6635e-06 1/1200 2.0172e-06 2.1026

Example 5.5. Consider the following singularly perturbed delay differential equation with variable coef-
ficients

µω ′′(ϑ) + ϑω(ϑ− η) + (1 − ϑ)ω(ϑ) = ϑ,

together with the boundary conditions

ω(ϑ) = 1, −η 6 ϑ 6 0, ω(1) = 0.

Table 11 gives the maximum absolute error for different values of delay parameter with µ = 0.1. Also, we
present Figure 9, which gives the computed solution of the problem for different values of µ with η = 0.05
and the graphs of point-wise absolute errors for different values of N with µ = 0.1 and η = 0.05.
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Table 11: The maximum absolute error of Example 5.5 for different values of η with µ = 0.1.

η N

100 200 300 400 500

0.03 8.5640e-04 4.4057e-04 2.9649e-04 2.2341e-04 1.7923e-04
0.05 1.4282e-03 7.3453e-04 4.9427e-04 3.7242e-04 2.9876e-04
0.09 2.5740e-03 1.3230e-03 8.9006e-04 6.7057e-04 5.3792e-04
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Figure 9: The numerical solution and point-wise absolute errors of Example 5.5.

6. Discussion and conclusion

In this study, a second order numerical approach for solving singularly perturbed delay differential
equations of reaction diffusion type is explored. The findings, as shown in the tables, indicate that the
current method provides a reasonable approximation of the solution and is superior to other numerical
strategies described in the literature. The results in Tables 3, 6, 7, 10 suggest that the current technique
is of second order convergence based on theoretical error estimates and numerical rate of convergence.
Graphs have been used to show the numerical solution of the problems so that the effect of delay term on
the solution profile can be studied. The effect of delay on the layer or oscillatory behaviour of the solution
is demonstrated by a few numerical examples. To see the impact on layer behaviour, we look at Examples
5.1 and 5.2, whereas Examples 5.3 and 5.4 demonstrate the impact on oscillatory behaviour. Also, we can
observe fro graphs that the absolute error goes down as N goes up. As a result, our current technique is
demonstrated to be accurate, stable, and convergent.
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