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Abstract
This paper investigates the problem of finite-time synchronization (FTS) of fractional-order neural networks (FONNs)

with time-delay via sampled data control (SDC) scheme. To achieve FTS criteria, a sampled-data control (SDC) scheme is
implemented in the slave model of FONNs. And, this investigation is based on the solution of the time-delayed NNs by using
Laplace transform, Mittag-Leffler function (MLF), and the generalized Grownwall inequality. Furthermore, under the proposed
SDC scheme, the FTS conditions are derived for two cases of fractional order α, such as 0 < α < 1 and 1 < α < 2. The derived
conditions ensure that the slave FONNs is asymptotically synchronized with master FONNs. Finally, two numerical examples
are given to show the effectiveness of derived FTS criteria, for fractional order lying between 0 < α < 1 and 1 < α < 2.
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1. Introduction

Fractional calculus is a generalization of differential and integral operators of non-integer order that
L’Hospital introduced in 1695. It is a fast-growing field of research from both theoretical and application
points of view. In the last decade, fractional calculus received much attention from researchers for solving
the real-world problem in the various fields like engineering, physics, economics, etc. The main advantage
of fractional calculus is that it is flexible enough to utilize more degrees of freedom and incorporate infinite
memory. Due to this advantage, the qualitative analysis of the dynamical system with fractional order-
derivative has attracted more attention from the researchers in recent days [11, 21, 34]. As an example,
the authors in [37] has been studied the stability nature of the delayed fractional order dynamical systems
based on Laplace transform, MLF and Gronwall inequality. Son et al. [33] have studied a new concept in
fractional differential equations called the neutrosophic problem with the help of a fuzzy function or fuzzy
initial condition and also gave some examples for finding the neutroscophic differential equation solution.
Recently, Arthi et al. [3] studied the fractional order dynamical system in finite-time stability using a
damped time delays and their problem is to solve by using Volterra integral equation and numerical
examples developed by multiterm fractional in damped concept.
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On the other hand, the analysis of dynamical NN model has received much attention among the
researchers, such as Hopfield NNs, Cohengrossberg, BAM NNs, and fuzzy cellular NNs. As we know,
time delay is an unavoidable factor in dynamical NNs. This factor can make whole systems perform
poorly or be unstable. Various type of the time-delays are discrete delay and disturbed delay, neutral type
time-delay and unbounded distributed time-delay. To investigate the effect of time-delay, many researcher
have derived the necessary and sufficient conditions for various NN dynamical system in the literature
[9, 10, 23, 24, 37, 49] due to its.

Recently, synchronization analysis between two dynamical systems has received much attention due
various application in image processing, signal processing, combinatorial optimization [20], secure com-
munication [26], associative memories[44], and pattern recognition [16]. As specially, the various synchro-
nization analysis of NNs have received great attention in the literature such as adaptive synchronization
[48], exponential synchronization [32], quasi and complete synchronization [43], asymptotical synchro-
nization [40], phase synchronization [13], projective synchronization [4], and fixed-time synchronization
[1]. Moreover, the synchronization problem is find the error system between master and slave systems,
which is expected to reach zero within a finite time then we can say that error system is stable and this
emerging concept is called FTS, and these properties have more convergence than traditional synchro-
nization problem. Many constraints are FTS of FONNs have been modeled by memristive method based
on lyapunov conditions with novel controller [41], gronwall inequality approach with quantized control
[31], and uncertain method with adaptive sliding mode control with delay [18]. Among them, parameter
uncertainties method [9] was discussed for fractional order fuzzy cellular NNs in FTS with delay. In
addition, the authors of [28] presented the new criteria in FTS of fractional order quaternion-valued NNs
using time delay. Accordingly, in [27] the authors have investigated the FTS in FONNs with help of state
feedback control and discontinuous adaptive feedback control in graph theory approach.

Moreover, FONNs have been studied for various types of synchronization concepts developed over
integer order NNs. As an example, the authors in [22] discussed the complete FTS conditions for fuzzy
FONNs via two novel nonlinear feedback control schemes such as i) adaptive; and ii) discontinuous. In
[42], new inequalities have been derived for analyzing the FTS of the delayed fractional-order quaternion-
valued NNs, and the derived conditions are based on Laplace transform and MLF. Here, we would like
mention that the FTS criteria have been achieved between master and salve systems by using various
control schemes in the literature such as impulsive control [45], adaptive control [18], feedback and peri-
odically intermittent control [17], sample data control [15], saturated control [38], novel hybrid controller
[39], and non-fragile control [19]. These control schemes have been considered fully atmosphere hamper-
ing and logical constraints while ensuring achieved performances. For example, in switching the signal of
FONNs, an adaptive control has provided better performance of neurons compared to the feedback con-
trol. Until now, different types of FONNs models has been deeply studied for the FTS problems such as
BAM FONNs [43], memristive FONNs [35], memritive Bam FONNs [29], discontinuous activations-based
FONNs [29], fuzzy inertial FONNs [12], fuzzy cellular FONNs [2], reaction-diffusion FONNs [25], inertial
FONNs [36], fuzzy inertial Bam FONNs [50], stochastic FONNs [30], and stochastic BAM FONNs [43].

From the above discussion, we can observe that the synchronization criteria have been investigated
for various types of FONN models under different control schemes (as mentioned above). On the other
hand, numerous studies on various digital control systems have been conducted because of the rapid
advancement of digital technology and network connections. Since the majority of digital equipment
produces sampling signals, research on the management of sampled data based on these signals is now
being addressed. Therefore, the sampled-data control systems have been suggested for analysing the sta-
bilisation and synchronization problems. In particular, SDC strategies have been proposed by researchers
to solve synchronization problems in chaotic systems. As a result, for example, authors in [14] discussed
the SDC in exponential synchronization using switching signal with uncertain mixed delays NNs based
on LMI method. In [21] authors investigated the improved synchronization in SDC extended dissipativity
analysis for delayed NNs based on LMI approach. On other hand, SDC discussed in [47] synchronization
of delayed inertial NNs using sampling and state quantization based Lyapunov-Krasovskii functional
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method. Moreover, SDC [5] have found wide applications in NNs for image secure communications of
switched type based on memory approach with delay-dependent conditions.

Here, we like to mentioned that very limited investigations have been reported for the synchronization
problem of delayed NNs under sampled-data control scheme. To best of authors knowledge, there is no
investigation on the problem FTS for delayed FONNs under SDC in the literature.

From the above motivation, the FTS problem of FONNs with time-delay is addressed in this work.
To derive FTS, SDC is implemented in the slave FONNs, then FTS criteria are derived for master and
slave FONNs by using Laplace transform, generalized Gronwall’s inequality, and MLF. Finally, numerical
examples are validated with derived conditions to show the merit of the proposed control scheme.

Here, the main feature of this work is listed as follows.

• In this work, the FTS is analyzed for FONNs with time-delay under the SDC scheme. The corre-
sponding FTS criteria are derived for fractional-order α as 0 < α < 1 and 1 < α < 2.

• The sampled-data-based control input is implemented in the slave FONNs. Then, the error model
of FONNs is derived from slave and master FONNs.

• By using Laplace transform and MLF, the solution of error model for FONNs is derived for two
cases of fractional-order such as 0 < α < 1 and 1 < α < 2. Moreover, we proved the derived solution
is finite-time stable under the SDC, which means that the slave system is synchronized with master
systems.

• Numerical examples and their results confirms the superiority of the proposed control input. The
effectiveness of fractional-order, i.e., 0 < α < 1 and 1 < α < 2 are given in the results.

The paper is organized as follows. Section 2 demonstrates the master and slave to give a solution rep-
resentation of the error system. Section 3 demonstrates a set of theorems that justifies finite-time syn-
chronization. In Section 4, the numerical methodology is demonstrated to verify the sample data control.
Section 5 ends with a conclusion.

2. Preliminaries

In this section, we introduce basic definitions, properties and lemmas for deriving the FTS conditions
of the proposed FONNs.

Definition 2.1 ([7]). The Caputo Fractional derivative cDα of order α > 0, r− 1 < α < r, r ∈ N is defined
as

cDαf(r) =
1

Γ(n−α)

∫r
0
(r− s)n−α−1f(n)(s)ds,

where Dα denotes the Caputo Fractional derivative.

Definition 2.2 ([27]). The MLFs Eα and Eα,β are defined by the power series

Eα(z) =

∞∑
k=0

zk

Γ(αk+ 1)
and Eα,β(z) =

∞∑
k=0

zk

Γ(αk+β)
,

where α > 0,β > 0, and z ε C.

Some basic properties of MLF are as follows [27].

Property 2.3. For any a > 0 and t > 0,Eα (−atα) 6 1,

(i) Eα,α (−arα) 6 1
Γ(α) ;

(ii) Eα,α+β (−arα) 6 1
Γ(α+β) ;
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(iii) Eα(0) = 1,Eα,α(0) = 1
Γ(α) ;

(iv) Eα,α+β(0) = 1
Γ(α+β) .

Property 2.4. The Laplace transform of the MLF Eα,β(·) is given below:

L
{
rβ−1Eα,β (±arα)

}
=
sα−β

sα ∓ a
,

where a ∈ C.

Lemma 2.5 ([6]). Let u(r), a(r) be non negative and locally integrable on 0 6 r < T (some T 6 +∞ ) and let
g(r) be a non negative, non decreasing continuous function defined on 0 6 r < T ,g(t) 6 M, and let M be a real
constants, α > 0 with

u(r) 6 a(r) + g(r)
∫r

0
(r− s)α−1u(s)ds, t ∈ [0, T),

then

u(r) 6 a(r) +
∫r

0

[ ∞∑
n=1

(g(r)Γ(α))n

Γ(nα)
(r− s)nα−1a(s)

]
ds, r ∈ [0, T).

Moreover, if a(r) is a non decreasing function on [0, T), then

u(r) 6 a(r)Eα (g(r)Γ(α)rα) , r ∈ [0, T).

2.1. Model formulation

Consider the master system of FONNs as given below:

Dαyi(r) = −aiyi(r) +

n∑
j=1

bijfj(yj(r)) +

n∑
j=1

wijfj(yj(r− τ)) + Ii, (2.1)

where 0 < α < 1, yi(t) denotes the state variables of the ith neuron, aij > 0 denotes the self-feedback
constant, bij and wij denote the connection weight between j and i at time r, τ denotes the constant
time-delay, fj(·) denotes activation functions, and Ii is the external input. The initial condition of the
system (2.1) in the form is

yi(r) = µi(r), r ∈ [−τ, 0], i = 1, . . . ,n.

Let us consider the slave system of FONNs, which is described as

Dαzi(r) = −aizi(r) +

n∑
j=1

bijgj(zj(r)) +

n∑
j=1

wijgi(zj(r− τ)) + Ii + ui(r). (2.2)

The initial condition of the system (2.2) is

zi(r) = ρi(r), r ∈ [−τ, 0], i = 1, . . . ,n,

where zi(r) denotes the state variables of the ith neuron, gj(zj(r− τ)) denotes activation functions with
delay, and ui(t) denote the control input.

Assumption 2.6. Let fi(·) and gi(·) satisfy the conditions, then for any x,y ∈ R, there exist positive
constants such that

‖fi(x) − fi(y)‖ 6 l‖x− y‖, ‖gi(x) − gi(y)‖ 6 m‖x− y‖.
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Defining ei(r) is the error system between master-slave system as qi(ei(r)) = gi(yi(r)) − fi(xi(r)) and
given as follows:

Dαei(r) = −aiei(r) +

n∑
j=1

bijqj(ej(r)) +

n∑
j=1

wijqj(ej(r− τ)) + ui(r). (2.3)

The initial conditions associated with (2.3) are of the form

ei(r) = µi(r) − ρi(r) = φi(r), r ∈ [rk, rk+1].

Now we consider the system (2.3) in a compact form as

Dαe(r) = −Ae(r) +Bq(e(r)) +Wq(e(r− τ)) + u(r), (2.4)

where e(r) = [e1(r) e2(r) · · · en(r)]T , A = diag{a1,a2 · · ·an}, B = (bij)n×n, and W = (wij)n×n are the
connection weight matrices and u(r) = [u1(r) u2(r) · · ·un(r)]T .

To achieve the synchronization of master and slave FONNs, with help of zero order hold, we have
considered the control input as sampled-data controller as

u(r) = Ke(rk), rk 6 r < rk+1, (2.5)

where K is a control gain matrix. Assume that the sampling instants satisfy rk+1 − rk = hk 6 µ. By using
the above SDC (2.5), we can rewrite the error FONNs as

Dαe(r) = −Ae(r) +Bq(e(r)) +Wq(e(r− τ)) +Ke(rk). (2.6)

To prove the error FONNs is finite-time stable, the following definition is needed.

Definition 2.7 ([35]). The master system (2.1) and slave system (2.2) are said to be finite-time synchro-
nization under SDC, if the error system ‖e(r)‖ is stable in finite-time with interval of [rk, rk+1), then there
exists ‖e(r)‖ < ε, where ei(r) = yi(r) − xi(r).

Next, we derive the solution of the error model for the master and slave systems by using Laplace
transform and MLF properties in the following subsection.

2.2. Solution representation
Consider the error model of master-slave system of FONNs with delayed form

Dαe(r) = −Ae(r) +Bq(e(r)) +Wq(e(r− τ)) +Ke(rk), e0 = e(0). (2.7)

Taking Laplace transform on both sides, we get

L[Dαe(r)] = −AL[e(r)] +BL[q(e(r))] +WL[q(e(r− τ))] +KL[e(rk)],

SαL[e(r)] − Sα−1L[e(0)] = −AL[e(r)] +BL[q(e(r))] +WL[q(e(r− τ))] +KL[e(rk)],

(SαI− (−A))L[e(r)] = Sα−1L[e(0)] +BL[q(e(r))] +WL[q(e(r− τ))] +KL[e(rk)],

L[e(r)] =

[
Sα−1

(SαI− (−A))

]
L[e(0)] +

BL[q(e(r))]

(SαI− (−A))
+
WL[q(e(r− τ))]

(SαI− (−A))
+

KL[e(rk)]

(SαI− (−A))
.

Applying the inverse Laplace transform to both the sides, we have

L−1[e(r)] = L−1
[
[

Sα−1

(SαI− (−A))
]L[e(0)]

]
+ L−1

[
BL[q(e(r))]

(SαI− (−A))

]
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+ L−1
[
WL[q(e(r− τ))]

(SαI− (−A))

]
+ L−1

[
KL[e(rk)]

(SαI− (−A))

]
.

Finally, substituting the Laplace transformation of the Mittag-Leffler function in (2.7), we get the solution
to the given equation

e(r) =Eα(−A(r− rk))
αe(r) +KrαEα,α+1(−A(r− rk))

αe(rk)

+

∫r
rk

(r− s)α−1Eα,α(−A(r− s)
α)(Bq(e(s)) +Wq(e(s− τ)))ds.

Based on the above solution, we derive the finite-time stability conditions are derived under the proposed
SDC scheme.

3. Main results

In this section, let us derive two sufficient conditions that establish the FTS of FONNs via SDC under
the two cases, such as 0 < α < 1 and 1 < α < 2.

3.1. FTS condition for 0 < α < 1

Theorem 3.1. When 0 < α < 1 and assuming that Assumption 2.6 holds, then the FTSNNs (2.1) is synchronized
with FTSNNs (2.2) in finite-time under the sample data control (2.5) and following conditions are satisfied:

‖I− (A−KI)Eα,α+1 (AR
α)Rα‖Eα (mRα) ‖B+W‖+ m‖W‖

Γ(α+ 1)
Rα <

∈
δ

.

Proof. Initially, let r ∈ [0, r1) and taking Laplace and inverse Laplace transform and using MLF of (2.3) on
both sides, one obtains

e(r) = Eα(−Ar)
αe(0) +KrαEα,α+1(−Ar)

αe(0)

+

∫r
0
(r− s)α−1Eα,α(−A(r− s)

α)Bq(e(s)) +Wq(e(s− τ))ds.

In general, for r ∈ [rk, rk+1),K ∈ N, we have

e(r) = Eα(−A(r− rk))
αe(r) +KrαEα,α+1(−A(r− rk))

αe(rk)

+

∫r
rk

(r− s)α−1Eα,α(−A(r− s)
α)(Bq(e(s)) +Wq(e(s− τ)))ds.

Let any r ∈ [0, r1). Then, we can obtain that

‖e(r)‖ 6 ‖Eα(−Ar)α +KrαEα,α+1(−Ar)
α‖‖e(0)‖

+m

∫r
0
(r− s)α−1Eα,α(−A(r− s)

α)‖B(e(s)) +W(e(s− τ))‖ds.
(3.1)

Now consider that

Eα(−Ar)
α = I−ArαEα,α+1(−Ar)

α,
Eα(−Ar)

α +KrαEα,α+1(−Ar)
α = I− (A−KI)Eα,α+1(−Ar)

αrα. (3.2)

Substitute (3.2) in (3.1), we can get the following inequality

‖e(r)‖ 6 ‖I− (A−KI)Eα,α+1(−Ar)
αrα‖‖e(0)‖



S. Jose, V. Parthiban, J. Math. Computer Sci., 35 (2024), 374–387 380

+m

∫r
0
(r− s)α−1Eα,α(−A(r− s)

α)‖B(e(s)) +W(e(s− τ))‖ds.

Using Property 2.4, we get

‖e(r)‖ 6 sup
r∈[0,T ]

‖I− (A−KI)Eα,α+1(−Ar)
αrα‖‖e(0)‖+ m

Γ(α)

∫r
0
(r− s)α−1‖B(e(s)) +W(e(s− τ))‖ds.

Moreover,

‖e(r)‖ 6 sup
r∈[0,T ]

‖I− (A−KI)Eα,α+1(−Ar)
αrα‖‖e(0)‖+ m

Γ(α)

∫r
0
(r− s)α−1‖B(e(s)) +W(e(s) + δ)‖ds.

Also,

‖e(r)‖ 6 sup
r∈[0,T ]

‖I− (A−KI)Eα,α+1(−Ar)
αrα‖‖e(0)‖

+
m

Γ(α)

∫r
0
(r− s)α−1‖B(e(s)) +W(e(s) + δ)‖ds+ m

Γ(α)

∫r
0
(r− s)α−1‖Wδ‖ds.

Using Lemma 2.5, the above fractional-order inequality can be written as ([46])

‖e(r)‖ 6 sup
r∈[0,T ]

‖I− (A−KI)Eα,α+1(−Ar)
αrα‖‖e(0)‖+ Eα(mrα)‖B+W‖+ m‖W‖δ

Γ(α+ 1)
rα.

In general, for r ∈ [rk, rk+1), K ∈ N,

‖e(r)‖ 6 sup
r−rk∈[0,T ]

‖I− (A−KI)Eα,α+1(−A(r− rk))
α(r− rk)

α‖

+ Eα(m(r− rk)
α)‖B+W‖+ m‖W‖δ

Γ(α+ 1)
(r− rk)

α‖e(rk)‖.

Thus, by recursively computing and back-substituting the above estimates of the values of ||e(rk)|| one
finally obtains

‖e(r)‖ 6
[
‖I− (A−KI)Eα,α+1(−AR)

αRα‖+ Eα(lRα)‖B+W‖+ m‖W‖δ
Γ(α+ 1)

Rα
]K
×D(ak)‖e(rk)‖,

where ak = r− rk and D (ak) = skEα
(
laαk

)
, with

sk = sup
ak∈[0,T ]

‖I− (A−KI)Eα,α+1 (aa
α
k )a

α
k‖ .

Now, since D (ak) is bounded for all k ∈N∪ {0}, limr→∞ ‖e(rk)‖ = 0,

‖e(r)‖ 6 lim
k→∞

[
‖I− (A−KI)Eα,α+1 (−AR

α)Rα‖Eα (mRα) ‖B+W‖+ m‖W‖δ
Γ(α+ 1)

Rα
]k

.

Therefore,

‖e(r)‖ 6 ‖I− (A−KI)Eα,α+1 (−AR
α) Tα‖Eα (mRα) ‖B+W‖+ m‖W‖

Γ(α+ 1)
Rαδ.

From Theorem 3.1, we get
‖e(r)‖ 6 ε.

From the above inequality, we can say that the error system (2.4) is said to be stable such that the FTSNNs
(2.3) is synchronized with FTSNNs (2.6) in finite-time. Then the solution e(r) completes the proof.
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Remark 3.2. In summary, obtaining finite-time synchronization criteria for fractional order systems in-
volves addressing different challenges depending on the range of the fractional order parameter α. Sys-
tems with 0 < α < 1 require dealing with slower convergence and memory effects, while systems with
1 < α < 2 pose challenges related to complex dynamics and stability considerations. Properly addressing
these challenges is essential for developing effective synchronization criteria and designing controllers
capable of achieving finite-time synchronization in fractional order systems.

Here, it should be mentioned that the above theorem provides the FTS criterion for fractional deriva-
tive lies between 0 and 1, i.e., 0 < α < 1. Most of research reports investigated the synchronization criteria
for FONNs under consideration fractional order derivative which lies between 0 and 1. However, if we
consider the second order fractional derivative, the α lies between 1 and 2. Therefore, in this work, we
derive the FTS criterion for second order fractional derivative of master and slave FONNs with time-delay
(2.1) and (2.2) is summarized in the following subsection.

3.2. FTS condition for 1 < α < 2
In this subsection, FTS criterion is derived based on Laplace and MLF and the corresponding result is

summarized in the following Theorem.

Theorem 3.3. Under Assumption 2.6 and 1 < α < 2, then the FTSNNs (2.1) will synchronize with FTSNNs (2.2)
when the sample data control (2.5) satisfies the following condition:

‖Eα,1(−ar)
αφ+ rEα,1(−ar)

αφ+ krαEα,α+1(ar)
α‖+ Eα(mR)α +

m‖w‖
Γ(α+ 1)

rα <
ε

δ
.

Proof. Let us consider the fractional-order α : 1 < α < 2, one can obtain a solution of (2.4) in the form

e(r) = Eα,1(−ar)
αe1(0) + rEα,2(−ar)

αe2(0) + krαEα,α+1(ar)
αe(0)

+

∫r
0
(r− s)α−1Eα,α(−A(r− s)

α)Bq(e(s)) +Wq(e(s− τ))ds.

In general for r ∈ [rk, rk+1),K ∈ N, we have

e(r) = Eα,1(−a(r− rk))
αe1(0) + rEα,2(−a(r− rk))

αe2(0) + k(r− rk)αEα,α+1(a(r− rk))
αe(0)

+

∫r
rk

(r− s)α−1Eα,α(−A(r− s)
α)(Bq(e(s)) +Wq(e(s− τ)))ds.

Let any r ∈ [0, r1). Then we can obtain that

‖e(r)‖ 6 ‖Eα,1(−ar)
αe1(0) + rEα,2(−ar)

αe2(0) + krαEα,α+1(ar)
αe(0)‖

+m

∫r
0
(r− s)α−1Eα,α(−A(r− s)

α)‖B(e(s)) +W(e(s− τ))‖ds.

Moreover,

‖e(r)‖ 6 ‖Eα,1(−ar)
αe1(0) + rEα,2(−ar)

αe2(0)‖+ ‖krαEα,α+1(at)
α‖‖e(0)‖

+m

∫r
0
(r− s)α−1Eα,α(−A(r− s)

α)‖B(e(s)) +W(e(s− τ))‖ds.

Then,

‖e(r)‖ 6 ‖Eα,1(−ar)
αφ+ rEα,2(−ar)

αφ‖+ ‖krαEα,α+1(ar)
α‖‖e(0)‖

+m

∫r
0
(r− s)α−1Eα,α(−A(r− s)

α)‖B(e(s)) +W(e(s− τ))‖ds.



S. Jose, V. Parthiban, J. Math. Computer Sci., 35 (2024), 374–387 382

Using Lemma 2.5 and the above fractional-order Grownwall’s inequality, we get ([46])

‖e(r)‖ 6 sup
rε[0,T ]

‖φ(Eα,1(−ar)
αφ+ rEα,2(−ar)

α)‖+ ‖krαEα,α+1(ar)
α‖‖e(0)‖

+
m

Γ(α)

∫r
0
(r− s)α−1‖B(e(s)) +W(e(s) + δ))‖ds,

which indicates that

‖e(r)‖ 6 sup
rε[0,T ]

‖φ(Eα,1(−ar)
αφ+ rEα,1(−ar)

α)‖+ ‖krαEα,α+1(ar)
α‖‖e(0)‖

+
m

Γ(α)

∫r
0
(r− s)α−1‖B(e(s)) +W(e(s))‖ds+ m

Γ(α)

∫t
0
(t− s)α−1‖W‖δds.

Therefore,

‖e(r)‖ 6 sup
rε[0,T ]

‖φ(Eα,1(−ar)
αφ+ rEα,2(−ar)

α)‖+ ‖krαEα,α+1(ar)
α‖‖e(0)‖

+ Eα(mr
α)‖B+W‖+ m‖W‖δ

Γ(α+ 1)
rα.

In general for r ∈ [rk, rk+1),K ∈ N, we have

‖e(r)‖ 6 sup
r−rk∈[0,T ]

‖φ(Eα,1(−a(r− rk))
αφ+ rEα,2(−a(r− rk))

α)‖

+ ‖k(r− rk)αEα,α+1(a(r− rk))
α‖‖e(rk)‖+ Eα(m(r− rk)

α)‖B+W‖+ m‖W‖δ
Γ(α+ 1)

(r− rk)
α.

Thus, by recursively computing and back-substituting the above estimates of the values of ||e(rk)|| one
finally obtains

‖e(r)‖ 6
[
‖φ(Eα,1(−ar)

αφ+ rEα,2(−ar)
α)‖+ ‖krαEα,α+1(ar)

α‖

+ Eα(lR
α)‖B+W‖+ m‖W‖δ

Γ(α+ 1)
Rα
]K
×D(ak)‖e(rk)‖,

where ak = r− rk and D (ak) = skEα
(
laαk

)
, with

sk = sup
ak∈[0,T ]

‖φ(Eα,1(−ar)
αφ+ rEα,1(−ar)

α)‖+ ‖krαEα,α+1(ar)
α‖ .

Since D (ak) is bounded for all k ∈N∪ {0}, limr→∞ ‖e(rk)‖ = 0,

‖e(r)‖6 lim
k→∞

[
‖φ(Eα,1(−ar)

αφ+ rEα,2(−ar)
α)‖+ ‖krαEα,α+1(ar)

α‖Eα (mRα) ‖B+W‖+ m‖W‖δ
Γ(α+ 1)

Rα
]k

.

Then,

‖e(r)‖ 6 ‖φ(Eα,1(−ar)
αφ+ rEα,2(−ar)

α)‖+ ‖krαEα,α+1(ar)
α‖Eα (mRα) ‖B+W‖+ m‖W‖

Γ(α+ 1)
Rαδ.

From (2.1) and (2.2), we get Theorem 3.3,
‖e(r)‖ 6∈ .

From assumption, we get if the error system (2.4) is stable then the FTSNNs (2.1) is synchronized with
FTSNNs (2.2) in finite-time. Then the solution e(r) completes the proof.



S. Jose, V. Parthiban, J. Math. Computer Sci., 35 (2024), 374–387 383

Remark 3.4. In Theorems 3.1 and 3.3, finite-time stability conditions are derived for the error FONNs with
0 < α < 1 and 1 < α < 2, which means that the master and slave FONNs are synchronized in a finite-time.
Different from the traditional LMI method, the stability condition is derived based on the solution of the
error FONNs (2.6), MLF and Laplace transform.

Remark 3.5. The advantage of finite-time synchronization is particularly noteworthy, as it implies not only
the convergence of system states but also the rapidity of this convergence within a finite time interval.
This property is highly desirable in applications where prompt and precise synchronization is crucial,
such as in secure communication protocols or real-time control systems.

Remark 3.6. Recently, the SDC scheme has received more attention among researchers for analyzing the
stability and synchronization issues of integer-order systems. Here, it should be mentioned that most of
the existing work is in synchronisation for integer-order NNs with time-delays based on the Lyapunov
stability approach. As a result, in [4] a pinning SDC scheme has been implemented for function projective
synchronization analysis of time-delay NNs with hybrid coupling. The synchronization criteria have been
derived for a class of nonlinear multi-agent systems under the SDC scheme in [8]. With the help of adap-
tive control, master and slave exponential synchronization criteria have been derived for bounded and
unbounded delayed NNs based on an analytical approach in [48]. However, in this work, the synchro-
nization criteria are derived for master and slave FONNs with time-delay based on the Laplace transform
and MLF, which is different from the traditional Lyapunov-function method.

4. Simulation results

In this section, we considered two examples to show the effectiveness of derived conditions under the
SDC scheme.

Example 4.1. Consider the following FONNs with time delay as given below:

Dαyi(r) = −aiyi(r) +

2∑
j=1

bijfj(yj(r)) +

2∑
j=1

cijfj(yj(r− τ)) + Ii, (4.1)

where, i = 1, 2, τ = 1, a11 = a12 = 1,b11 = 2.1,b12 = −30,b21 = 0.1,b22 = −15, c11 = 0.1, c12 = −18, c21 =
0.1, c22 = −5, α = 1.9, Ii = 0,

fi(yi(r)) = 0.5(‖yi + 1‖− ‖yi − 1‖), i = 1, 2.

The corresponding slave FONNs with time-delay is as given below:

Dαzi(r) = −aiyi(r) +

2∑
j=1

bijfj(zj(r)) +

2∑
j=1

wijfi(zj(r− τ)) + Ii + ui(r). (4.2)

For simulation purpose, initial values are considered as y1(0) = 1.5, y2(0) = 1.8, z1(0) = 0.7, z2(0) = 1.5.
The chaotic nature of the master FONNs (4.1) and (4.2) is given in Fig. 1. To achieve the synchronization
between master FONNs (4.1) and slave FONNs (4.2), let us choose control input

K =

[
0.5849 0.1
0.2478 0.1

]
.

Based on SDC gain, the master and slave FONNs are synchronized each others which is given in Fig. 2.
Moreover, the error response between y(r) and z(r) is shown in Fig. 3. From Figs. 1-3, we can confirm
that the proposed SDC scheme ensures the FTS of the master and slave models in (2.1) and (2.2).
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Figure 1: Chaotic trajectories of FTSNNs (4.1) and (4.2).

Figure 2: State trajectories of the system (4.1) and (4.2). Figure 3: The FTSNNs of error system of (4.1) and (4.2).

Inference: The above figures describes the synchronization between the master and slave system implying
the robustness of the network against disturbances or parameter variations, and it indicates stability of
the interconnected systems. By adjusting parameters or applying control inputs to the slave system, one
can achieve desired synchronization behaviors, enabling control of chaotic systems or stabilization of
unstable systems. Moreover, synchronization can be employed in optimization algorithms for solving
complex optimization problems.

Example 4.2. Consider the following FTSNN with time delay:

Dαyi(r) = −aiyi(r) +

3∑
j=1

bijfj(xj(r)) +

3∑
j=1

wijfj(xj(r− τ)) + Ii, (4.3)

where i = 1, 2, 3, τ = 1, a11 = a22 = a33 = 1,b11 = 0.1,b12 = −30,b13 = 0, b21 = 0.9,b22 = −12,b23 =
−15,b31 = 0.6,b32 = −5,b33 = 0, c11 = 0.4, c12 = −18, c13 = 0, c21 = 0.5, c22 = −8, c23 = 0, c31 = 0.1, c32 =
−2, c33 = 0.5, α = 1.9, and Ii = 0,

fi(yi(r)) = (‖yi + 1‖− ‖yi − 1‖), i = 1, 2, 3.
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The corresponding slave FONNs with time-delay is as given below:

Dαzi(r) = −aizi(r) +

3∑
j=1

bijfj(zj(r)) +

3∑
j=1

wijfi(rj(t− τ)) + Ii + ui(r). (4.4)

For simulation purpose, initial values are considered as y1(0) = 1.5, y2(0) = 1.8, y3(0) = 1.6, z1(0) = 0.7,
z2(0) = 1.5, z3 = 1.4. The chaotic nature of the master FONNs (4.3) and (4.4) is given in Fig. 4. To achieve
the synchronization between master FONNs (4.3) and slave FONNs (4.4), let us choose control input

K =

0.5 0.4 0
0.2 0.5 0
0 0 0.5

 .

Based on SDC gain, the master and slave FONNs are synchronized each others which is given in Fig. 5.
Moreover, the error response between y(r) and z(r) is shown in Fig. 6. From Figs. 4-6, we can confirm
that the proposed SDC scheme ensures the FTS of the master and slave models in (2.1) and (2.2).

Figure 4: Chaotic trajectories of FTSNNs (4.3) and (4.4).

Figure 5: State trajectories of the system (4.3) and (4.4). Figure 6: The FTSNNs of error system of (4.3) and (4.4).
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5. Conclusion

In this work, the FTS problem of FONNs with time delays is addressed. To achieve the synchro-
nization criteria, a sampled-data-based control scheme is implemented in the slave FONNs. Then, the
finite-time stability conditions of the error model are derived based on the Laplace transform, the MLF,
and the generalized Grown-wall’s inequality. The derived conditions can ensure the synchronization be-
tween master and slave FONNs with time-delay under SDC scheme. Moreover, we have derived the FTS
conditions for two fractional order cases, such as 0 < α < 1 and 1 < α < 2. Finally, two numerical exam-
ples are given to show the superiority of the proposed FTS conditions over SDC. Recently, the complex
network has received much attention among the researchers due to various applications. Future research
directions may include exploring extensions of the proposed synchronization problem to address more
complex network topologies, nonlinear dynamics, and uncertain environments.

References

[1] M. Abudusaimaiti, A. Abdurahman, H. Jiang, C. Hu, Fixed/predefined-time synchronization of fuzzy neural networks
with stochastic perturbations, Chaos Solitons Fractals, 154 (2022), 8 pages. 1

[2] R. V. Aravind, P. Balasubramaniam, Global asymptotic stability of delayed fractional-order complex-valued fuzzy cellular
neural networks with impulsive disturbances, J. Appl. Math. Comput., 68 (2022), 4713–4731. 1

[3] G. Arthi, N. Brindha, D. Baleanu, Finite-time stability results for fractional damped dynamical systems with time delays,
Nonlinear Anal. Model. Control, 27 (2022), 221–233. 1

[4] T. Botmart, W. Weera, A. Hongsri, N. Yotha, P. Niamsup, Dissipative pinning sampled-data control for function
projective synchronization of neural networks with hybrid couplings and time-varying delays, IEEE Access, (2022), 58647–
58666. 1, 3.6

[5] Y. Cao, K. Udhayakumar, K. P. Veerakumari, R. Rakkiyappan, Memory sampled data control for switched-type neural
networks and its application in image secure communications, Math. Comput. Simulation, 201 (2022), 564–587. 1

[6] C. Corduneanu, Principles of differential and integral equations, Allyn and Bacon, Boston, MA, (1971). 2.5
[7] G. Derfel, On the behaviour of the solutions of functional and functional differential equations with several deviating

arguments, Ukr. Math. J., 34 (1982), 286–291. 2.1
[8] H. Du, R. Jia, Synchronization of a class of nonlinear multi-agent systems with sampled-data information, Nonlinear

Dynam., 82 (2015), 1483–1492. 3.6
[9] F. Du, J.-G. Lu, Finite-time stability of fractional-order fuzzy cellular neural networks with time delays, Fuzzy Sets and

Systems, 438 (2022), 107–120. 1
[10] F. Du, J.-G. Lu, New results on finite-time stability of fractional-order Cohen-Grossberg neural networks with time delays,

Asian J. Control, 24 (2022), 2328–2337. 1
[11] F. Du, J.-G. Lu, Adaptive finite-time synchronization of fractional-order delayed fuzzy cellular neural networks, Fuzzy Sets

and Systems, 2023 (2023), 19 pages. 1
[12] L. Duan, M. Shi, C. Huang, M. Fang, New results on finite-time synchronization of delayed fuzzy neural networks with

inertial effects, Int. J. Fuzzy Syst., 24 (2022), 676–685. 1
[13] J. T. Fossi, V. Deli, Z. T. Njitacke, J. M. Mendimi, F. F. Kemwoue, J. Atangana, Phase synchronization, extreme multi-

stability and its control with selection of a desired pattern in hybrid coupled neurons via a memristive synapse, Nonlinear
Dyn., 109 (2022), 925–942. 1

[14] C. Ge, X. Liu, C. Hua, J. H. Park, Exponential synchronization of the switched uncertain neural networks with mixed
delays based on sampled-data control, J. Franklin Inst., 359 (2022), 2259–2282. 1

[15] N. Gunasekaran, M. S. Ali, S. Arik, H. I. A. Ghaffar, A. A. Z. Diab, Finite-time and sampled-data synchronization of
complex dynamical networks subject to average dwell-time switching signal, Neural Netw., 149 (2022), 137–145. 1

[16] F. C. Hoppensteadt, E. M. Izhikevich, Pattern recognition via synchronization in phase-locked loop neural networks,
IEEE Trans. Neural Netw., 11 (2000), 734–738. 1

[17] M. Hui, C. Wei, J. Zhang, H. H.-C. Iu, R. Yao, L. Bai, Finite-time synchronization of fractional-order memristive neural
networks via feedback and periodically intermittent control, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 23
pages. 1

[18] T. Jia, X. Chen, L. He, F. Zhao, J. Qiu, Finite-time synchronization of uncertain fractional-order delayed memristive neural
networks via adaptive sliding mode control and its application, Fractal Fract., 6 (2022), 1–21. 1

[19] R. Kiruthika, R. Krishnasamy, S. Lakshmanan, M. Prakash, A. Manivannan, Non-fragile sampled-data control for
synchronization of chaotic fractional-order delayed neural networks via LMI approach, Chaos Solitons Fractals, 169 (2023),
11 pages. 1

[20] T. Kwok, K. A. Smith, A unified framework for chaotic neural-network approaches to combinatorial optimization, IEEE
Trans. Neural Netw., 10 (1999), 978–981. 1

[21] S. H. Lee, M. J. Park, O. M. Kwon, Improved synchronization and extended dissipativity analysis for delayed neural
networks with the sampled-data control, Inf. Sci., 601 (2022), 39–57. 1

https://doi.org/10.1016/j.chaos.2021.111596
https://doi.org/10.1016/j.chaos.2021.111596
https://doi.org/10.1007/s12190-022-01726-x
https://doi.org/10.1007/s12190-022-01726-x
https://doi.org/10.15388/namc.2022.27.25194
https://doi.org/10.15388/namc.2022.27.25194
https://doi.org/10.1109/ACCESS.2022.3179573
https://doi.org/10.1109/ACCESS.2022.3179573
https://doi.org/10.1109/ACCESS.2022.3179573
https://doi.org/10.1016/j.matcom.2021.03.021
https://doi.org/10.1016/j.matcom.2021.03.021
https://books.google.com/books?hl=en&lr=&id=aub7RMxYUNsC&oi=fnd&pg=PP1&dq=Principles+of+differential+and+integral+equations&ots=BWlWeh3E7q&sig=SytMGgkBTr2ODCr-2Vs5Y1W_M9g
https://scholar.google.com/scholar_lookup?&title=On%20the%20behaviour%20of%20the%20solutions%20of%20functional%20and%20functional-differential%20equations%20with%20serveral%20deviating%20arguments&journal=Ukr.%20Math.%20J.&doi=10.1007%2FBF01682121&volume=34&pages=286-291&publication_year=1982&author=Derfel%2CG.A.
https://scholar.google.com/scholar_lookup?&title=On%20the%20behaviour%20of%20the%20solutions%20of%20functional%20and%20functional-differential%20equations%20with%20serveral%20deviating%20arguments&journal=Ukr.%20Math.%20J.&doi=10.1007%2FBF01682121&volume=34&pages=286-291&publication_year=1982&author=Derfel%2CG.A.
https://doi.org/10.1007/s11071-015-2255-2
https://doi.org/10.1007/s11071-015-2255-2
https://doi.org/10.1016/j.fss.2021.08.011
https://doi.org/10.1016/j.fss.2021.08.011
https://doi.org/10.1002/asjc.2641
https://doi.org/10.1002/asjc.2641
https://doi.org/10.1016/j.fss.2023.02.001
https://doi.org/10.1016/j.fss.2023.02.001
https://doi.org/10.1007/s40815-021-01171-1
https://doi.org/10.1007/s40815-021-01171-1
https://doi.org/10.1007/s11071-022-07489-1
https://doi.org/10.1007/s11071-022-07489-1
https://doi.org/10.1007/s11071-022-07489-1
https://doi.org/10.1016/j.jfranklin.2022.01.025
https://doi.org/10.1016/j.jfranklin.2022.01.025
https://doi.org/10.1016/j.neunet.2022.02.013
https://doi.org/10.1016/j.neunet.2022.02.013
https://doi.org/10.1109/72.846744
https://doi.org/10.1109/72.846744
https://doi.org/10.1016/j.cnsns.2022.106822
https://doi.org/10.1016/j.cnsns.2022.106822
https://doi.org/10.1016/j.cnsns.2022.106822
https://doi.org/10.3390/fractalfract6090502
https://doi.org/10.3390/fractalfract6090502
https://doi.org/10.1016/j.chaos.2023.113252
https://doi.org/10.1016/j.chaos.2023.113252
https://doi.org/10.1016/j.chaos.2023.113252
https://doi.org/10.1109/72.774279
https://doi.org/10.1109/72.774279
https://doi.org/10.1016/j.ins.2022.03.092
https://doi.org/10.1016/j.ins.2022.03.092


S. Jose, V. Parthiban, J. Math. Computer Sci., 35 (2024), 374–387 387

[22] H.-L. Li, C. Hu, L. Zhang, H. Jiang, J. Cao, Complete and finite-time synchronization of fractional-order fuzzy neural
networks via nonlinear feedback control, Fuzzy Sets and Systems, 443 (2022), 50–69. 1

[23] X. Li, X. Liu, S. Zhang, New criteria on the finite-time stability of fractional-order bam neural networks with time delay,
Neural Comput. Appl., 34 (2022), 4501–4517. 1

[24] H. Liao, Z. Yang, Z .Zhang, Y. Zhou, Finite-time synchronization for delayed inertial neural networks by the approach of
the same structural functions, Neural Process. Lett., 55 (2022), 4973–4988. 1

[25] J. Man, X. Song, S. Song, J. Lu, Finite-time synchronization of reaction diffusion memristive neural networks: A gain-
scheduled integral sliding mode control scheme, ISA Trans., 130 (2022), 692–701. 1

[26] V. Milanovic, M. E. Zaghloul, Synchronization of chaotic neural networks and applications to communications, Int. J.
Bifurcat. Chaos, 6 (1996), 2571–2585. 1

[27] A. Pratap, R. Raja, J. Alzabut, J. Dianavinnarasi, J. Cao, G. Rajchakit, Finite-time mittag-leffler stability of fractional-
order quaternion-valued memristive neural networks with impulses, Neural Process. Lett., 51 (2020), 1485–1526. 1, 2.2,
2

[28] W. Shang, W. Zhang, D. Chen, J. Cao, New criteria of finite time synchronization of fractional-order quaternion-valued
neural networks with time delay, Appl. Math. Comput., 436 (2023), 17 pages. 1

[29] Y. Sheng, Z. Zeng, T. Huang, Finite-time synchronization of neural networks with infinite discrete time-varying delays
and discontinuous activations, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 3034–3043. 1

[30] M. Shuo, Finite-time synchronization of stochastic neural networks with markovian switching and levy noise via adaptive
control, J. Syst. Sci. Math. Sci., 42 (2022), 1088–1099. 1

[31] X. Si, Z. Wang, Y. Fan, Quantized control for finite-time synchronization of delayed fractional-order memristive neural
networks: The gronwall inequality approach, Expert Syst. Appl., 215 (2013). 1

[32] S. Singh, U. Kumar, S. Das, J. Cao, Global exponential stability of inertial cohen grossberg neural networks with time-
varying delays via feedback and adaptive control schemes: Non-reduction order approach, Neural Process. Lett., 55 (2023),
4347–4363. 1

[33] N. T. K. Son, N. P. Dong, H. V Long, A. Khastan, Linear quadratic regu-lator problem governed by granular neutrosophic
fractional differential equations, ISA Trans., 97 (2020), 296–316. 1

[34] R. Srilekha, V. Parthiban, Simulink Methods to Simulate COVID-19 Outbreak Using Fractional Order Models, Contemp.
Math., 5 (2024), 1180–1199. 1

[35] G. Velmurugan, R. Rakkiyappan, J. Cao, Finite-time synchronization of fractional-order memristor-based neural networks
with time delays, Neural Netw., 73 (2016), 36–46. 1, 2.7

[36] L. Wang, K. Zeng, C. Hu, Y. Zhou, Multiple finite-time synchronization of delayed inertial neural networks via a unified
control scheme, Knowl.-Based Syst., 236 (2022). 1

[37] R.-C. Wu, X.-D Hei, L.-P. Chen, Finite-time stability of fractional-order neural networks with delay, Commun. Theor.
Phys. (Beijing), 60 (2013), 189–193. 1

[38] S. Wu, X. Li, Robust finite-time synchronization of recurrent neural networks via saturated control, IEEE Trans. Circuits
Syst. II Express Briefs, 70 (2023), 226–230. 1

[39] Q. Xi, X. Liu, X. Li, Finite-time synchronization of complex dynamical networks via a novel hybrid controller, IEEE Trans.
Neural Netw. Learn. Syst., 35 (2024), 1040–1049. 1

[40] J. Xiang, J. Ren, M. Tan, Asymptotical synchronization for complex-valued stochastic switched neural networks under the
sampled-data controller via a switching law, Neurocomputing, 514 (2022), 414–425. 1

[41] J. Xiao, L. Wu, A. Wu, Z. Zeng, Z. Zhang, Novel controller design for finite-time synchronization of fractional-order
memristive neural networks, Neurocomputing, 512 (2022), 494–502. 1

[42] H. Yan, Y. Qiao, L. Duan, J. Miao, New inequalities to finite-time synchronization analysis of delayed fractional-order
quaternion-valued neural networks, Neural Comput. Appl., 34 (2022), 9919–9930. 1

[43] Z. Yang, Z. Zhang, Finite-time synchronization analysis for bam neural networks with time-varying delays by applying the
maximum-value approach with new inequalities, Mathematics, 10 (2022), 1–16. 1

[44] Z. Yang, J. Zhang, Y. Niu, Finite-time stability of fractional-order bidirectional associative memory neural networks with
mixed time-varying delays, J. Appl. Math. Comput., 63 (2020), 501–522. 1

[45] X. Yao, S. Zhong, Y. Du, Hybrid impulsive control based synchronization of leakage and multiple delayed fractional-order
neural networks with parameter mismatch, Neural Process. Lett., 55 (2023), 11371–11395. 1

[46] H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math.
Anal. Appl., 328 (2007), 1075–1081. 3.1, 3.2

[47] Z. You, H. Yan, H. Zhang, M. Wang, K. Shi, Sampled-data control for exponential synchronization of delayed inertial
neural networks with aperiodic sampling and state quantization, IEEE Trans. Neural Netw. Learn. Syst., 35 (2024),
5079–5091. 1

[48] H. Zhang, Y. Zhou, Z. Zeng, Master-slave synchronization of neural networks with unbounded delays via adaptive method,
IEEE Trans. Cybern., 53 (2023), 3277–3287. 1, 3.6

[49] F. Zhao, J. Jian, Finite-time synchronization of fractional-order fuzzy Cohen-Grossberg neural networks with time delay,
Iran. J. Fuzzy Syst., 19 (2022), 47–61. 1

[50] Z. Zhou, Z. Zhang, M. Chen, Finite-time synchronization for fuzzy delayed neutral-type inertial bam neural networks via
the figure analysis approach, Int. J. Fuzzy Syst., 24 (2022), 229–246. 1

https://doi.org/10.1016/j.fss.2021.11.004
https://doi.org/10.1016/j.fss.2021.11.004
https://doi.org/10.1007/s00521-021-06605-3
https://doi.org/10.1007/s00521-021-06605-3
https://doi.org/10.1007/s11063-022-11075-2
https://doi.org/10.1007/s11063-022-11075-2
https://doi.org/10.1016/j.isatra.2022.08.011
https://doi.org/10.1016/j.isatra.2022.08.011
https://doi.org/10.1142/S0218127496001648
https://doi.org/10.1142/S0218127496001648
https://doi.org/10.1007/s11063-019-10154-1
https://doi.org/10.1007/s11063-019-10154-1
https://doi.org/10.1016/j.amc.2022.127484
https://doi.org/10.1016/j.amc.2022.127484
https://doi.org/10.1109/tnnls.2021.3110880
https://doi.org/10.1109/tnnls.2021.3110880
https://doi.org/10.12341/jssms21050
https://doi.org/10.12341/jssms21050
https://doi.org/10.1016/j.eswa.2022.119310
https://doi.org/10.1016/j.eswa.2022.119310
https://doi.org/10.1007/s11063-022-11044-9
https://doi.org/10.1007/s11063-022-11044-9
https://doi.org/10.1007/s11063-022-11044-9
https://doi.org/10.1016/j.isatra.2019.08.006
https://doi.org/10.1016/j.isatra.2019.08.006
https://doi.org/10.37256/cm.5220242591
https://doi.org/10.37256/cm.5220242591
https://doi.org/10.1016/j.neunet.2015.09.012
https://doi.org/10.1016/j.neunet.2015.09.012
https://doi.org/10.1016/j.knosys.2021.107785
https://doi.org/10.1016/j.knosys.2021.107785
https://doi.org/10.1088/0253-6102/60/2/08
https://doi.org/10.1088/0253-6102/60/2/08
https://doi.org/10.1109/TCSII.2022.3207035
https://doi.org/10.1109/TCSII.2022.3207035
https://doi.org/10.1109/tnnls.2022.3185490
https://doi.org/10.1109/tnnls.2022.3185490
https://doi.org/10.1016/j.neucom.2022.09.152
https://doi.org/10.1016/j.neucom.2022.09.152
https://doi.org/10.1016/j.neucom.2022.09.118
https://doi.org/10.1016/j.neucom.2022.09.118
https://doi.org/10.1007/s00521-022-06976-1
https://doi.org/10.1007/s00521-022-06976-1
https://doi.org/10.3390/math10050835
https://doi.org/10.3390/math10050835
https://doi.org/10.1007/s12190-020-01327-6
https://doi.org/10.1007/s12190-020-01327-6
https://doi.org/10.1007/s11063-023-11380-4
https://doi.org/10.1007/s11063-023-11380-4
https://doi.org/10.1016/j.jmaa.2006.05.061
https://doi.org/10.1016/j.jmaa.2006.05.061
https://doi.org/10.1109/TNNLS.2022.3202343
https://doi.org/10.1109/TNNLS.2022.3202343
https://doi.org/10.1109/TNNLS.2022.3202343
https://doi.org/10.1109/TCYB.2022.3168090
https://doi.org/10.1109/TCYB.2022.3168090
https://ijfs.usb.ac.ir/article_7156.html
https://ijfs.usb.ac.ir/article_7156.html
https://doi.org/10.1007/s40815-021-01132-8
https://doi.org/10.1007/s40815-021-01132-8

	Introduction
	Preliminaries
	Model formulation
	Solution representation

	Main results
	FTS condition for  
	FTS condition for  

	Simulation results
	Conclusion

