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Abstract

In this paper, we present an approach to model the stochastic spread of malware within a wireless sensor network (WSN).
The network is characterized as a reduced scale-free topology, exhibiting just two average degrees. Our work delves into the
realm of stochastic epidemic modeling building upon its deterministic counterpart [19]. We leverage two distinct methodologies,
namely the discrete-time Markov chain (DTMC) and the Stochastic Differential Equation (SDE) techniques, to explore the tempo-
ral dynamics of our proposed model. Our investigation extends to analyzing how various model parameters influence infection
within WSNs. Through Monte Carlo simulations and the Euler-Maruyama discretization scheme, we validate the credibility of
our two stochastic models by demonstrating their congruences and their fluctuations around the deterministic solution reliant
on nonlinear coupled ordinary differential equations (ODEs). This comparison is guided for the best understanding of the
stochastic fluctuations effect in the dynamics of the spread of malware in WSNs. Our findings offer valuable insights, indicating
that the network exhibits enhanced resilience against network failures and more balanced energy consumption when specific
countermeasures are implemented. This probabilistic framework proves both meticulous and systematic, providing a profound
understanding of the intricate randomness inherent in the behavioral patterns of malware within WSNs.

Keywords: Stochastic spread of malware, wireless sensor network, reduced scale-free topology, discrete time Markov chain,
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1. Introduction

Wireless Sensor Networks (WSNs) comprise sensor nodes or motes wirelessly connected. They em-
ploy sensors that monitor physical conditions, generating relevant sensory data. Each node integrates
essential components, including a processing unit, memory, communication module, and power supply,
with constrained processing, data collection, and transmission capabilities. Sensor nodes transmit data
to base stations or sinks upon detecting events of interest. Sinks communicate with end-users through
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various channels, including direct connections, the Internet, or wireless links. Despite inherent limita-
tions, WSNs find applications in diverse fields like security tracking, intrusion detection, environmental
monitoring, traffic management, and positioning systems, positioning them at the forefront of research
interest. However, key challenges in WSN research revolve around energy resource depletion and node
vulnerability to potential attacks. A viral attack leading to sensor node failure could disrupt the network
structure, causing fragmentation, reduced coverage, or complete paralysis.

In advancing WSN research for practical applications, efforts focus on two key directions. Researchers
aim to enhance the security, robustness, and efficiency of WSNs by (i) establishing stable, efficient topolo-
gies resistant to attacks [8, 16, 17, 31, 44, 47, 48]; and (ii) modeling malicious attacks using a macroscopic
epidemic approach in both homogeneous [1, 21-23, 30, 42] and heterogeneous networks [9, 20, 24, 32,
40, 45]. This dual pursuit reinforces WSN’s effectiveness in real-world applications by ensuring reli-
able monitoring and data transmission to the sink. In the track of the first research direction, Wang et
al. [44] developed the Arbitrary Weights-based Scale-Free topology control (AWSEF) algorithm to minimize
transmission delay and increase robustness in WSNs. These arbitrary weights are random real numbers
following a negative power law probability distribution. Ye et al. [47] studied a scale-free routing protocol
and algorithm in WSNSs, including routing reliability, network bandwidth usage, energy reserving, and
life cycle. This algorithm could significantly reduce the redundancies of the datagram transferred in the
WSN and thus improve the life cycle of WSN. To balance the connectivity and energy consumption in
the network, Jian et al. [17] proposed an energy-aware BA (EABA) model for WSNs, which takes into
consideration both node degree and residual energy in preferential attachment that has been introduced
by Barabasi and Albert [6, 7]. Jiang et al. [18] suggested a local-area and energy-efficient (LAEE) evolution
model for wireless sensor networks. The model proved to have better tolerance against energy depletion
or random failure than other non-scale-free WSN topologies. Qiu et al. [31] designed an algorithm called
ROSE for enhancing the robustness of scale-free networks against malicious attacks, and compared it
with two previous robustness-enhancing algorithms [8, 16]. The comparison shows better robustness en-
hancement results and consumes less computation time. Duan et al. [10] introduced a cluster-structured
evolution model of WSNs that combines characteristics of the scale-free network and small-world net-
work, that is, the scale-free effect focuses on the enhancement of network survivability and small-world
effect attempts to shorten the transmission paths within the network. They concluded that these features
make the network maintain superior error tolerance (in the case of a random attack) and have better
energy efficiency and intrusion tolerance (in an intended attack).

These studies collectively reveal that homogeneous networks (fall within the second research direc-
tion) inadequately reflect the topology of WSNs, especially in terms of reliability and robustness when
faced with viral attacks causing the failure of one or more nodes. Consequently, there has been a shift in
focus toward heterogeneous networks, with particular emphasis on scale-free configurations. This strate-
gic pivot, which also aligns with the second research area, has emerged as a direct response to address
the identified inadequacies associated with homogeneous networks. Indeed, Rey et al. [32] improved a
homogeneous cellular automated into an individual-based model where particular features of the router
and sink nodes have been used. More than one isolated outbreak has been exhibited in this model, and the
tirst one appeared before the outbreaks in the previous models. Shen et al. [40] proposed a heterogeneous
model, in which they took into account the communication connectivity of heterogeneous sensor nodes
and the characteristics of the self-hiding malware and dysfunctional sensor nodes. They derived the mal-
ware spread threshold and compared their simulation results with the conventional SIS and SIR models.
They showed the effectiveness of the model from the perspective of achieving equilibrium. Muthukrish-
nan et al. [24] studied a malware trace-patch mixed propagation model over WSNs, taking into account
both the topological structure of the network and its geometrical shape. They used an optimal control
strategy to minimize the number of infected nodes and the budget. They numerically illustrated that the
proposed method achieves the minimum cumulative cost within the bound. Based on the three ideas (i)
the inner sensors are often highly linked compared to the outer ones which in turn are highly connected
compared to the gateway nodes; (ii) the robustness of the network in case of power depletion or malicious
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attacks depends largely on the non-failure of motes with higher connectivity; (iii) the WSN is considered
to be a reduced scale-free network [14, 46], Keshri et al. [19] developed an epidemic model of WSN to
explore the significance of the higher connectivity motes in maintaining the overall robustness of a WSN
during a malicious attack.

Our study delves into the intricacies of stochastic epidemic modeling of the preceding determinis-
tic counterpart [19]. We utilize two distinctive methodologies, namely the discrete-time Markov chain
(DTMC) and stochastic differential equation (SDE) techniques, to explore the potential temporal dynam-
ics of the proposed model. Our work further encompasses the stochastic simulation of how diverse model
parameters exert influence on infection dynamics within WSNs.

The remainder of this paper is organized as follows. In the next Section 2, we discuss the limitations of
relevant studies that have addressed the second research area, and we detail our model’s proposition. In
Section 3, we delineate the distinctions between DTMC and SDE methods in modeling stochastic systems.
Then, we provide a discussion following a detailed description and formulation of our proposed DTMC
and SDE models. In Section 4, we simulate both models and present countermeasures for WSNs. We con-
clude with a comprehensive summary and appendices, offering additional insights into the methodology
and findings.

2. Limits of the existing models-our proposal

The references cited above that concerning the modeling of the spread of malware on WSNs have fo-
cused on deterministic models. They only forecast a single and average outcome of a given set of coupled
nonlinear ordinary differential equations (ODEs) with absolute certainty. Actually, by taking into account
the stochastic behavior of the malware spread, deterministic models fail to describe and understand their
realistic dynamics. As is well known [2, 14, 15, 26, 33], stochastic models, whether those that based on
Markov chain Monte Carlo (MCMC) techniques or those that uses continuous time stochastic differential
equations (SDEs), are the best alternative choices for achieving this goal. Unfortunately, there are few
achievements that approached the topic of the spread of malware over WSNs using stochastic epidemi-
ological models, or studies that compare the results of both deterministic and stochastic approaches in
this field. For instance, Zhong et al. [51] established a heterogeneous model to describe and control the
dynamics behavior of malware spread in WSNs. They use an aperiodically intermittent controller driven
by white noise, which has striking advantages of lower cost and more flexible control strategy. In the
work cited above [24], the authors only used the GEMFsim algorithm which is available on popular sci-
entific programming platforms [38, 39] to estimate each node’s probability distribution over the state in
the network. Then, they plotted a single realization of an average of 100 simulations of the SITPS model
on a random network, and they compared it with the outcome of the deterministic one. This is nothing
but a solution of the nonlinear ODEs which are based on the first-order mean-field approximation. To
investigate the offensive worm dynamics in WSNs, Zhang et al. [50] analyzed an e-SITR model by incor-
porating the Holling type-IV and the white noise stochastic perturbations. The noise has been introduced
to understand whether the dynamical behavior of the deterministic model is strong for such a sort of
stochasticity by exploring the asymptotic steadiness conduct of the equilibrium point, contrasting the
outcomes and those acquired for the Ito stochastic differential framework. Nwokoye et al. [28] proposed
an epidemic model to study the effects of both concurrent worm and virus categories on WSNs. They
extended the deterministic model by incorporating external noise to change the deterministic nature of
the original model and permit stochastic analyses for random factors such as temperature and physical
obstructions. Both models admit the same equilibria, and the stochastic one fluctuates around its average
states.

It is true that in some stochastic models cited above, node-level heterogeneity has been taken into
consideration, but ideas of dividing network nodes into two distinct classes (hubs and lowly linked
nodes), and then treating each class separately by a different epidemiological model have been neglected.
Thus, these references have just limited to studying an epidemiological model consisting of only one
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chain of compartments. However, in WSNs, by the fact that the outer sensors generally have fewer links
as compared to the inner ones which in turn have less degree compared to the gateway sensor motes, we
propose to investigate a stochastic model which takes into account these assumptions.

Inspired with the works in the field of the prevalence of infectious diseases in population biology [2-
4,25, 29, 34], and those in the field of the propagation of computer viruses over networks [5, 12, 14, 15],
we develop the DTMC and the SDE models to stochastically explore the impact of reduced scale-free
network parameters on the spread of malware upon a wireless sensor network-both stochastic epidemic
models derived from their deterministic counterpart [19]. The authors of this work [19] took advantage of
the idea of reduced scale-free network [46] to study the local stability of an epidemic model established
on a wireless sensor network.

In a first stage, we use the mean of random variables to analyze the discrete-time stochastic processes
of two sub-chains of the Susceptible-Exposed-Infected-Recovered-Susceptible and Susceptible-Exposed-
Infected-Recovered (SEIRS-SEIR) model. The aim is to randomly predict the spread of malicious attacks
on a wireless sensor network and compare the obtained findings to those arising from the deterministic
model [19]. Furthermore, To enhance network robustness during power outages or malicious attacks,
it is crucial to minimize failures in high-connectivity nodes, as emphasized in the previous work [19].
However, given that both high-connectivity and low-connectivity nodes are influenced by model param-
eters, our research herein delves into comprehensively assessing the impact of these parameters on the
overall fraction of infections. Besides, some measures have been suggested to make the entire network
more resilient to network failure and to maintain balanced energy costs. In the discrete-time stochastic
computation, the model is assumed to be a Markov chain, in which the probability of each subsequent
state is conditionally independent of all previous states and depends solely on the probability of the cur-
rent state. It is also supposed that the time step is small enough that during that period, at most two
events and only one change in each node state occur. Indeed, a single node within the RSFN cannot make
concurrent transitions. This means it cannot, for instance, jump from the exposed state to the infected
state and back to the exposed state within the same time step At. Additionally, two different nodes in
the RSFN cannot move simultaneously from an exposed state to an infected state during the time step
At. Thus, our proposed discrete-time stochastic model is formulated as a Markov chain by considering
two conditionally interrelated sub-chains, SEIRS and SEIR, with a constant population size for both, (see
Figure 1). The transition probabilities for the two sub-chains, The transition probabilities for the two
sub-chains, as well as the conditional probabilities linking them, are computed using the same method
as described by Essouifi and Achahbar [14, 15] (see Appendix), and the resulting difference equation that
characterizes the model’s temporal evolution is presented.

In a second stage, two parameters of the deterministic model are supposed to be subject to envi-
ronmental noise, namely, the probability per unit of time that a k;-degree node leaves the sensor field
(denoted ), and the probability per unit time that ko-degree recovered nodes again become susceptible
because of the temporary immunity (denoted d) are perturbed by a type of noise that may represent the
environmental random variability. The choice of this perturbation is justified throughout the paper and
existence, unicity and globality of the obtained SDE is proved. By using a well known discretization
scheme, the paths of the three random variables corresponding to the fractions of exposed, infected and
recovered sensor nodes for the SDE are plotted in superposition with their paths using the DTMC model
and the deterministic model. The objective of this simulation is to measure the degree of similarity be-
tween the two methods of perturbation, and analyze the effect of perturbing the parameters p and ¢ in
the dynamic of the SDE. Therefore, this paper can be considered as paving the way for studying more
realistic and more complex stochastic epidemiological models, in which the network can be divided into
three or four different classes depending on the degree of nodes.
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3. DTMC and SDE models: description, formulation and discussion

We emphasize that both methods (DTMC and SDE) are used to model systems with inherent ran-
domness, but they provide different mathematical frameworks for studying these systems, with key
distinctions in time continuity, state space, and modeling approach. In the DTMC method, time pro-
gresses in discrete steps, and the space state is also discrete. For instance, consider a system that can
be in state |m) at time t and transition to state |n) at time t + At, where t = 0, At,2At,3At,.... The
transition between states occurs with certain probabilities, and these probabilities adhere to the Markov
property, signifying that the future state depends solely on the current state and not on the sequence of
events leading to the current state. The evolution of the system is described by transition probabilities
Piny,m) (E+ALt) =P {|n> ‘ |m>}. Conversely, the SDE method considers both time and space states as
continuous. SDE incorporates continuous stochastic processes, often modeled by a Wiener process. It
provides a framework to describe the continuous evolution of a system by specifying the rate of change of
a variable to time, including a stochastic differential term. This differential term introduces randomness,
capturing the inherent uncertainty in the system’s dynamics: dX; = a(Xg, t)dt 4+ b(X¢, t)dW;, where dW;
is the stochastic differential term. This equation expresses how the random variable X evolves over time,
influenced by both deterministic (a(X¢, t)dt) and stochastic (b(X¢,t)dW;) components.

3.1. DTMC model

We assume that the network owns N nodes (sensor nodes or motes) of degree ki, N, nodes of degree
k2 and no nodes of any other degree, where k; > k. N1, Ny, ki, and k, are unvaried in time. Thus, the
network owns exactly N = N; + N; nodes whatever the time t. For j = 1,2, let S; (t) (respectively E; (t),
[; (t), and R; (t)) denote the discrete random variable for the average number of k;-degree susceptible (re-
spectively exposed, infectious, recovered) t. Let S (t) (respectively E (t), I(t), and R (t)) denote the discrete
random variable for the average number of susceptible (respectively exposed, infectious, recovered) nodes
at time t such that: S(t) = S1(t) + S, (t), E(t) = E1 () + Eo (¢), I(t) = 11 () + I (t), R(t) = Ry (t) + Ro (1).
Forj =1,2, let sj (t) = %}) (respectively e; (t) = E{“(:), i (1) = I%“(:] ), 15 (1) = R]j“(:)) denote the discrete
random variable for the average relative density of k;-degree susceptible (respectively exposed, infectious,
recovered) nodes at time t. Let s (t) = % (respectively e (t) = %, i(t) = %, r(t) = %) denote the
discrete random variable for the average density of susceptible (respectively exposed, infectious, recov-
ered) nodes at time t.

The schematic representation of deterministic model in Fig. 1 is equivalent to the following cou-
pled nonlinear ODEs, with satisfying initial conditions 0 < S;(0),E;(0),1; (0),R1(0) < Ny, and 0 <
S»(0),E>(0),12(0),Ry (0) < Ny. The conditions are chosen such that S1(t) + Eq(t) +I;(t) + Ry (t) = Ny
and Sp(t) + Ex(t) + Ia(t) + Ra(t) = Ny, where E;(t), I1(t), Ri(t) (resp. Ea(t), I2(t), R2(t) denote the aver-
age number of ki-degree exposed, infectious, recovered) (resp. ky-degree exposed, infectious, recovered)
nodes at time t:

dEdlt(t) = k1B (N1 —E1(t) = 1 (t) = Ry (1)) ©(L1 (1), Io(t)) — exEq (1),

dléit) = ocEl (t) - ’YIl (t)/

jzdlt(” = YL (1) — SRy (1), (1)
éz(t) = ko (N — Ex(t) — I (t) — Ry(t)) ©(Iy (1), Ip(t)) — Ea(t) — uEa(t),

dlczitt) =mNy + aby(t) —yvIo(t) — ulo(t),

dR;t(t) — YL(t) — uRy(t).
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Figure 1: Schematic diagram for the model.

For the meaning of the model parameters and the details of their associated assumptions, refer to
reference [19]. Let (Q),F,P) be a discrete probability space satisfying the usual conditions. The DTMC
SEIRS-SEIR stochastic model is formulated as a stochastic process X = {(E(t, w), (I(t, w),R(t, w))/t €
T, w e Q} C IN3, named stochastic realization, where T is the index set often represents time, such as:
T7={0,1,2,...}, (E(0,w),1(0, w),R(0, w)) = (eto, ito, Tt0), with izo = 1 and S(t, w) =N —E(t, w) —I(t, w) —
R(t,w), N is the constant representing the network’s total number of nodes (motes). This stochastic
process X is composed of two three-dimensional sub-processes X; and Xj; the first is the sub-process of
the discrete random variables E4, I, R; and the second is the sub-process of the discrete random variables
Ey, I, Ry suchas: forj =1,2, let X; = {(E;(t, w), (Ij(t, w), Rj(t, w))/t € T,w € Q} C N3, withforj=1,2,
let (E;(0, w), (0, w), Rj (0, w)) = (&jt0, jto, Tjeo), E1(t, w) + Ea(t, w) = E(t, w), L (t, w) + L(t, w) = I(t, w)
and Ri(t, w) + R (t, w) = R(t, w). For simplicity, the sample space notation is canceled and we denote by
E; (t) (respectively I; (t), and Rj (t)) for j = 1,2 a discrete random variables indexed by t for the average
number of k;-degree exposed (respectively infectious, recovered) nodes at discrete-time t.

Let at each time step, E (t) = E; (t) + E2 (t) (respectively I(t) = I; (t) + > (t), and R(t) = Ry (t) +
Rz (t)) denotes the discrete random variable S for the average number of exposed (respectively infectious,
recovered) nodes at discrete-time t. The other discrete random variables S; (t), Sz (t), and S (t) can be
respectively deduced from the following formulas: S; (t) = N;y —Eq(t) —I; (t) =Ry (t), S2(t) = No—
Ex (t) — I (t) —Ra2(t), and S (t) = Sy (t) + Sz (t). The state of our DTMC model (SEIRS-SEIR) is entirely
defined by (E(t), (I(t),R(t)), so by (E;(t), (I; (t),R; (t), for j = 1,2 ), because each random variable
depends on the others. It is therefore sufficient to define a joint probability function of (E (t), (I(t),R(t))
and a joint probability function of (Ej (1), (Ij (t),Rj (1), forj =1, 2) such that:

Pleyioro(t) = P{E(t) = e, I(t) = i, R(t) =7},

where ey, iy, 1¢ = 0,1,2,...,N, 0 < et +it+7m < N and sy = N—e¢ —iy —1¢. This joint function
signifies the probability of finding the system with e; (respectively i, 1) exposed (respectively infectious,
recovered) nodes at time t. And,

Plereine i) (eani2t,ray) (t)
=P{(E1(t) = e1y, 1 (1) = i1, Ra(t) = 11¢), (E2(t) = eaq, Lo (t) = i2t, Rp(t) =12¢) },

where ejt,ijt,r]—t = 0, 1,2,. . .,Nj, 0 < €t + ijt +Tjt < Nj, Sjt = N] — €t — i’jt — Tjt, for ] = 1,2 and
et +exx = ey, i1t + 12t = i, T1¢ + T2t = T, S1t + S2t = S¢. This joint function signifies the probability of
finding the system with e;; (respectively i;{, Tj¢) exposed (respectively infectious, recovered) nodes of k;-
degree for j = 1,2 at time t. The notation P is used instead of P (g, 1, r,),(E,1,,R,) (t) to denote the induced
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probability measure. Let At be a fixed time interval denoting the period of time between two consecutive
times t and t + At, where t € {0, At, 2At,...}. We assume that At is small enough such that at most two
event and only at most one change in each node state occur during this time. The well-established Markov
property, which states that each process at future time t 4+ At depends solely on the process at the present
time t and is independent of the sequence of the past processes, is expressed as follows:

P{(E1 (t+At),I; (t+At), Ry (t+At), Ex (t+At), L (t+At), Ry (t+ A) )|(Eq (t), I (1), Ry (1),
Ex (1), 12 (1),Ra (1)),..., (E1 (0),11 (0),Rq (0),E2(0),12(0), Ry (0) }
=P{(E1 (t+At), I; (t+ At), Ry (t+At), Ep (t+ At), I (t+ At), Ry (t+ At) )|(Eq (1),
I (t),R (), E2 (1), I (1), Ra (1)) }.

To finalize the formulation of the DTMC SEIRS-SEIR model for both groups, we establish the interde-
pendence between the states of each random variable and compute the transition probabilities for each
event, as outlined below: for each time t we relate all random variables by defining (i) the transition
probability during At from state (E (t),1(t),R(t)) = |m) to state (E (t+ At),I(t+At),R(t+At)) = [n),

Im) AN In), with [m) = (e, i, 1¢) and In) = (e{, i, 7{); and (ii) the transition probability during At from

state (E; (t),1; (t),Rj(t)) = |mj) to state (Ej (t+At),[; (t+ At),Rj(t+ At)) = ny), Im;) T—Jﬁy Iny), with
Im;) = (ejt, ijt,Tj¢) and In) = (e]-’t,ij’t,r].’t), for j = 1,2, such that we will see later that the index y in T}",
will be replaced by e;‘, r]Tk, 0 and the exponent * in T*, T]-”jy, e]Tk, r;‘ will be replaced by 4, — and without
exponent in T*, T.* | only, according to state n) and n;), j =1,2:

7y
(i) transition |m) LN n):
pln),lm) (t+At,t) - P {|n> — (e’/[/i’/uré) ‘ |m> — (et/ itrrt)} - P(T*)/
oy Tj*y .
(i) transition |m;) = [n;), where j =1,2:
plm),\mj) (t+At/t) =P {|n]> = (ej,t/ij/tfrj,t) } |m]> = (ejt,ijt,rjt)} = P(T;jy)

P(T*) and P(T]ffy ), will be used hereafter to indicate the simple notations of the transition probabilities.
We are now interested in determining the possible states for [n) and [n;), for j = 1,2 at time t + At by
proceeding as follows: At is chosen to be sufficiently small, ensuring that at most one change in the state
of the random variable I can occur. This allows us to cope with the formulation of our DTMC model in
the following manner: if I (t) = iy, then one of the three following possible states for the infected random
variable I can occur at time t + At: iy +1 or iy — 1 or i;. Therefore, we define three transitions T, T,
and T for three-dimensional processes (E (t),I(t),R(t) ) such as:

1) Im) = (e, it, 1) l; In) = (e{, it +1,1{), with the corresponding probability:
P(TH) =P{In) = (e}, it + L1 | Im) = (er, i, 7e) };
2) |m) = (e, i, T¢) LN In) = (e{,it —1,1{), with the corresponding probability:
P(T7)=P{n) = (e}, it —1,7v)) | Im) = (ex, i, Te) };
3) Im) = (e, i, 1t) A In) = (e{, it, r{), with the corresponding probability:
P(T)=P {|T1> = (e, i, 7¢) ’ Im) = (et,it,Tt)}}

4) a variety of multiple transitions with probability equal zero.



C. B'ayir, et al., ]. Math. Computer Sci., 35 (2024), 388—410 395

Each transition realization above is an intersection between two specific transitions (one is realized in
the first set, and the other is carried out in the second). Thus, thirteen possible cases for the model are
distinguished (see Appendix). Given the coexistence of two distinct states that both include three random
variables (Ej (t),I; (t), Ry (t)) and (Ex (t),I2(t),R2(t)), such that at most one of them can undergo a
variation during the time step At, and at most one change in the state of each random variable can
happen during this time interval, hence, the transition probabilities governing our DTMC model can be
concisely expressed through the system of equations (3.2) below:

Pi(At) =P (Tfe, N T2,0) ’ (e{t '1t,r{t, eﬁt/iﬁtﬂét) (e1t — 1, i1¢ + 1,11, €2t, i2t, T2t),
P2(At) =P (T 0N Tfo) ;o (el U T 8e b Ta) = (€1, e, T €26, 120 + 1,124,
P3(At) =P Tl:OmTZe;)' (e{t iltlrlt/eZt/th’Tét) (e1t,11t, T1t, €2t — 1, 1p¢ + 1, 104),
P4(At) =P (Tfr; N Tz,o) ;o (el o e s e o) = (e e — Lrie + 1, et log, T2t ),
Ps(At) =P (T1,0 N T£T+) ;o (el e T eae b Tag) = (ere, e, Ties 20,120 — L rog + 1),
Ps(At) =P (T 0N T{gs , (e10, Y T1e €90 b Tay) = (€16, 11, T1es €21, i2e — 1,12 ),

T\ PrAY) =P (ToNTy ), (el Uy e €0 b Tay) = (€1 l1e, T1es €2, 12t Toe — 1), (32)
Ps(At) =P (T .+ NToo), (efu iy e e b o) = (€1e + 1, 11t, T1t, €2, 121, T2t),
Po(At) =P (Ty,- NToo),  (efy e T €20 0 Ta) = (€10, t1e, T1e — 1, €2t dot, T2t),
Pio(A) =P (TioNTyer ), (el iy Ty €20 3 Ta) = (€10, it T1es €20 + 1, 12t, T2t),
P1i(At) =P (TioNThe ), (€] e Tl e ioe Tae) = (€10, 11t T1e, €2t — 1, 10¢, Tot),
P1o(At) =P (T 0N Ta0), (e10, Y T1e €20 1o Toy) = (€1, 1, T1es €21, 12t, T2t ),

0, otherwise.

Assuming that the Markov chain is homogeneous over time, the transition probabilities being indepen-
dent of time, thus:

P(Ina),ina)), (jmy),ima)) (£ AL =D (1ny), ing)), (jmy),Imy)) (AL) .

After having computed transition probabilities of the system (3.2), P; (At) (j =1,...,12), by following the
method in references [14, 15] (see the Appendix), the system of equations (3.2) will be rewritten as shown
in the equation (3.4) below. Thus, the difference equation satisfied by the probability pjm,) jm,) (t +At, 1),
where [my) = (e1, 111, T1¢) and Imy) = (ext, iot, T2t) can be expressed as a function of the probabilities at
time t as given by equations (3.3) and (3.6) below:

Plerviioro) (eainray)) (E+ AL
=TI (AP ((eriri—110), (eaninerae)) (B) FTR2AA)D ((e1ir o), (eatini—1,m20)) ()
FT3(AY)P (e, i10,m10) (e2e 4+ Ling—1,r20)) (B) FTTa(AY)P (1 ine +1,r10—1), (e2n,ine,rae) ()
+TT5(At).p(( elt,ilt,rlt),(eZt,iZt—o—l,th—l)) (t) + TT6(AL)-P((ery,ire i), (e2eine+1,r20)) (P) (3.3)
t) + T (AP (e~ 1101 ) (€26, iaer20)) ()
+TT10(AY)P (1, irerie), (e2e—Lize,rae)) ()
+ 1T (At)-p((elt,ilt,rlt),(e2t+1,12t,r2t)) () + T2 (AP ((erp,irem10), (€20, iaerae)) (B

\_/\_/
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P(Iny),Ing)), (Jmy),imy)) (At) =

Py (At) = e At{1 — [MpNy + ep + Bko® (iny, ioe) (N2 — enp —ipe — Tot) + 1 (en¢ + To¢) + (1 +7y) igt] At},
(e{t/ i{t’T{t’ eét/iétrrét) = (elt -1, ilt +1, Tit, eZt/iQt/TZt)/
Py (At) = {1 — [8T1¢ + Vire + xeqe + Bk1O (i1¢, 1o + 1) (N7 —eqe —ige — T1¢) |AtmaN2 AL,
(C{t, i{t/ T{t, eét/ “Lét/ rét) = (elt/ e, Tt €2t e + 1, th)/
P3 (At) = {1 — [8r1¢ +Vite + xeqe + Pk1© (irg, ioe +1) (N — eqy — ige — T1¢) | Atfoxen At,
(e{t/ i{tlr{t/ eét’ iét/rét) = (elt/iltrrlt/ €t — 1/ iZt + 1/ T2t),
Py (At) = i At{1— [nyNa + aere + BkoO (irg, ine) (N2 — ex¢ — o — Tog) + 1 (€2¢ + Tot) + (L +7Y) int | At}
(e{t/ i{t’ T{t' eét/ “Lét’ Tét) = (elt/ :th -1, T1¢ + 1, €2t/12t/ T’Zt)/
Ps = {1 - [5f1t +Yire + aere + PO (g, oe — 1) (N7 —eqe —ire — T1e) JAt}yineAt,
( s 11’(’ Tlt’ ezt’ 121:/ th) (elt/ 1"lt/ T1t, €2t/ i2’5 - 1/ Tot + 1)/
Pé(A = {1— [8r1¢ +vire + oere + Bk1O (igg, ioe — 1) (N1 — eq¢ — i1 — 11¢) | At pineAt,
(e 1t’ iltlrlt/ eZt’ lzt’ th) (elt/ilt/ T1t, eZt/i2t - 1/ T‘2’[)/ (34)
P7(At) = {1 — [8r1¢ +Vite + aere + Bk1O (i, int) (N — €1 — ire — T1¢) JAt furpeAt,
(elt’ 11’(’ Tlt’ eztr lztr r2t) (eltr e, T1es €2t, 2t T2r — 1)/
Pg (At) = Bk1O (i1¢, ioe) (N1 — eq¢ — i1 — T1¢) At{1 — [NaNa + epq + Bka® (igy, ine)
% (Np — ep¢ — ipg — Tog) + 1 (€2¢ + Tot) + (1 +7Y) int | At}
(e{t/ i{t’ r{1—_/ eét/ “Lét/ Tét) = (elt -1, ilt +1, T1t, eZt/iZt/ T’Zt)/
Pg (At) =nr1At{1— [MaNa + aeg + Bko® (igy, ine) (N2 — exr — ing — Tot) + 1 (€2 +T2¢) + (L +7Y) in¢] AL},
(e{t’ i’{tlr{t/ eét/iét/rét) = (elt/iltlrlt 1 €2t, i'ZtITZt)
Pio(At) = {1 — [6r1¢ + vire + aer + BK1O (i1, iot) (N1 — e1¢ — i1t — T1¢) | At} Bko® (i1, int)
(NZ — €t — 12’( - T2t) At (elt’llt’ Tlt’ eZt’th’ th) (eltllltlrlt/ €2t + ]- l2t/ T2t)/
P11(At) = {1 — [6r1¢ + vire + xere + Bk1O (i1g, ioe) (N7 — eqp —ire — T1¢) | At fpeniAt,
(elt’ 11’(’ Tlt’ eztr lztr th) (eltr 11t,T1t, €2t — 1,i Vt, TZt)/
P12 At =1- Z (e{t/i{t/ r{t’ eét’ iétlrét) = (elt/ilt/rlt/ €2t, 1.'2‘l:/T2‘t)/
0, otherwise.

3.2. SDE model

In practical scenarios, the parameters within a compartmental model are inherently subject to random
variations, which influence the population dynamics. Various forms of noise can capture this environ-
mental randomness, and numerous studies have indicated that white noise serves as an appropriate
representation for environmental variability in terrestrial systems (refer to Steele 1985 [43]). Therefore,
we introduce Gaussian white noise disturbances into this model to account for situations where the
parameters p and & undergo random fluctuations. To achieve this, we apply the technique of parame-
ter perturbation, a commonly employed approach in constructing stochastic differential equation (SDE)
models (as seen in works like Zhang et al. [49] ). Specifically, we replace & with & 4+ 01dB; and p with
1+ 02dBy, where Bq(t) and Bj(t) represent standard one-dimensional independent Brownian motions,
and o7 and o, denote their respective intensities. The remaining parameters remain consistent with those
in system (3.1), which gives the stochastic system (3.5) as follows:

dEq(t) = (k1B (Ng —Eq(t) = I1(t) = Ry (1)) ©(I1 (1), Io(t)) — xEq (1)) dt,

dIi(t) = («Eq(t) —vIi(t))dt

dRy(t) = (vI1(t) — ORy(t ))dt— o1R(t)dBq(t), (3.5)
dEa(t) = (ko (N2 — Ep(t) — In(t) — Ra(t)) ©(I1 (1), I2(t)) — aEa(t) — nEp(t))dt — 02 Eo(t)dBa2(t), ’
dIp(t) = (M2Ng + «Ep(t) —yvIo(t) — ulp(t))dt — opIx(t)dBo(t),

dRa(t) = (vI2(t) — uRz(t))dt — 2R (t)dBa (1),
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n1 (At) = o (eq + 1) At{1 — [maNy + xepy + BkaO (i1¢ — 1, 12¢) (N2 — €2 — o — Tog) + 1 (€¢ +Tog) + (L +7Y) ing | AL},
T (At) = {1 — [8r1¢ + Vit + xeqe + Bk1O (i, e — 1) (N1 —e1¢ — i1 — T1¢) | At fnaNpAt,
M3 (At) = {1 — [8r1¢ + Vit + aere + BkaO (ing, it — 1) (N7 —eqp —ige — T1¢) |Atfoc(eae +1) At,
W4 (At) = a (i1¢ + 1) At{1— [Ny + xepe + Bko© (i1t + 1, i0¢) (N2 — er —igr — Tog) + 1 (€2 +T2¢) + (R +7v) iot | At}
M5 (At) = { - [5T1t +vite + aery + Bk1O (e, ipe +1) (Ng —eqg —i1¢ —T14) }At}YEtAt,
ﬂa(At) = {1— [or1¢ +vire + xere + Bk1O (ige, iog +1) (Ng — e — igg — T1t) %At}u(izt +1)At,
M7 (At) = {1 — [8r1¢ +Vite + xere + Bk1© (g, ioe) (N1 — e1¢ — i — 1) At (roe + 1) At,
Tg(At) = BkqO (igq,ip¢) (N7 —eqe + 1 —igy —11¢) At{1 — [MpN2 + aerg + BkoO (i, ioe) (N2 — €2 — ipg — T2¢) (3.6)

+ 1 (et +12¢) + (1 +7v) ioe] At}
My(At) =1 (r1¢ + 1) At{1 — [nyNa + xeay + BkaO (in, i2¢) (N2 — exp —ipe — Tog) + p (€2 +T2¢) + (L4 v) it ] At},
M (At) {1 — [8T1¢ +vire + aer + Bk1O (ine,iot) (Ny —eqe —ige —T1e) JAt}R2O (it, ine) (N2 — ex¢ + 1 —ipp — Tog) At,
My (At) = {1- [5T1t +vire + aer + Bk1O (irg, io¢) (N7 — eqp —ire — T1¢) |Atpp(exe +1) At,

My (At) = 1—ZP) (At).
j=1

The transition probabilities P;(At), with j = 1,...,11 are given by the system of equations (3.4). In limit
cases, we consider P((e,, iy, 1), (eainr2)) (t) @S zero when at least one of ey, i1, T1¢, €2t, i2t, and T2t is
negative. We opt to introduce perturbations to the parameters p and & because of their pivotal role in
shaping the model’s dynamics. Their close association with the node-degree k; and the node-degree k;,
respectively, and the fact that p stands out as the most prevalent parameter in equations of the model (3.1),
renders them particularly susceptible to external influences, distinguishing them from other parameters.
It is imperative that these values of the SDE’s solution remain non-negative since they represent physical
quantities. Therefore, in order to analyze the dynamic behavior of system (3.5), our initial concern is to
determine whether the solution globally and continuously exists while remaining positive throughout its
evolution.

The following theorem demonstrates that a solution to SDE (3.5) exists, is global, and remains non-
negative.

Theorem 3.1. For any given initial value (E1 (0),1; (0),R1(0),E> (0),1I,(0),Ry (0) ) € RS, there exists a unique
positive solution (E1 (t),I; (t),Ry (t),Ex (1), (t),Ra (1) ) to SDE (3.5) on t > 0. This solution remains in ]R?r
with probability 1.

Proof. Since the coefficients of model (3.5) satisfy the local Lipschitz condition, then there exist a unique
local solution (E1 (t),I1 (t),R1 (t),E2 (1), (1),Ry (t)) ont € [0,7T.), where T, is the explosion time.
Let us prove that this solution is global, i.e.,, T = +o0o almost surely (a.s). Let ng > 0 be sufficiently
large for E; (0) ,I; (0), Ry (0), E2 (0), I (0) and R; (0) lying within the interval [T%O,no]. For each integer
n > ny, we define the stopping times 1, as T, =inft € [0, Te) : min(E;(t), I1(t), R1(t), E2(t), I2(t), Ra(t)) <
& or max Eq(t), Ii(t), Ri (1), E2(t), Io(t), Ra(t)) > ).

Throughout the rest of this paper we set inf () = co, where () denotes the empty set. One can see that
Tn, is increasing as 1 — o00. Let Too = limp 00 Tn, thus 1, < Te a.s. If we prove that 1., = oo a.s, then
Te = oo a.s, thus (Eq(t),I1(t), R1(t), Ea(t), In(t), Ra(t)) € ]R?r a.s. If this statement is false, then there exist
a pair of constants T > 0 and ¢ € (0,1) such that P € {1, < T} > €. consequently, there exists an integer
n; = ng such that

Pe{t, <T}>¢ m>=n,. (3.7)
Let define a C*>-function V : RS — R by

V(Eq, I1, Ry, B, Ip, Ro) = (E; —log Eq) + (I; —log I1) + (Ry —log Rq)
+ (E2 —log E) + (I —log Ip) + (Ry —log Ry).

It is easy to verify that V is a non-negative function. Let (E;(t), I1(t), Ri(t), Ea(t), I2(t), Ra(t)) = (E1 —
logE1) € RY, by application of Ito formula, we have:
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1 1
av = ((1— E)(klﬁ(Nl —E1 =11 —Ry)O(I;, I) — akq) dt + ((1— E)(“El —vL)dt
1 1 1
+((1— E)(YII —ORy) + Eﬁﬁ)dt+ (1- g)(kzﬁ (N2 —E; — I, —R2) O(I4, Ip)
1 1 1 1
— oy — uEy + ~03)dt + (1 — =) (M2Na + «Ep —yI — ulo) + ~03)dt + ((1— =) (vl — uR
2—uE2+ 5 5) (( Iz)(nz 2 2 — vl —uly) 5 5) (( RZ)(YZ 1R2) (3.8)
1, 1 1
+ EGz)dt +((1— g)(—ﬁzEz) +(1— E)(—Gﬂz)
1 1
+(1— f)(_UZRZ))dBZ +(1— ﬁ)(_clRl))dBl
2 1
=LVdt+ (B3op — 02(Ex + 1o + Rp))dBs + 01(1 — Ry))dBy,
where
kiB(N;—E1—11 —R1)O(I4, I E I
LV =kiB(N; —E; —I; —R)O(Iy, [2) — 1PN —E1— i — R)O(h 2)—06*1—5131—1/*1
Eq I8 Ry
koB (N2 —Er — I, —Rp)O(I4, I
+ k2B (N2 —E2 — I = Rp)O(Iy, Ip) — nks — 2P(N2 — E2 EZZ 2)0(l, I2)
N E I 1
FMNy — pl — N2 — 2 — Ry — Yoo + 31+ 2 + 2y + 8 + = (07 + 303)
I, I, R» 2
1
< kiBN1O(I1, Ip) + kaBNLO (I, Ip) +MNp + 3+ 200 + 2y + 6 + E(o% +30%)
1
< KkiBN; + kaPNo +1Np + 3+ 2 + 2y + 8 + E(o% +303%) =K.
By substituting the last inequality into (3.8), we get:
dV(Eq, I1, Ry, B2, Iz, Rp) + (302 — 02(E2 + 12 + R2))dBa + (1 — Ry )dBy, (3.9)
which gives
ThN\T ThNAT Th/N\T
J dV(Eq, It, Ry, E2, I, Rp) < J Kdt-f—J 02(3 — E2(1) — Io () — Rz(1))dBa(7)
0 0 0
T AT
|7 - Rienami,
where 1, AT = min{ty, T}. By taking the expectation of the (3.9) we obtain
E[V(E((Ta AT), Ii(tn AT), Ri(Tn AT), E2(Tn AT), L2(tn AT), R2(Tne AT))] (3.10)

< V(El (0)/ Il (O)/ Rl (0)/ F—2(0)r 12(0)/ RZ(O)) +KT.

Let Q,, = {tn < T} for n > ny, we have from (3.7), P(Q.) > ¢. Note that for w € Q,, there ex-
1

ists at least one of Ei(tn, w), [1(Tn, w), Ri(Tn, w), E2(Th, w), 2(Th, w), and Ra(tn, w) equaling n or -,
50, V(E1(tn, w), I (Tn, w), R1 (Tn, w), E2(Tn, w), L (T, w), Ro (T, w)) = (n—1—logn) A (L —1—1log(1)).
Therefore, from (3.10), V(E1(0),11(0), R1(0), E2(0), I2(0), R2(0)) + KT > Elxa, (w)V(Ei1(tn), L1(Tn), Ri(Tn),
E2(tn), I2(tn), R2(Tn))] = e((n—1—logn) A (% —1- log(%))), where x o, is the indicator function of Q,.
By letting n — oo, co > V(E1(0),1;(0),R1(0), E2(0), I2(0), R2(0)) + KT = oo a.s, which is a contradiction. So
we must have T,, = co. Thus, the solution of SDE (3.5) will not explode at a finite time with probability

one. This complete the proof of Theorem 3.1. O
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Remark 3.2. The previous theorem guarantees the well posedness of the SDE (3.5). One can investigates
some other classical questions such as the extinction, the permanence, the persistence in the mean, and
the existence of a unique stationary distribution for the infected nodes variable I(t). We note that these
concernes are often discussed in the literature and use the SDE background theory (see for instance
[11, 13, 27, 35-37]). The investigation of these questions for SDE (3.5) represents a real challenge in our
futur papers.

4. Numerical simulation and discussions

To bolster our theoretical findings, we present numerical simulations encompassing both stochastic
models (DTMC and SDE) alongside the deterministic counterpart. For the deterministic model, we em-
ploy the fourth-order Runge-Kutta method to effectively solve the Ordinary Differential Equation (ODE)
as expressed in equation (3.1). Meanwhile, the DTMC model is subjected to simulation using the Monte
Carlo method, harnessing its power to provide probabilistic insights. To address the intricacies of the sys-
tem outlined in equation (3.5) within the stochastic framework, we leverage the Euler-Maruyama method.
Furthermore, a comprehensive discussion of these numerical outcomes is presented, accompanied by a
comprehensive comparison between all models.

4.1. DTMC model

We proceed the DTMC model with the Algorithm 1. To illustrate its dynamic behavior, we give
two examples devoted to the evolution of each stochastic fraction e (t), i1 (t), 1 (t), ex (1), 12 (1), T2 (1),
e(t), i(t), and r(t), and we compare them with the deterministic ones. In Example 4.1, we take the
same arbitrarily selected network parameters in Example 3 introduced in Ref. [19]. In Example 4.2, we
numerically determine the network parameters by modeling the Barabési-Albert scale-free network, and
we demonstrate the effect of the network size (N = 15000) on the dynamics of the stochastic model.
Additionally, we show the effect of model parameters on the total stochastic fraction of infections.

Example 4.1. We consider the case given by the network and model parameters N; = 200, N, = 300,
ki =150, k; =10, « = 0.1, 5 = 0.08, p = 0.05, B = 0.0005 and y = 0.03, n, = 0.0006. Fig. 2, Fig. 3, and
Fig. 4 represent respectively the time plots of exposed fractions, infected fractions, and recovered fractions
in both cases (deterministic and stochastic) with a time step At = 0.001, and initial conditions:

(61 (0) ;s €2 (0) ;€ (0) At (O) v (0) at (0) ;11 (0) s T2 (0) ;T (O) )
= (0.1,0.033,0.0598, 0.075,0.1,0.09, 0.025, 0.0266, 0.02596)

Figures 2, 3, and 4 show the dynamic behavior of DTMC model. Notably, it prominently converges
towards a stable viral equilibrium, which aligns with the predictions of the deterministic model. The
congruence between these two models becomes strikingly apparent as their solutions closely coincide,
especially when the mean of the random realizations significantly increases.

Example 4.2. Consider the case given by the network and model parameters N; = 693, N, = 14307,
ki = 2179, k; = 3.13, o = 0.005, 4 = 0.002, p = 0.003, B = 0.004, and y = 0.006, n, = 0.0002. Fig. 5
represent respectively the time plots of exposed total fractions, infected total fractions, and recovered total
fractions in both cases (deterministic and stochastic) with a time step At = 0.001, and initial conditions:

(el (0) s €2 (0) ,€ (0) /il (0) 11'2 (0) /:L (0) ,T1 (0) ;T2 (0) /T (0) )
= (0.216,0.454,0.443,0.548,0.258,0.272,0.108,0.1048, 0.105).
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Algorithm 1 Algorithm of the DTMC SEIRS-SEIR model

Require: The transition probabilities Pj(At), withj =1,...,6

1:

2:
3:
4:
5:

10:
11:

12:
13:

14:
15:

16:
17:

18:
19:

20:
21:

22:
23:

24:
25:

26:
27:

28:
29:

Initialize the six random variables Eq, Iy, Ry, Eo, 1o, Ry, E, I, and R, where E +— E; +E5, [ < I; + 1,
R+ Ri+ Ry
for t «+ 1 to endtime do
Generate an uniform random number q in the interval ]0, 1]
if q < Py (At) then
Ei1(t+At) <« e;r —1, B (t+At) < ey, E(t+At) <« e +ex—1, 1 (t+At) « 11 +1,
L (t+At) « i, [(t+AL) « i1 + 1ot +1, Ry (t+At) < 11¢, Ry (t+AL) + 19, and R(t+ At) «
Tt + T2t
else if q < P (At) + P, (At) then
Ei(t+At) « e, B2 (t+AL) «+ ey, E(t+AL) < ey +ex, L1 (t+AL) + i1y, L (t+AL) «

e+ 1, T(t+At) « i1¢ + it + 1, Ry (t + At) « 111, Ra (t + At) < 1, and R (t + At) + r1¢ + T2t

else if g < P (At) 4 P, (At) + P3 (At) then
E1 (t—i-At) — e1t, Ez (t+At) — et — 1, E(t+At) < e1r + eyt — 1, I] (t-l-At) — i1,

L (t+At) <« it +1, I(t+At) « i1t +12t +1, Ry (t+At) < 11¢, Ro(t+ At) < 13, and R (t+ At) «

Tt + T2t
else if q < Z] _1 Pj (At) then
E1 (t+At) « elt, Er (t+AL) < ey, E(t+At) « ejr+ex, 1 (T+AL) <« 111 —1, L (t+At) «
by, I(t+AL) «— it +ipt —1, Ry (t +At) <11t +1, Ry (t + At) < 1o, and R(t + At) < 1 + 121 + 1
else if g < Y ;_; Pj (At) then
E1 (t—i-At) — €1, Ez (t—i-At) < ey, E (t—i-At) — et tex, It (t—i-At) — i1t, I, (t—i-At) —
e — 1 T(t+AL) + i1y +it — 1, Ry (t+At) <« 11, Ry (t + At) <1t +1, and R (t + At) + 1¢ + 121 + 1
else if g < Z?:l P; (At) then
Ei(t+At) «+ e, B2 (t+AL) «+ ey, E(t+AL) < ey +ex, L1 (t+AL) + i1, L (t+AL) «
iy —1, I(t+At) <— 11t+12t—1 Ry (t+At) + 11, Ry (t+ At) + 15, and R (t + At) < 11t + 1ot
else if q < Z _1 Pj (At) then
Ei(t+ At) — elt, Er (t+AL) < ey, E(t+AL) + err +ext, I1 (t+AL) + 11, L (t+ At) + 1y,
I(t+At) < llt—i-lzt, R1 (t+At) < T1t, Ry (t—i-At) (*th—l, and R(t—l-At) — T1t+T2t—1
else if q < Z] _1 Pj (At) then
Ei(t+At) « €1t +1, E5(t+At) < ey, E(t+At) « et +ex +1, 1 (t+AL) +— g,
I (t4+ At) < 1, I(t+At) + i1¢ +io¢, Ry (t + At) < 11¢, Ro (t + At) < 19, and R (t + At) < 114 + T2t
else if q < Z?:l P; (At) then
Ei(t+AL) < ey, Ea (t+At) < ep, E(t+At) < e +ex, 1 (T +HAL) < i1, I (t +At) « 1o,
I(t+At) « 11t—|—12t, Ri(t+At) + 11t —1, Ry (t+At) + 1, and R(t + At) < 11t + 12 — 1
else if q < Z ; (At) then
Eq (t—i—At) <— elt, Eb(t+At) <« ey +1, E(t+At) «+ et +tex +1, I1 (t+AL) «— 1y,
I, (‘t + At) — ¢, 1 (t + At) — it +1t, Rq (t + A‘t) — T1t, Ro (t + A‘t) < T3¢, and R (‘t + At) — T1¢ + T2t
else if q < Z]H 5 (At) then
Ei(t+At) < e, Ep(t+At) < e —1, E(t+AL) « ex+ex—1, H(t+AL) « g,
I (t+At) < i, I (t+AL) < 11t + 121, Ri (t +AL) < 11¢, Ry (t + At) + 19, and R (t + At) < 11t + Tt
else
Ei(t+At) < e, B (t+At) < ep, E(t+At) < e +ex, T (T +HAL) < i1, L (t +At) « in,
I(t+At) + i1t +iog, Ry (t+ At) < 11¢, Ro (t + At) < 19, and R (t + At) < 114 + 12t
end if
end for
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Figure 2: Evolution of the three total fractions of exposed for the DTMC model with time together with the
corresponding solutions of the deterministic model (smooth curves); (a) correspond to a single stochastic
realization, and (b) correspond to the mean of 10 stochastic realizations.
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Figure 3: The three numerical means of the total fractions of infected as function of time for the DTMC
model versus the solutions of the deterministic ones; (a) and (b) correspond respectively to a single
stochastic realization and to the mean of 10 stochastic realizations.
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Figure 4: The temporal evolution of the three numerical means of recovered fractions in the DTMC
model are compared to their deterministic solutions (smooth plots): (a) correspond to a single stochastic
realization, while (b) (blue curves) show the mean of 10 stochastic realizations.
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Figure 5: The temporal evolution of the total fractions of exposed, infected, and recovered in the DTMC model is
illustrated alongside the corresponding solutions of the deterministic model for a single stochastic realization.

Figure 5 demonstrates that, despite a substantial population size (comprising a significant number of
nodes), the dynamic behavior of the DTMC model consistently converges to a stable viral equilibrium,
aligning with the deterministic model’s predictions. We also observed a notable reduction in fluctuations
within the DTMC model when we employed a simulation of a Barabési-Albert scale-free network to de-
rive the network parameters compared to Example 4.1, where the authors used arbitrary parameters of a
reduced scale-free network. Furthermore, the virus extinction is unattainable regardless of the network’s
size. This underscores the impracticality of completely eradicating all viruses from the WSN. However,
an alternative approach entails implementing effective measures to sustain a more balanced energy con-
sumption profile and fortify the WSN'’s resilience against potential failures. Figure 6 confirms that as
follows.

(i) as depicted in Figure 6 (a), elevating the outgoing rate of motes u leads to a decline in the count
of infected sensor nodes. Consequently, it is highly recommended to enhance the departure probability
of the lowly linked infected sensor nodes from the sensor field by integrating some strategies such as:
implementing self-healing mechanisms that automatically isolate or remove the lowly linked infected
motes. This will enhance the probability of those motes departing from the sensor field. Use behavioral
analysis to identify potentially the lowly linked infected motes and remove them from the network before
the infection spreads. Enable sensing the lowly linked sensor nodes to collaborate for collective defense by
sharing information about infections and taking collective action to increase the probability of departure.

(ii) Decreasing the incoming rate of infected motes 1 is beneficial in reducing infection (see Figure 6 (b)).
Therefore, we recommend taking the following measures: ensuring that incoming infected sensor nodes
receive timely updates and patches to address vulnerabilities, reducing the likelihood of successful infec-
tions. Using intrusion prevention techniques to prevent or mitigate attempts by infected motes to infiltrate
the sensor field. Implement robust encryption, authentication, and intrusion detection systems to deter
and identify potential threats from infected motes to enhance the security of the sensor network.

(iii) Enhancing the cure rate y can help stop malware spread (see Figure 6 (c)). For example, regular
updates and patches for infected sensor nodes can address vulnerabilities, reducing the likelihood of
infection and facilitating smoother recovery. Algorithms can also be introduced to enable these motes to
independently detect and recover from infections, boosting overall recovery probability.

(iv) Reducing the exposure rate 3 or infection rate o can help reduce the prevalence of malware (refer
to Figs. 6 (d), (e)). To achieve this, it is crucial to ensure timely updates and patches for susceptible
and exposed sensor nodes to address vulnerabilities and minimize the risk of infection. Additionally,
educating users and administrators about security best practices can help minimize unintentional actions
that could lead to exposure or infection.

(v) The predominance of the malware is decreased by reducing the susceptibility rate 5 (see Figure 6 (f)).
As previously mentioned, it is essential to strengthen encryption and authentication protocols to protect
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against unauthorized access. Additionally, regular updates and patching should be ensured for recovered
hubs to limit their re-infection.
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Figure 6: Impact of the different values of the model parameters (u, 112, v, B, &, and & ) on the average total density
of infected sensors per unit of time, on the average total density of infected per unit time.

4.2. SDE model
To illustrate the dynamic behavior of SDE model (3.5), we propose an example given by the following
parameters.

Example 4.3. We set N; = 200, N, = 300, k; = 150, k, = 10, « = 0.1, § = 0.08, n = 0.05, 3 = 0.0005,
Y = 0.03, 12 = 0.0006, o1 = 0.05, 0 = 0.08, and At = 0.001. The parameters of Example 4.3 are chosen
arbitrary, numerical simulation in Fig. 7 shows the paths of e, i, and r in both cases (deterministic, DTMC,
and SDE) by using the parameters of Example 4.3, and the initial conditions:

(e1(0),€2(0),€(0),11 (0),i2(0),1(0), 71 (0),72(0),7(0))
= (0.1,0.033,0.0598, 0.075, 0.1,0.09, 0.025, 0.0266, 0.02596).

First, simulations support the positivity and the uniqueness of the model’s solution (3.5), as shown in
Theorem 3.1. Second, some other properties have been identified from simulations but need theoretical
proof (which will be the objective of a future paper).

(1) A big concordance between the deterministic curve, the DTMC curve, and the SDE curve. The align-
ment between the deterministic curve and the SDE curve is more evident in Figures 7 (a) and (b) than
the alignment between the deterministic curve and the DTMC curve. This distinction is attributed to
the substantial fluctuations in the DTMC model as opposed to the smoother behavior of the SDE model.
However, in Figure 7 (c), both models exhibit nearly identical fluctuation patterns.

(2) A remarkable stability of the deterministic model (black curves) and the SDE model (blue curves) over
long periods.

(3) As for the deterministic model, there are no extinction times for the SDE model and DTMC model.
These perspectives need to be confirmed theoretically in a future paper.
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Figure 7: The temporal evolution of the total fractions of exposed, infected, and recovered in both the DTMC and
SDE models, along with their corresponding solutions in the deterministic model (smooth curves), are depicted for
a single stochastic realization.

5. Conclusion

Our work aims to bring realism to the modeling of malware propagation in reduced scale-free topology-
based wireless sensor networks. This is achieved by introducing a stochastic approach, acknowledging
the omnipresence of randomness in real-world scenarios. We employed two distinct methodologies, the
discrete-time Markov chain (DTMC) and stochastic differential equation (SDE) techniques.

On the one hand, we have shown how various model parameters influence the overall infection dy-
namics within these networks. Our work went a step further by validating the credibility of our stochastic
models, demonstrating their consistency and the extent of their fluctuations in comparison to the de-
terministic approach. This comparative study provides crucial insights into the impact of stochastic
fluctuations on the dynamics of malware propagation in WSNs.

On the other hand, in the real world, problems often exhibit non-deterministic behavior and incorpo-
rating stochastic effects into a model can enhance its accuracy when investigating various phenomena.
The technique of the perturbation of parameters is considered one of the significant techniques that per-
mit to integration of stochastic fluctuations into a deterministic model. A full section of our work has
been dedicated to studying a stochastic version of the model (3.1) created by the parameters perturbation
technique. First, the solution’s existence, globality, and uniqueness have been proven, which validates
the well-posedness of the stochastic model. Next, throughout a numerical simulation, we have provided
a preliminary perspective on the stochastic stability of the solution. This last result is significant, how-
ever, simulation alone cannot be relied upon to prove this hypothesis. The theoretical proof remains a
significant perspective challenge in an upcoming paper. The results of this latest approach exhibited a
high degree of consistency with those derived from the DTMC method, bolstering our confidence and
certainty in the findings, especially when they agree with the deterministic approach.

Our findings also underscore the advantages of implementing specific countermeasures within the
WSNs. After implementing these countermeasures, we have observed significant improvements in the
network’s overall resilience against faults and a more balanced power consumption, attributed to the
decreased number of infected sensing devices. This research establishes a meticulous and systematic
probabilistic framework, offering a profound understanding of the intricate randomness inherent in the
behavioral patterns of malware within wireless sensor networks. These insights contribute to advancing
network security strategies and management practices in the face of evolving threats.

In future research, we aim to improve our models by incorporating greater realism. Specifically, we
plan to explore models like SEIR-SEIR and SEIR-SEIR-SI, which include multiple sub-chains with high
dimensions constructed on a scale-free network or its variations and incorporate three categories of nodes.
Our methodology will extend to utilizing continuous-time Markov chains (CTMC), introducing intricate
dependencies that encompass perturbing model parameters, and incorporating non-linear dependence
probabilities, thereby capturing more nuanced aspects of the system dynamics. In addition, our frame-
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work can be extended to describe different dissemination processes, such as the spread of diseases, opin-
ions, and rumors on social media. This expansion will enhance our understanding of complex dynamic
systems.

Appendix

(A) Relationship between all states of each random variable
Case (1): The transition T* can take place if the two following transitions TJr _and T or two following

transitions Ty g and T, or two following transitions Tj o and T," _ are Carrled s1multaneously:
: e,

T+

1e

. . . Ty, .
mi) = (e1e, e, Te) = Ia) = (ere — L ire + L,rie) and [ma) = (eaq, iag, T2t) = n2) = (eat, iae, T2t),
with the corresponding probability:
P <T1Jr -NT 0)
=P{n1) = (ere — L it + 1, 11¢) | Im1) = (e1e, i1, T1e) NIn2) = (e2e, boe, T2¢) | Im2) = (e2t, i2e, T2¢) }

(D

. Tipo . T . .
or [my) = (e1r, i1, T1t) =5 1) = (e1r, 1, T1¢) and [ma) = (eat, i2e, T2t) = M) = (eat, iae + 1,72¢), with the
corresponding probability:

p (T1 e Tjo)

=P {In1) = (e1g, t1e, 11¢) | Im1) = (erq, l1e, T1¢) Nn2) = (e, i2e +1,72¢) | Ima) = (eat, i2e, T2¢) }
T T
. 1,0 . . 2,e5 .
or [my) = (e1t, i1t,71e) = Ma) = (e1e, e, T1e) and [ma) = (ear, o, T2e) =" IM2) = (ear — 1, iae +1,72t),

with the corresponding probability:

P (T1 oN T+ ,>
=P {In1) = (e1e, i1e, 11¢) | Im1) = (e1q, e, T1¢) Nn2) = (e2e — 1, 2¢ +1,12¢) | Im2) = (ent, e, T2t) } -

This means that any increasing by one in random variable I during At requires only one of the two
following events:

(i) an increasing by one, during At, in random variable I; during At, thus a decrement by one in the
random variable E; during this time step;

(ii) an increasing by one, during At, in random variable I, during At, thus a decrement by one in the
random variable E> or not during this time step.

Case (2): The transition T~ occurs if the two following transitions Tf " and T, or two following transi-
T

tions Ty g and T, or two following transitions T; o and T, . are done simultaneously:
¢ ar

.
. 1 . . Tao .
Im1) = (e1t, lit, T1e) — ) = (e1e, it — L e +1) and |my) = (ext, io¢, T2t) = M2) = (€2, lot, T2t),

with the corresponding probability:
P <T7 +NTy 0)

=P{ln1) = (e1, 1t — L e +1) | Ima) = (ere, i1, 11e) NN2) = (e2t, 1ot T2t) | M) = (e2¢, i2e, T2¢) }
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. Tio . T . .
or my) = (e1q, i1, T1e) = 1) = (e1e, i1e, T1¢) and [ma) = (ear, iar, T2t) = Ma) = (e, ia¢ + 1,12¢), with the

corresponding probability:

p (T1 e T2+0)

=P {In1) = (e1g, i1e, 11¢) | Im1) = (ere, l1e, T1e) Nn2) = (e, i2e +1,72¢) | M) = (eat, i2e, T2¢) }
. Tio . . ;r .
or [my) = (e1t, i1t,T1t) = M) = (€1, e, T1e) and my) = (ear, izt,m2t) =" Im2) = (ear, it — 1L, 12e + 1),

with the corresponding probability:

P (Tl oM Ti +)
=P {In1) = (e1e, l1e, T1¢) | 1) = (e1e, e, T1e) NIN2) = (ent, ioe — Lo + 1) | Im2) = (eae, e, 12¢) } -

Then any decreasing by one, during At, in random variable I requires only one of the two following
events:

(i) a decreasing by one, during At, in random variable Iy during At, thus an increasing by one in the
random variable Ry during this time step;

(ii) a decreasing by one, during At, in random variable I, during At, thus an increasing by one in the
random variable R; or not during this time step.

Case (3): The transition T happens if the two following transitions T; o and T, o or two following transitions
Ty e+ and Ty or two following transitions T, .- and T or two following transitions T and T, .+ or two
following transitions Ty and T, .- or two following transitions Ty and T, - are done simultaneously:

. Tio . . Tro .
Im1) = (e1t, L1, T1e) = 1) = (e1r, lie, T1¢) and |mp) = (ext, iog, T2t) = M2) = (€2, 1o, T2t),

with the corresponding probability:
P (Ti,0 N T20) = P{In1) = (e1e, i1, m1e) | Ima) = (e1e, i1, 1) NN2) = (eat, e, Tot) | M) = (e2t, i2e,T2¢) }
Tt Ta0

or [my) = (e, tre,11e) = 1) = (err +1,1e,11¢) and [my) = (ear, far, T2t) = Ing) = (e, iar, T2t), with
the corresponding probability:

P (Tl el NT 0)
=P {In1) = (er¢ + 1L i1, m1e) | Ima) = (ere, iae, 11e) NN2) = (e2t, i2e, T2t) | M) = (e2t,i2e,T2¢) }

. Lry . . Tro . .
or [my) = (e1, i1e, T1e) — 1) = (€1, i1e,T1e — 1) and [my) = (ear, iot, Tot) — In2) = (ear, izt, T2t), with

the corresponding probability:

P (T1 . ﬂTzo)

=P {n1) = (e1r, 1e, 11t — 1) | Imu) = (e1e, 1e, T1e) NN2) = (e2e, iot, Tot) | Im2) = (€2, i2e, T2¢) }
. Tio . . Tze . .
or [my) = (e, i1e, T1e) = 1) = (e1t, lie, T1¢) and [mp) = (ext, ie, 2e) =" IM2) = (ear + 1,12, T2¢), With

the corresponding probability:

P(T10mT26+>

=P {In1) = (e1, t1e, T1e) | Imu) = (e1g, 1, m1e) NIN2) = (et + 1, i2e, 2t) | [m2) = (e2e, i2e, T2¢) }
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.

. Tio . . 2,e5 . )
or [my) = (e1t, e, T1e) — 1) = (ere, e, T1e) and [my) = (ezt, e, T2t) =" M2) = (ear — 1, 12¢, T2t), with
the corresponding probability:

P (T1 oN T2 ef>
=P {In1) = (e1, i1e, 11¢) | Im1) = (ere, e, 11¢) Nn2) = (e2e — 1,12, T2¢) | M) = (e2t, i2e, T2¢) }

. Tio . . TZT . )
or [my) = (e1t, l1t, T1e) — 1) = (€1, lir, T1e) and [ma) = (ezt, iat, T2t) =" n2) = (ea, lar, T2r — 1), with
the corresponding probability:

P (Tl oM T2 Tf)
=P {In1) = (err, l1t, T1¢) | Im1) = (e1e, tae, T1e) N IN2) = (eae, e, T2e — 1) | Im2) = (eae, i, 120) } -

In this case, no change occurred in the random variable I during At, this requires only one of the three
following events:

(i) no change in state, during At, for the four random variables I, I, Eq, E», Ry, and Ry”;

(ii) no change in state, during At, for the two random variables I;, I, with an increasing by one in the
random variable E;, or a decreasing by one in the random variable R; during this time step;

(iii) no change in state, during At, for the two random variables 11,1, with an increasing by one in the
random variable E;, or a decreasing by one in the random variable E; or R;, during this time step.

Case (4): A variety of multiple transitions, during At, with probability equal zero. All these above

o\ . .. . . . Timy)ing)
transitions can be summarized by defmmg the following two transitions: |mj) = (e, i1t, T1t) T

Tim Vo)
T na) = (€3¢, 15, Top)-

n1) = (ej, i, 1) and [mya) = (eat, tat, T2t)
(B) Derivation of transition probabilities
To ensure that the transition probabilities given by system of equations (3.4) lie in the interval [0, 1], the
time step At must be chosen sufficiently small such that max(z) 1P (At))<1. P1(At) =P (Tfr o N T2,0> =
€1
P (T1+ e,|T2,0> P (Ty0), where P (T1+ ef|T2,0) is the conditional probability to have T1+ .- given Tp0. Since
71 71 71
during the T, transition there is no change in the state of the random variables E,, I, and R; then:

P(T), M) =P}, ) = aerAt,

where © (11, ) = %, see reference [19]. We have

Z Plny),imy) (E+ALE) =1

In2)

Plesinerae) (eaningrae) (ET A6 ) +P (e in+1ma0), (eatinerae) (EH A6 ) +Pler—1, i +1ma0), (e20iae,ma) (T ALT)
+Plesein—1rae) (eanizera) (FH AL ) FP(ere i —1ra0 1), (€20t ra) (E+ AL T)
TP e+ 1z ra ), (eanizora) (EH ALY TP (er—1 10,00, (e, izera) (E+ AL )
+ P e iz 1), (eaninra) (F AL L) =1,

by adopting the simple notations we write:

P(To0) =1-P(T50) =P (TS ) =P (To0) =P (T ) =P (ot ) =P (Taey ) P (Tary )
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<T§,LO) =1,Naz, P (T;e2,> = aeriAt, P (szo) = i At,

P
P (B};) =7vinAt, P (Tz,e;> = Pka® (i1¢,i2¢) (N2 — €2t —iot —T2t) At, P <Tz,e;> = peytAt,

P (To0) =1 — [N+ xext + Bko® (irg, iot) (N2 — ea¢ — ioe — To¢) 4w (€20 +12t) + (L + V) it At.
We finally obtain:
P1 (At) = CxeltAt{l - [leNz + aeat + PkaO (i1t, iat) (N2 —exe — ot —T2¢) + 1 (€2t +12¢) + (L +7Y) iZt]At}-

With the same analysis, we also calculate other transition possibilities:

Py (At) = {1 — [6r1¢ + Bk1O (i1g, ot + 1) (N7 —eqg — i1g — T1¢) + e + virg| At} pNoAt,

P3 (At) = {1— [or1¢ + Bk1O (i1g, fot + 1) (N7 —eqg — i1g — T1¢) + ey + ving| At} xepAt,

Py (At) = yigAt{1 — [nyNa + aene + BkaO (ire, i2e) (N2 — er —ing — 12¢) + 1 (€2 4 T2¢) + (w4 v) i2¢] AL},
P5 (At) = {1 — [8r1¢ 4+ Bk1O (i1g, ioe — 1) (N1 — eq¢ — lie — T1e) + oxery +vine| At pyizeAt,

Pe (At) = {1 — [dr1¢ + BKk1O (i1¢, 1ot + 1) (N1 — e1¢ — i1 — T1¢) + xeqy +yving| At pirAt,

P7 (At) = {1 — [dr1¢ + BKk1O (i1¢, 1ot + 1) (N7 — e1¢ — i1¢ — T1¢) + ey + yireg| AtfurpeAt,

Pg (At) = Bk1© (i1¢, i2¢) (N7 — e1g — irg — 11¢) At{1 — [dr1¢ + BK1O (i1e, ine + 1)

x (N —ejg — i1 — T1e) + oeqe +vige | At}
Pg (At) = 811 At{1 — [511¢ + BK1O (i1y, ioe +1) (N1 — €1 — l1e — T1¢) + xeqe +vire] At},
P10 (At) = {1 — [8r1¢ + BK1O (i1, i2¢) (N1 — er¢ — i1e — T1e) + xeqe + vire| At} ko0 (iry, i)
X (N2 — ear —ip¢ — T2t) At,
P11 (At) = {1 — [6r1¢ + BK1© (i1g, i2e) (N7 — e1¢ — i1e — T1¢) + xeqe + virg| At} pesAt.

Since
12
> PjAay =1,
j=1
then
11
P (At)=1—) Pj(At).
j=1
References

[1] D. Acarali, M. Rajarajan, N. Komninos, B. B. Zarpelao, Modelling the spread of botnet malware in IoT-based wireless
sensor networks, Secur. Commun. Netw., 2019 (2019), 13 pages. 1

[2] L.J.S. Allen, An introduction to stochastic processes with applications to biology, CRC Press, Boca Raton, FL, (2011). 2

[3] L.]J. S. Allen, An introduction to stochastic epidemic models, In: Mathematical epidemiology, Springer, Berlin, 1945
(2008), 81-130.

[4] L.J.S. Allen, E. J. Allen, A comparison of three different stochastic population models with regard to persistence time,
Theor. Popul. Biol., 64 (2003), 439-449. 2

[5] J. Amador, The stochastic SIRA model for computer viruses, Appl. Math. Comput., 232 (2014), 1112-1124. 2

[6] A.-L. Barabasi, R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512. 1

[7] A.-L. Barabasi, R. Albert, H. Jeong, Mean-field theory for scale-free random networks, Phys. A, 272 (1999), 173-187. 1


https://doi.org/10.1155/2019/3745619
https://doi.org/10.1155/2019/3745619
https://books.google.com/books?hl=en&lr=&id=oET7CAAAQBAJ&oi=fnd&pg=PP1&dq=An+introduction+to+stochastic+processes+with+applications+to+biology&ots=6jufu_9Yfu&sig=MfX_A-S-dzGN3T_g_g5iHZZXgHg
https://doi.org/10.1007/978-3-540-78911-6_3
https://doi.org/10.1007/978-3-540-78911-6_3
https://doi.org/10.1016/S0040-5809(03)00104-7
https://doi.org/10.1016/S0040-5809(03)00104-7
https://doi.org/10.1016/j.amc.2014.01.125
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1016/S0378-4371(99)00291-5

C. B'ayir, et al., ]. Math. Computer Sci., 35 (2024), 388—410 409

(8]

[9]

(10]
(11]
(12]
(13]
(14]
(15]
[16]
(17]
(18]
(19]
[20]
(21]
(22]
(23]
[24]

[25]
[26]

(27]
(28]
[29]
(30]
(31]

(32]

(33]
(34]
(35]
(36]

(37]

P. Buesser, F. Daolio, M. Tomassini, Optimizing the robustness of scale-free networks with simulated annealing, In:
Adaptive and Natural Computing Algorithms: 10th International Conference, ICANNGA 2011, Ljubljana, Slove-
nia, April 14-16, 2011, Proceedings, Part II 10., Springer, Berlin Heidelberg, (2011), 167-176 1

P. De, Y. Liu, S. K. Das, Modeling node compromise spread in wireless sensor networks using epidemic theory, In: 2006
International Symposium on a World of Wireless, Mobile and Multimedia Networks(WoWMoM'06), IEEE, (2006),
7 pages. 1

Y. Duan, X. Fu, W. Li, Y. Zhang, G. Fortino, Evolution of scalefree wireless sensor networks with feature of small-world
networks, Complexity, 2017 (2017), 15 pages. 1

Y. El Ansari, T. Chaayra, F. El Bouanani, L. Omari, M. Amrouch, Strong consistency estimators of the Brennan-
Schwartz diffusion process based on martingales approach, Stat, 11 (2022), 20 pages. 3.2

Y. El Ansari, A. El Myr, L. Omari, Deterministic and stochastic study for an infected computer network model powered by
a system of antivirus programs, Discrete Dyn. Nat. Soc., 2017 (2017), 13 pages. 2

Y. El Ansari, A. El Myr, L. Omari, A. Lahrouz, The effect of immigration on the persistence and ergodicity of a stochastic
SIS model for transmission of disease, Appl. Math. Inf. Sci., 12 (2018), 1127-1138. 3.2

M. Essouifi, A. Achahbar, A mixed sir-sis model to contain a virus spreading through networks with two degrees, Int. J.
Mod. Phys. C, 28 (2017), 19 pages. 1, 2, 3.1

M. Essouifi, A. Achahbar, Discrete stochastic modelling of computer viruses prevalence on a reduced scale-free network,
Int. J. Comput. Appl. Technol., 63 (2020), 257-271. 2, 3.1

H. J. Herrmann, C. M. Schneider, A. A. Moreira, J. S. Andrade Jr, S. Havlin, Onion-like network topology enhances
robustness against malicious attacks, J. Stat. Mech., 2011 (2011). 1

Y. Jian, E. Liu, Y. Wang, Z. Zhang, C. Lin, Scale-free model for wireless sensor networks, In: 2013 IEEE Wireless
Communications and Networking Conference (WCNC), IEEE, (2013), 23292332 1

L. Jiang, X. Jin, Y. Xia, B. Ouyang, D. Wu, X. Chen, A scale-free topology construction model for wireless sensor networks,
Int. J. Distrib. Sens. Netw., 2014 (2014), 8 pages. 1

N. Keshri, A. Gupta, B. K. Mishra, Impact of reduced scale free network on wireless sensor network, Phys. A, 463 (2016),
236-245. (document), 1,2, 3.1,4.1,5

G. Liu, Z. Tan, Z. Liang, H. Chen, X. Zhong, Fractional optimal control for malware propagation in the internet of
underwater things, IEEE Internet Things J., 11 (2024), 11632-11651. 1

B. K. Mishra, N. Keshri, Mathematical model on the transmission of worms in wireless sensor network, Appl. Math.
Model., 37 (2013), 4103—-4111. 1

B. K. Mishra, S. K. Srivastava, B. K. Mishra, A quarantine model on the spreading behavior of worms in wireless sensor
network, Trans. IoT. Cloud Comput., 2 (2014), 1-12.

B. K. Mishra, I. Tyagi, Defending against malicious threats in wireless sensor network: A mathematical model, Int. J. Inf.
Technol. Comput. Sci., 6 (2014), 12-19. 1

S. Muthukrishnan, S. Muthukumar, V. Chinnadurai, Optimal control of malware spreading model with tracing and
patching in wireless sensor networks, Wirel. Pers. Commun., 117 (2021), 2061-2083. 1, 2

I. Nasell, Stochastic models of some endemic infections, Math. Biosci., 179 (2002), 1-19. 2

D. M. Nicol, The impact of stochastic variance on worm propagation and detection, In: Proceedings of the 4th ACM
workshop on Recurring malcode, (2006), 57-64. 2

K. S. Nisar, Y. Sabbar, Long-run analysis of a perturbed HIV/AIDS model with antiretroviral therapy and heavy-tailed
increments performed by tempered stable Lévy jumps, Alex. Eng. J., 78 (2023), 498-516. 3.2

C. H. Nwokoye, V. Madhusudanan, M. N. Srinivas, N. N. Mbeledogu, Modeling time delay, external noise and
multiple malware infections in wireless sensor networks, Egypt. Inform. J., 23 (2022), 303-314. 2

M. Ochab, P. Manfredi, K. Puszynski, A. d’Onofrio, Multiple epidemic waves as the outcome of stochastic sir epidemics
with behavioral responses: a hybrid modeling approach, Nonlinear Dyn., 111 (2023), 887-926. 2

R. P. Ojha, P. K. Srivastava, G. Sanyal, N. Gupta, Improved model for the stability analysis of wireless sensor network
against malware attacks, Wirel. Pers. Commun., 116 (2021), 2525-2548. 1

T. Qiu, A. Zhao, F. Xia, W. Si, D. O. Wu, Rose: Robustness strategy for scale-free wireless sensor networks, IEEE/ ACM
Trans. Netw., 25 (2017), 2944-2959. 1

A. Rey, ]J. Guillén, G. R. Sanchez, Modeling malware propagation in wireless sensor networks with individual-based
models, In: Conference of the Spanish Association for Artificial Intelligence, Springer, Cham, 9868 (2016), 194-203.
1

K. R. Rohloff, T. Bacsar, Deterministic and stochastic models for the detection of random constant scanning worms, ACM
Trans. Model. Comput. Simul., 18 (2008), 1-24. 2

P. K. Roy, J]. Mondal, R. Bhattacharyya, S. Bhattacharya, T. Szabados, Extinction of disease pathogenesis in infected
population and its subsequent recovery: a stochastic approach, J. Appl. Math., 2013 (2013), 8 pages. 2

Y. Sabbar, A. Din, D. Kiouach, Influence of fractal—fractional differentiation and independent quadratic Lévy jumps on the
dynamics of a general epidemic model with vaccination strategy, Chaos Solitons Fractals, 171 (2023). 3.2

Y. Sabbar, J. L. D. Palencia, M. Tilioua, A. Otero, A. Zeb, S. Djilali, A general chemostat model with second-order Poisson
jumps: asymptotic properties and application to industrial waste-water treatment, AIMS Math., 8 (2023), 13024-13049.
Y. Sabbar, M. Yavuz, F. Ozkose, Infection Eradication Criterion in a General Epidemic Model with Logistic Growth,
Quarantine Strategy, Media Intrusion, and Quadratic Perturbation, Mathematics, 10 (2022), 16 pages. 3.2


https://link.springer.com/chapter/10.1007/978-3-642-20267-4_18
https://link.springer.com/chapter/10.1007/978-3-642-20267-4_18
https://link.springer.com/chapter/10.1007/978-3-642-20267-4_18
https://doi.org/10.1109/WOWMOM.2006.74
https://doi.org/10.1109/WOWMOM.2006.74
https://doi.org/10.1109/WOWMOM.2006.74
https://doi.org/10.1155/2017/2516742
https://doi.org/10.1155/2017/2516742
https://doi.org/10.1002/sta4.499
https://doi.org/10.1002/sta4.499
https://doi.org/10.1155/2017/3540278
https://doi.org/10.1155/2017/3540278
http://dx.doi.org/10.18576/amis/120607
http://dx.doi.org/10.18576/amis/120607
https://doi.org/10.1142/S0129183117501145
https://doi.org/10.1142/S0129183117501145
https://doi.org/10.1504/IJCAT.2020.109353
https://doi.org/10.1504/IJCAT.2020.109353
https://iopscience.iop.org/article/10.1088/1742-5468/2011/01/P01027/meta
https://iopscience.iop.org/article/10.1088/1742-5468/2011/01/P01027/meta
https://doi.org/10.1109/WCNC.2013.6554924
https://doi.org/10.1109/WCNC.2013.6554924
https://doi.org/10.1155/2014/764698
https://doi.org/10.1155/2014/764698
https://doi.org/10.1016/j.physa.2016.07.059
https://doi.org/10.1016/j.physa.2016.07.059
https://doi.org/10.1109/JIOT.2023.3331736
https://doi.org/10.1109/JIOT.2023.3331736
https://doi.org/10.1016/j.apm.2012.09.025
https://doi.org/10.1016/j.apm.2012.09.025
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9204e660815aa2ff99896cd3ea6fb56d893c6e16
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9204e660815aa2ff99896cd3ea6fb56d893c6e16
https://mecs-press.net/ijitcs/ijitcs-v6-n3/IJITCS-V6-N3-2.pdf
https://mecs-press.net/ijitcs/ijitcs-v6-n3/IJITCS-V6-N3-2.pdf
https://doi.org/10.1007/s11277-020-07959-y
https://doi.org/10.1007/s11277-020-07959-y
https://doi.org/10.1016/S0025-5564(02)00098-6
https://doi.org/10.1145/1179542.1179555
https://doi.org/10.1145/1179542.1179555
https://www.sciencedirect.com/science/article/pii/S1110016823006427
https://www.sciencedirect.com/science/article/pii/S1110016823006427
https://doi.org/10.1016/j.eij.2022.02.002
https://doi.org/10.1016/j.eij.2022.02.002
https://doi.org/10.1007/s11071-022-07317-6
https://doi.org/10.1007/s11071-022-07317-6
https://doi.org/10.1007/s11277-020-07809-x
https://doi.org/10.1007/s11277-020-07809-x
https://doi.org/10.1109/TNET.2017.2713530
https://doi.org/10.1109/TNET.2017.2713530
https://doi.org/10.1007/978-3-319-44636-3_18
https://doi.org/10.1007/978-3-319-44636-3_18
https://doi.org/10.1145/1346325.1346329
https://doi.org/10.1145/1346325.1346329
https://doi.org/10.1155/2013/381286
https://doi.org/10.1155/2013/381286
https://doi.org/10.1016/j.chaos.2023.113434
https://doi.org/10.1016/j.chaos.2023.113434
https://core.ac.uk/download/pdf/560962432.pdf
https://core.ac.uk/download/pdf/560962432.pdf
https://doi.org/10.3390/math10224213
https://doi.org/10.3390/math10224213

C. B'ayir, et al., ]. Math. Computer Sci., 35 (2024), 388—410 410

(38]
(39]
(40]
[41]
[42]

[43]
(44]

[45]

[46]
[47]

(48]
[49]
(50]

(51]

E. D. Sahneh, C. Scoglio, P. Van Mieghem, Generalized epidemic mean-field model for spreading processes over multilayer
complex networks, IEEE/ ACM Trans. Netw., 21 (2013), 1609-1620. 2

FE. D. Sahneh, A. Vajdi, H. Shakeri, F. Fan, C. Scoglio, Gemfsim: A stochastic simulator for the generalized epidemic
modeling framework, J. Comput. Sci., 22 (2017), 36-44. 2

S. Shen, H. Zhou, S. Feng, J. Liu, Q. Cao, SNIRD: Disclosing rules of malware spread in heterogeneous wireless sensor
networks, IEEE Access, 7 (2019), 92881-92892. 1

S. Shen, H. Zhou, S. Feng, ]. Liu, H. Zhang, Q. Cao, An epidemiology-based model for disclosing dynamics of malware
propagation in heterogeneous and mobile wsns, IEEE Access, 8 (2020), 43876-43887.

A. Singh, A. K. Awasthi, K. Singh, P. K. Srivastava, Modeling and analysis of worm propagation in wireless sensor
networks, Wirel. Pers. Commun., 98 (2018), 2535-2551. 1

J. H. Steele, A comparison of terrestrial and marine ecological systems, Nature , 313 (1985), 355-358. 3.2

L. Wang, J. Dang, Y. Jin, H. Jin, Scale-free topology for largescale wireless sensor networks, In: 2007 3rd IEEE/IFIP
International Conference in Central Asia on Internet, IEEE, (2007), 1-5. 1

Y. Yang, G. Liu, Z. Liang, H. Chen, L. Zhu, X. Zhong, Hybrid control for malware propagation in rechargeable WUSN
and WASN: from knowledge-driven to data-driven, Chaos Solitons Fractals, 173 (2023), 20 pages. 1

L.-X. Yang, X. Yang, The spread of computer viruses over a reduced scale-free network, Phys. A, 396 (2014), 173-184. 1, 2
X. Ye, W. Zhuo, A scale-free routing algorithm in wireless sensor networks, In: 2008 Second International Conference
on Future Generation Communication and Networking, IEEE, 1 (2008), 465-468. 1

X. Zhang, Model design of wireless sensor network based on scalefree network theory, In: 2009 5th International Confer-
ence on Wireless Communications, Networking and Mobile Computing, IEEE, (2009), 1-4. 1

C. Zhang, Y. Zhao, Y. Wu, S. Deng, A stochastic dynamic model of computer viruses, Discrete Dyn. Nat. Soc., 2012
(2012), 16 pages. 3.2

H. Zhang, V. Madhusudanan, R. Geetha, M. N. Srinivas, C. H. Nwokoye, Dynamic analysis of the e-sitr model for
remote wireless sensor networks with noise and sokol-howell functional response, Results Phys., 38 (2022). 2

X. Zhong, B. Peng, FE. Deng, G. Liu, Stochastic stabilization of malware propagation in wireless sensor network via
aperiodically intermittent white noise, Complexity, 2020 (2020), 13 pages. 2


https://doi.org/10.1109/TNET.2013.2239658
https://doi.org/10.1109/TNET.2013.2239658
https://www.sciencedirect.com/science/article/pii/S1877750317305227
https://www.sciencedirect.com/science/article/pii/S1877750317305227
https://doi.org/10.1109/ACCESS.2019.2927220
https://doi.org/10.1109/ACCESS.2019.2927220
https://doi.org/10.1109/ACCESS.2020.2977966
https://doi.org/10.1109/ACCESS.2020.2977966
https://doi.org/10.1007/s11277-017-4988-3
https://doi.org/10.1007/s11277-017-4988-3
https://doi.org/10.1038/313355a0
https://doi.org/10.1109/CANET.2007.4401663
https://doi.org/10.1109/CANET.2007.4401663
https://doi.org/10.1016/j.chaos.2023.113703
https://doi.org/10.1016/j.chaos.2023.113703
https://doi.org/10.1016/j.physa.2013.11.026
https://doi.org/10.1109/FGCN.2008.11
https://doi.org/10.1109/FGCN.2008.11
https://doi.org/10.1109/WICOM.2009.5303044
https://doi.org/10.1109/WICOM.2009.5303044
https://doi.org/10.1155/2012/264874
https://doi.org/10.1155/2012/264874
https://doi.org/10.1016/j.rinp.2022.105643
https://doi.org/10.1016/j.rinp.2022.105643
https://doi.org/10.1155/2020/2903635
https://doi.org/10.1155/2020/2903635

	Introduction
	Limits of the existing models-our proposal
	DTMC and SDE models: description, formulation and discussion
	DTMC model
	SDE model

	Numerical simulation and discussions
	DTMC model
	SDE model

	Conclusion

