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Certain classes of analytic functions defined by polyloga-
rithm functions
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Abstract
Polylogarithm functions are special functions defined in terms of the polylogarithm, which is a generalization of the

logarithm function. These functions appear in various physical systems and are essential for understanding the behavior of
these systems at both classical and quantum levels. In this paper, we introduce and study a new subclass of analytic functions
which are defined by means of a new differential operator. Some results connected to coefficient estimates, growth and distortion
theorems, radii of starlikeness, convexity, close-to-convexity, extreme points, Hadamard product and closure property related to
the subclass are obtained.
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1. Introduction

Let A denote the class of all functions u(z) of the form

u(z) = z+

∞∑
k=2

akz
k, (1.1)

in the open unit disc U = {z ∈ C : |z| < 1}. Let S be the subclass of A consisting of univalent functions and
satisfy the following usual normalization condition u(0) = u ′(0) − 1 = 0. We denote by S the subclass of
A consisting of functions u(z) which are all univalent in U. A function u ∈ A is a starlike function of the
order ξ, 0 6 ξ < 1, if it satisfies

<

{
zu ′(z)

u(z)

}
> ξ, z ∈ U.

We denote this class with S∗(ξ). A function u ∈ A is a convex function of the order ξ, 0 6 ξ < 1, if it
fulfils

<

{
1 +

zu ′′(z)

u ′(z)

}
> ξ, z ∈ U.
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We denote this class with K(ξ). Note that S∗(0) = S∗ and K(0) = K are the usual classes of starlike and
convex functions in U, respectively. For u ∈ A given by (1.1) and g(z) given by

g(z) = z+

∞∑
k=2

bkz
k,

their convolution (or Hadamard product), denoted by (u ∗ g), is defined as

(u ∗ g)(z) = z+
∞∑
k=2

akbkz
k = (g ∗ f)(z), (z ∈ U).

Note that u ∗ g ∈ A. Let T denotes the class of functions analytic in U that are of the form

u(z) = z−

∞∑
k=2

akz
k, ak > 0 (z ∈ U), (1.2)

and let T∗(ξ) = T ∩ S∗(ξ), C(ξ) = T ∩ K(ξ). The class T∗(ξ) and allied classes possess some interesting
properties and have been extensively studied by Silverman [31]. Let u ∈ A. Denote by Dλ : A → A the
operator defined by

Dλ =
z

(1 − z)λ+1 ∗ u(z) (λ > −1).

It is obvious that D0u(z) = u(z),D1u(z) = zu ′(z) and

Dδu(z) =
z(zδ−1u(z))δ

δ!
, (δ ∈N0 = N∪ {0}).

Note that Dδu(z) = z+
∑∞
k=2C(δ,k)akz

k, where C(δ,k) =
(
k+δ−1
δ

)
and δ ∈ N0. The operator Dδu(z)

is called the Ruscheweyh derivative operator (see [28]). The evolution of polylogarithm function, also
known as Jonquiere’s function, was started in 1696 by two eminent mathematicians, Leibniz and Bernoulli
[14]. In their work, the polylogarithm function was defined using an absolute convergent series. The
development of this function was so significant that it was utilized in the research work of other prominent
mathematicians such as Euler, Spence, Abel, Lobachevsky, Rogers, Ramanujan, etc, allowing them to
discover various functional identities of great importance as a result [22]. It should come as no surprise
that the increased utilization of the polylogarithm function appears to be related to its importance in a
number of key areas of mathematics and physics such as topology, algebra, geometry, complex analysis
quantum field theory, and mathematical physics [15, 23, 26].

Polylogarithm functions and the analytic functions defined by them have applications in various areas
of mathematics and physics, including: Number theory, Quantum field theory, Statistical mechanics,
String theory. These functions appear in various physical systems and are essential for understanding
the behavior of these systems at both classical and quantum levels. Recntly Al-Shaqsi and Darus [35],
Soybas et al. [32], Al-Shaqsi and Darus [9], Stalin et al. [34], and Thirucheran et al. [35] generalized
Ruscheweyh and Salagean operators using polylogarithm functions on class A of analytic functions (see
also [2, 4–8, 10, 17–20, 23, 27, 30, 33, 36]).

We recall here the definition of the well-known generalization of the Riemann Zeta and polylogarithm
function, or simply the nth order polylogarithm function G(n; z) given by

Φn(b; z) =
∞∑
k=1

zk

(k+ b)n
(n,b ∈ C, z ∈ U),

where any term with k+ b =0 is excluded (see Lerch [21] and also [12, Sections 1.10 and 1.12]). Using the
the definition of Gamma function [12, p.27] a simply transformation produces the integral formula

Φn(b; z) =
1
Γ(n)

∫ 1

0
z(log

1
t
)n−1 tb

1 − tz
dt, Re b > −1, and Re n > 1.
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We note that Φ−1(0; z) = z
(1−z)2 is Koebe function. For more about polylogarithm in the theory of

univalent functions see [26]. Now, for u ∈ A,n ∈ C, b ∈ C \ Z−, and z ∈ U, we define the function
G(n,b; z) by

G(n,b; z) = (1 + b)nΦn(b; z) =
∞∑
k=1

(
1 + b

k+ b

)n
zk. (1.3)

Also we introduce a function (G(n,b; z))−1 given by

G(n,b; z) ∗ (G(n,b; z))−1 =
z

(1 − z)λ+1 (n ∈ C, b ∈ C \ Z−, λ > −1; z ∈ U), (1.4)

and obtain the following linear operator

Dnb,λu(z) = (G(n,b; z))−1 ∗ u(z).

Now we find the explicit form of the function (G(n,b; z))(−1). It is well known that λ > −1,

z

(1 − z)λ+1 =

∞∑
k=0

(λ+ 1)k
k!

zk+1 (z ∈ U). (1.5)

Putting (1.3) and (1.5) in (1.4), we get

∞∑
k=1

(
1 + b

k+ b

)n
zk ∗ (G(n,b; z))(−1) =

∞∑
k=1

(k+ λ− 1)!
λ!(k− 1)!

zk.

Therefore the function (G(n,b; z))(−1) has the following form

(G(n,b; z))(−1) =

∞∑
k=1

(
k+ b

1 + b

)n (k+ λ− 1)!
λ!(k− 1)!

zk (z ∈ U).

Now we note that

Dn
b,u(z) = z+

∞∑
k=2

Θ(k,b, λ,n)akzk (n ∈ C, b ∈ C \ Z−, λ > −1; z ∈ U), (1.6)

where

Θ(k,b, λ,n) =
(
k+ b

1 + b

)n (k+ λ− 1)!
λ!(k− 1)!

.

It is clear that Dn
b, are multiplier transformations. For n ∈ Z,b = 1, and λ = 0 the operators Dn

b, were
studied by Uralegaddi and Somanatha [37], and for n ∈ Z, λ = 0 the operators Dn

b, are closely related to
the multiplier transformations studied by Flett [13], also, for n = −1, λ = 0, the operators Dn

b, is the integral
operator studied by Owa and Srivastava [25]. And for any negative real number n and b = 1, λ = 0 the
operators Dn

b, is the multiplier transformation studied by Jung et al. [16], and for any nonnegative integer
n and b = λ = 0, the operators Dn

b, is the differential operator defined by Salagean [29]. Furthermore, for
n = 0 and λ ∈ N0 = N ∪ 0, the operator Dn

b, is the differential operator Dn defined by Ruscheweyh [28].
For n, λ ∈ N0, and b = 0 the operator Dn is the differential operator defined in [9]. Finally, for different
choices of n,b, and λ we obtain several operator investigated earlier by other authors, see, for example,
[3, 11, 24].

Motivated by the aforementioned work, we introduce the new subclass involving differential operator
Dn

b,u(z), as below.
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Definition 1.1. For 0 6 ω < 1, 0 6 σ < 1, 0 < σ < 1, and 0 6 ϑ < 1, we let TSnb,λ(ω,σ,σ) be the subclass
of u consisting of functions of the form (1.2) and its geometrical condition satisfies∣∣∣∣∣∣

ω
(
(Dn

b,u(z))
′ −

Dn
b,u(z)

z

)
σ(Dn

b,u(z))
′ + (1 −ω)

Dn
b,u(z)

z

∣∣∣∣∣∣ < σ, z ∈ U,

where Dn
b,u(z) is given by (1.6).

The aims of studying polylogarithm functions include understanding their analytical properties, estab-
lishing their connections to other special functions, and applying them in various areas of mathematics,
physics, and engineering. In this paper, we introduce and study a new subclass of analytic functions
which are defined by means of a new differential operator. We obtain coefficient bounds, growth and dis-
tortion theorems, radii of starlikeness, convexity, close-to-convexity, extreme points Hadamard product,
and closure property .

2. Coefficient inequality

In the following theorem, we obtain a necessary and sufficient condition for function to be in the class
TSnb,λ(ω,σ,σ).

Theorem 2.1. Let the function u be defined by (1.2). Then u ∈ TSnb,λ(ω,σ,σ) if and only if

∞∑
k=2

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)ak 6 σ(σ+ (1 −ω)), (2.1)

where 0 < σ < 1, 0 6 ω < 1, 0 6 σ < 1, and 0 6 ϑ < 1. The result (2.1) is sharp for the function

u(z) = z−
σ(σ+ (1 −ω))

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
zk, k > 2.

Proof. Suppose that the inequality (2.1) holds true and |z| = 1. Then we obtain∣∣∣∣ω((Dn
b,u(z))

′ −
Dn

b,u(z)

z

)∣∣∣∣− σ ∣∣∣∣σ(Dn
b,u(z))

′ + (1 −ω)
Dn

b,u(z)

z

)∣∣∣∣
=

∣∣∣∣∣−ω
∞∑
k=2

(k− 1)Θ(k,b, λ,n)akzk−1

∣∣∣∣∣− σ
∣∣∣∣∣σ+ (1 −ω) −

∞∑
k=2

(kσ+ 1 −ω)Θ(k,b, λ,n)akzk−1

∣∣∣∣∣
6
∞∑
k=2

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)ak − σ(σ+ (1 −ω)) 6 0.

Hence, by maximum modulus principle, u ∈ TSnb,λ(ω,σ,σ). Now assume that u ∈ TSnb,λ(ω,σ,σ) so that∣∣∣∣∣∣
ω
(
(Dn

b,u(z))
′ −

Dn
b,u(z)

z

)
σ(Dn

b,u(z))
′ + (1 −ω)

Dn
b,u(z)

z

∣∣∣∣∣∣ < σ, z ∈ U.

Hence ∣∣∣∣ω((Dn
b,u(z))

′ −
Dn

b,u(z)

z

)∣∣∣∣ < σ ∣∣∣∣σ(Dn
b,u(z))

′ + (1 −ω)
Dn

b,u(z)

z

)∣∣∣∣ .
Therefore, we get∣∣∣∣∣−

∞∑
k=2

ω(k− 1)Θ(k,b, λ,n)anzk−1

∣∣∣∣∣ < σ
∣∣∣∣∣σ+ (1 −ω) −

∞∑
k=2

(kσ+ 1 −ω)Θ(k,b, λ,n)akzk−1

∣∣∣∣∣ .
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Thus ∞∑
k=2

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)ak 6 σ(σ+ (1 −ω))

and this completes the proof.

Corollary 2.2. Let the function u ∈ TSnb,λ(ω,σ,σ). Then

ak 6
σ(σ+ (1 −ω))

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
zk, k > 2.

3. Distortion and covering theorem

We introduce the growth and distortion theorems for the functions in the class TSnb,λ(ω,σ,σ).

Theorem 3.1. Let the function u ∈ TSnb,λ(ω,σ,σ). Then

|z|−
σ(σ+ (1 −ω))

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]
|z|2 6 |u(z)| 6 |z|+

σ(σ+ (1 −ω))

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]
|z|2.

The result is sharp and attained

u(z) = z−
σ(σ+ (1 −ω))

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]
z2.

Proof.

|u(z)| =

∣∣∣∣∣z−
∞∑
k=2

akz
k

∣∣∣∣∣ 6 |z|+

∞∑
k=2

ak|z|
k 6 |z|+ |z|2

∞∑
k=2

ak.

By Theorem 2.1, we get ∞∑
k=2

ak 6
σ(σ+ (1 −ω))

[ω+ σ(2σ+ 1 −ω)]Θ(k,b, λ,n)
.

Thus

|u(z)| 6 |z|+
σ(σ+ (1 −ω))

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]
|z|2.

Also

|u(z)| > |z|−

∞∑
k=2

ak|z|
k > |z|− |z|2

∞∑
k=2

ak > |z|−
σ(σ+ (1 −ω))

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]
|z|2.

Theorem 3.2. Let u ∈ TSnb,λ(ω,σ,σ). Then

1 −
2σ(σ+ (1 −ω))

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]
|z| 6 |u ′(z)| 6 1 +

2σ(σ+ (1 −ω))

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]
|z|

with equality for

u(z) = z−
2σ(σ+ (1 −ω))

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]
z2.
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Proof. Notice that

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]

∞∑
k=2

kak

6
∞∑
k=2

n[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)ak 6 σ(σ+ (1 −ω)),

from Theorem 2.1. Thus

|u ′(z)| =

∣∣∣∣∣1 −

∞∑
k=2

kakz
k−1

∣∣∣∣∣ 6 1 +

∞∑
k=2

kak|z|
k−1

6 1 + |z|

∞∑
k=2

kak 6 1 + |z|
2σ(σ+ (1 −ω))

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]
.

(3.1)

On the other hand,

|u ′(z)| =

∣∣∣∣∣1 −

∞∑
k=2

kakz
k−1

∣∣∣∣∣ > 1 −

∞∑
k=2

kak|z|
k−1

> 1 − |z|

∞∑
k=2

kak > 1 − |z|
2σ(σ+ (1 −ω))

Θ(2,b, λ,n)[ω+ σ(2σ+ 1 −ω)]
.

(3.2)

Combining (3.1) and (3.2), we get the result.

4. Radii of starlikeness, convexity, and close-to-convexity

In the following theorems, we obtain the radii of starlikeness, convexity, and close-to-convexity for the
class TSnb,λ(ω,σ,σ).

Theorem 4.1. Let u ∈ TSnb,λ(ω,σ,σ). Then u is starlike in |z| < R1 of order ℘, 0 6 ℘ < 1, where

R1 = inf
k

{
(1 − ℘)(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)

(k− ℘)σ(σ+ (1 −ω))

} 1
k−1

, k > 2.

Proof. u is starlike of order ℘, 0 6 ℘ < 1, if

<

{
zu ′(z)

u(z)

}
> ℘.

Thus it is enough to show that

∣∣∣∣zu ′(z)u(z)
− 1
∣∣∣∣ =

∣∣∣∣∣∣∣∣
−
∞∑
k=2

(k− 1)akzk−1

1 −
∞∑
k=2

akzk−1

∣∣∣∣∣∣∣∣ 6
∞∑
k=2

(k− 1)ak|z|k−1

1 −
∞∑
k=2

ak|z|k−1
.

Thus ∣∣∣∣zu ′(z)u(z)
− 1
∣∣∣∣ 6 1 − ℘ if

∞∑
k=2

(k− ℘)

(1 − ℘)
ak|z|

k−1 6 1. (4.1)

Hence by Theorem 2.1, (4.1) will be true if

k− ℘

1 − ℘
|z|k−1 6

(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)
σ(σ+ (1 −ω)
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or if

|z| 6

[
(1 − ℘)(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)

(k− ℘)σ(σ+ (1 −ω))

] 1
k−1

, k > 2. (4.2)

Theorem follows easily from (4.2).

Theorem 4.2. Let u ∈ TSnb,λ(ω,σ,σ). Then u is convex in |z| < R2 of order ℘, 0 6 ℘ < 1, where

R2 = inf
k

{
(1 − ℘)(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)

k(k− ℘)σ(σ+ (1 −ω))

} 1
k−1

, k > 2.

Proof. u is convex of order ℘, 0 6 ℘ < 1, if

<

{
1 +

zu ′′(z)

u ′(z)

}
> ℘.

Thus it is enough to show that

∣∣∣∣zu ′′(z)u ′(z)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
−
∞∑
k=2

k(k− 1)akzk−1

1 −
∞∑
k=2

kakzk−1

∣∣∣∣∣∣∣∣ 6
∞∑
k=2

k(k− 1)ak|z|k−1

1 −
∞∑
k=2

kak|z|k−1
.

Thus ∣∣∣∣zu ′′(z)u ′(z)

∣∣∣∣ 6 1 − ℘ if
∞∑
k=2

k(k− ℘)

(1 − ℘)
ak|z|

k−1 6 1. (4.3)

Hence by Theorem 2.1, (4.3) will be true if

k(k− ℘)

1 − ℘
|z|k−1 6

(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)
σ(σ+ (1 −ω)

or if

|z| 6

[
(1 − ℘)(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)

k(k− ℘)σ(σ+ (1 −ω))

] 1
k−1

, k > 2. (4.4)

Theorem follows easily from (4.4).

Theorem 4.3. Let u ∈ TSnb,λ(ω,σ,σ). Then u is close-to-convex in |z| < R3 of order ℘, 0 6 ℘ < 1, where

R3 = inf
n

{
(1 − ℘)(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)

kσ(σ+ (1 −ω))

} 1
k−1

, k > 2.

Proof. u is close-to-convex of order ℘, 0 6 ℘ < 1, if

<
{
u ′(z)

}
> ℘.

Thus it is enough to show that

|u ′(z) − 1| =

∣∣∣∣∣−
∞∑
k=2

kakz
n−1

∣∣∣∣∣ 6
∞∑
k=2

kak|z|
k−1.

Thus

|u ′(z) − 1| 6 1 − ℘ if
∞∑
k=2

k

(1 − ℘)
ak|z|

k−1 6 1. (4.5)
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Hence by Theorem 2.1, (4.5) will be true if

k

1 − ℘
|z|k−1 6

(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)
σ(σ+ (1 −ω)

or if

|z| 6

[
(1 − ℘)(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)

kσ(σ+ (1 −ω))

] 1
k−1

, n > 2. (4.6)

The theorem follows easily from (4.6).

5. Extreme points

In the following theorem, we obtain extreme points for the class TSnb,λ(ω,σ,σ).

Theorem 5.1. Let u1(z) = z and

uk(z) = z−
σ(σ+ (1 −ω))

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
zk, for n = 2, 3, . . . .

Then u ∈ TSnb,λ(ω,σ,σ) if and only if it can be expressed in the form

u(z) =

∞∑
k=1

θkuk(z), where θk > 0 and
∞∑
k=1

θk = 1.

Proof. Assume that u(z) =
∞∑
k=1

θkuk(z), hence we get

u(z) = z−

∞∑
k=2

σ(σ+ (1 −ω))θn
[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)

zk.

Now, u ∈ TSnb,λ(ω,σ,σ), since

∞∑
k=2

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
σ(σ+ (1 −ω))

σ(σ+ (1 −ω))θn
[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)

=

∞∑
k=2

θk = 1 − θ1 6 1.

Conversely, suppose u ∈ TSnb,λ(ω,σ,σ). Then we show that u can be written in the form
∞∑
k=1

θkuk(z).

Now u ∈ TSnb,λ(ω,σ,σ) implies from Theorem 2.1,

ak 6
σ(σ+ (1 −ω))

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
.

Setting θn =
[ω(k−1)+σ(kσ+1−ω)]Θ(k,b,λ,n)

σ(σ+(1−ω)) ak, k = 2, 3, . . ., and θ1 = 1 −
∞∑
k=2

θk, we obtain u(z) =

∞∑
k=1

θkuk(z).
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6. Hadamard product

In the following theorem, we obtain the convolution result for functions belonging to the class
TSnb,λ(ω,σ,σ).

Theorem 6.1. Let u,g ∈ TS(ω,σ,σ, ϑ). Then u ∗ g ∈ TS(ω,σ, ζ, ϑ) for

u(z) = z−

∞∑
k=2

akz
k, g(z) = z−

∞∑
k=2

bkz
k, and (u ∗ g)(z) = z−

∞∑
k=2

akbkz
k,

where

ζ >
σ2(σ+ (1 −ω))ω(k− 1)

[ω(k− 1) + σ(kσ+ 1 −ω)]2Θ(k,b, λ,n) − σ2(σ+ (1 −ω))(kσ+ 1 −ω)
.

Proof. u ∈ TSnb,λ(ω,σ,σ) and so

∞∑
k=2

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
σ(σ+ (1 −ω))

ak 6 1,

and ∞∑
k=2

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
σ(σ+ (1 −ω))

bk 6 1.

We have to find the smallest number ζ such that

∞∑
k=2

[ω(k− 1) + ζ(kσ+ 1 −ω)]Θ(k,b, λ,n)
ζ(σ+ (1 −ω))

akbk 6 1.

By Cauchy-Schwarz inequality

∞∑
k=2

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
σ(σ+ (1 −ω))

√
akbk 6 1, (6.1)

therefore it is enough to show that

[ω(k− 1) + ζ(kσ+ 1 −ω)]Θ(k,b, λ,n)
ζ(σ+ (1 −ω))

akbk 6
[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)

σ(σ+ (1 −ω))

√
akbk.

That is √
anbn 6

[ω(k− 1) + σ(kσ+ 1 −ω)]ζ

[ω(k− 1) + ζ(kσ+ 1 −ω)]σ
. (6.2)

From (6.1), √
akbk 6

σ(σ+ (1 −ω))

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
.

Thus it is enough to show that

σ(σ+ (1 −ω))

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
6

[ω(k− 1) + σ(kσ+ 1 −ω)]ζ

[ω(k− 1) + ζ(kσ+ 1 −ω)]σ
,

which simplifies to

ζ >
σ2(σ+ (1 −ω))ω(k− 1)

[ω(k− 1) + σ(kσ+ 1 −ω)]2Θ(k,b, λ,n) − σ2(σ+ (1 −ω))(kσ+ 1 −ω)
.
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7. Closure theorems

We shall prove the following closure theorems for the class TSnb,λ(ω,σ,σ).

Theorem 7.1. Let uj ∈ TSnb,λ(ω,σ,σ), j = 1, 2, . . . , s. Then

g(z) =

s∑
j=1

cjuj(z) ∈ TSnb,λ(ω,σ,σ)

for uj(z) = z−
∞∑
k=2

ak,jz
k, where

s∑
j=1
cj = 1.

Proof.

g(z) =

s∑
j=1

cjuj(z) = z−

∞∑
k=2

s∑
j=1

cjak,jz
k = z−

∞∑
k=2

ekz
k,

where ek =
s∑
j=1
cjak,j. Thus g(z) ∈ TSnb,λ(ω,σ,σ) if

∞∑
k=2

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
σ(σ+ (1 −ω))

ek 6 1,

that is, if

∞∑
k=2

s∑
j=1

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
σ(σ+ (1 −ω))

cjak,j

=

s∑
j=1

cj

∞∑
k=2

[ω(k− 1) + σ(kσ+ 1 −ω)]Θ(k,b, λ,n)
σ(σ+ (1 −ω))

ak,j 6
s∑
j=1

cj = 1.

Theorem 7.2. Let u,g ∈ TSnb,λ(ω,σ,σ). Then

h(z) = z−

∞∑
k=2

(a2
k + b

2
k)z

k ∈ TSnb,λ(ω,σ,σ),

where

ζ >
2ω(k− 1)σ2(σ+ (1 −ω))

[ω(k− 1) + σ(kσ+ 1 −ω)]2Θ(k,b, λ,n) − 2σ2(σ+ (1 −ω))(kσ+ 1 −ω)
.

Proof. Since u,g ∈ TSnb,λ(ω,σ,σ), so Theorem 2.1 yields

∞∑
k=2

[
(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)

σ(σ+ (1 −ω))
ak

]2

6 1

and ∞∑
k=2

[
(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)

σ(σ+ (1 −ω))
bk

]2

6 1.
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We obtain from the last two inequalities,

∞∑
k=2

1
2

[
(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)

σ(σ+ (1 −ω))

]2

(a2
k + b

2
k) 6 1. (7.1)

But h(z) ∈ TS(ω,σ, ζ,q,m), if and only if

∞∑
k=2

[ω(k− 1) + ζ(kσ+ 1 −ω)]Θ(k,b, λ,n)
ζ(σ+ (1 −ω))

(a2
k + b

2
k) 6 1, (7.2)

where 0 < ζ < 1, however (7.1) implies (7.2) if

[ω(k− 1) + ζ(kσ+ 1 −ω)]Θ(k,b, λ,n)
ζ(σ+ (1 −ω))

6
1
2

[
(ω(k− 1) + σ(kσ+ 1 −ω))Θ(k,b, λ,n)

σ(σ+ (1 −ω))

]2

.

Simplifying, we get

ζ >
2ω(k− 1)σ2(σ+ (1 −ω))

[ω(k− 1) + σ(kσ+ 1 −ω)]2Θ(k,b, λ,n) − 2σ2(σ+ (1 −ω))(kσ+ 1 −ω)
.

8. Conclusion

The polylogarithm functions and the classes of analytic functions defined by them provide a rich
framework for studying complex functions and their applications in mathematics and physics. In this
paper, by making use of the well-known polylogarithm functions, a new class of analytic functions was
systematically defined. Then, for this newly defined functions class, we studied well-known results,
such as coefficient estimates, growth and distortion properties, radii of starlike and convexity, extreme
points, Hadamard product, and closure properties. Furthermore, we believe that this study will motivate
a number of researchers to extend this idea to meromorphic functions, bi-univalent functions, harmonic
functions, q-calculus, and (p,q)-calculus. One may also apply this idea to the use of sine domain, cosine
domain, and petal shaped domain. We hope that this distribution series play a significant role in several
branches of mathematics, science, and technology.
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