
J. Math. Computer Sci., 35 (2024), 411–430

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

Optimizing A-stable hyperbolic fitting for time efficiency:
exploring constant and variable stepsize approaches

Dumitru Baleanua,∗, Sania Qureshia,b, Amanullah Soomrob, Mufutau Ajani Rufaic

aDepartment of Computer Science and Mathematics, Lebanese American University, P.O. Box 13-5053, Beirut, Lebanon.
bDepartment of Basic Sciences and Related Studies, Mehran University of Engineering & Technology, Jamshoro-76062, Pakistan.
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Abstract

This paper proposes an optimal time-efficient numerical method for solving the initial value problems (IVPs) of ordinary
differential equations (ODEs) that is both A-stable and hyperbolically fitted. The method is designed to handle both constant
and variable step sizes, making it highly adaptable to different types of ODEs. The methodology proposed herein leverages the
optimization of an off-grid point, derived from the predominant term of the local truncation error, to enhance both accuracy
and stability in the solution of stiff ODEs. This approach incorporates a variable step size control, predicated upon the error
estimation furnished by the embedded pair, and aims to minimize computational expenses while concurrently safeguarding both
precision and stability. Furthermore, the stability domain of the proposed method is demonstrated to be optimal, signifying it
encompasses the maximal conceivable set of step sizes wherein the method retains its stability. Other important measures
including zero-stability, consistency, and convergence are also discussed theoretically and confirmed experimentally. Numerical
experiments consisting of the Duffing system, sinusoidal stiff system, periodic orbit system, two-body system, Lorenz system,
and the system for catenary equation demonstrate that the proposed method is highly competitive in terms of accuracy and
efficiency, and outperforms several existing methods for solving stiff ODEs with both constant and variable step sizes.
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1. Introduction

The goal of this article is to provide an A-stable optimal hyperbolically fitted approach for numerically
solving the first-order IVPs of ODEs of the following form:

v ′(x) = g(x, v(x)), v(x0) = v0, x ∈ [x0, xN], v, v0 ∈ Rm,g : R×Rm → Rm, (1.1)

where v0 denotes the initial value of v at x0, and g is considered to be sufficiently and adequately smooth
that meets Lipchitz’s condition, we can check that the existence and uniqueness theorem holds for the
above IVP [20]. It may also be noted that the method we propose in this article is not limited to only
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first-order IVPs and can be used for finding approximate solutions to differential systems expressed in
higher-order ODEs. It is also worth noting that the importance of differential equations cannot be denied
as such equations appear almost in every field of science and engineering, for example see [3, 4, 14, 15,
21, 24, 25, 29, 32, 37, 44, 48, 52, 54] and many of the references cited therein.

According to Ramos and Rufai [39], IVPs of the kind in (1.1) have attracted the interest of many schol-
ars in the field of numerical analysis since researchers commonly use them to model real-life application
problems in biology, chemistry, engineering, physics and economics, among other social and natural sci-
ences. For example, the world has recently witnessed the trauma brought by COVID-19 strains. More
than a thousand models in the form of ODEs have been recently proposed by several researchers work-
ing in epidemiology to comprehend the transmission dynamics of the virus. A second-order differential
equation explaining the behavior of a mass-spring-damper system with free and forced vibration is a
fundamental model for engineers in mechanical and mechatronic engineering. Likewise, a second-order
differential equation can be investigated numerically to understand the current flow in an RLC series cir-
cuit. Other models include logistic growth, kinetic reactions, fluid flow, weather prediction with Lorenz’s
system of three nonlinear ODEs, predator-prey models in ecology, and several others that require nu-
merical treatment, thereby using solvers for the approximate solutions. Several PDEs arising in physical
phenomena [2, 5, 6, 8–11, 19, 23, 31, 36, 50, 55] can also be dealt with the block methods.

Shortly after introducing calculus, it was realized that not all IVPs could be solved analytically as
mentioned in [18]. As a result, numerical methods were developed to provide an approximate solution to
the class of IVPs presented in (1.1). Some classical methods including Runge-Kutta methods, multi-step
methods, and finite difference methods are discussed in [17]. Several scholars have developed various
iterative techniques for numerically integrating different kinds of differential systems. For example, the
authors in [43] have developed an efficient third-derivative hybrid block approach for integrating second-
order two-point BVPs with Dirichlet, Neumann, or Robin boundary conditions. A method was developed
using interpolation and collocation. The method considers two off-step optimal locations in a two-step
block corresponding to a generic interval using a constructive approach. The approach gives an approx-
imation for the whole integration interval. Numerical experiments showed the scheme’s effectiveness.
In [22], trigonometrically fitted two-step hybrid approaches for second-order initial value problems are
considered. These approaches are ideal for the numerical integration of periodic or oscillatory problems
with variable coefficients. Adding more parameters at each stage modifies two-step hybrid algorithms.
In a recently published paper [41], the authors presented a two-step implicit hybrid block technique with
fourth derivatives for linear and nonlinear third-order ODE boundary value problems. The developed
method was derived using collocation and interpolation, and its convergence was seventh-order accurate.
Solving an algebraic system of equations yielded discrete approximations at grid locations. Numerical
studies showed that the proposed method gives accurate approximations that are better than some older
methods and match well with analytical answers that are already known. Most recently, in [38], a con-
sistent, accurate, stable, and time-efficient convergent approach has been described. The novel technique
works for ODEs. Three intra-step grid points are optimized, including a detailed discussion of order
stars. The new method outperforms the Lobatto III family of iterative methods. In the present article, we
develop an optimized A-stable hyperbolically fitted method (OAHFM) using both constant and variable
stepsizes implementations to give a numerical solution to IVP systems of the type in (1.1).

The article is structured as follows. Section 2 provides step-by-step derivation for the suggested
method while using interpolation and collocation techniques. Section 3 presents a theoretical analysis of
the proposed method, including local truncation error, zero- and absolute stability, consistency, and con-
vergence. The proposed method is also formulated using the variable stepsize approach that is described
in Section 4. Some applied differential systems are simulated with the proposed and other competitive ex-
isting methods in Section 5. The concluding remarks, including some areas for future work, are reported
in Section 6.
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2. Mathematical formulation

Assuming we have a scalar equation of the type v ′(x) = g(x, v(x)) and that a fitted function I(x,u),
including an unknown parameter u that can approximate the true solution v(x), we can proceed to solve
the IVP in Eq.(1.1). In the forthcoming discussion, it will be demonstrated that the coefficients of the fitted
function I(x,u) may be expressed in terms of v (the dependent variable), and g (the first-order derivative),
computed at different mesh points. The proposed hyperbolically fitted method will be designed in such
a way that its coefficients would be the terms that bring out the method capable enough to exactly
integrate the given differential model when the required solutions belong to the linear space spanned
by the basis function P = {1, x, sinh(ωx), cosh(ωx)}. Customarily, the symbols vj , gj = g(xj, vj) are
approximations of the true values v(xj) and v ′(xj) = g(xj, v(xj)), respectively, where g(x, v(x)) = v ′(x),

xj = x0 + jh, j = 1, 2 . . .N, with x0 = a, xN = b and h =
xN − x0

N
, where h stands for the stepsize. We

consider that the true solution v(x) can be approximated by a fitted interpolating function I(x,u) defined
by

v(x) ≈ I(x,u) = α0 +α1x+α2 sinh(ωx) +α3 cosh(ωx),

where αj, j = 0, 1, 2, 3 are coefficients to be uniquely determined. When this approximation is taken into
account, the following system of four equations is satisfied:

I(xn,u) = vn, I ′(xn+j,u) = gn+j, j = 0, r, 1,

where the parameter u is given by u = ωh and r is an off-grid point to be optimized. We further consider
the vector given as: J = (vn,gn,gn+r,gn+1)

T , and the basis P = {1, x, sinh(ωx), cosh(ωx)}. As a result, we
can now express the above system in the following matrix form:

W =


1 xn sinh(ωxn) cosh(ωxn)
0 1 ω cosh(ωxn) ω sinh(ωxn)
0 1 ω cosh(ωxn+r) ω sinh(ωxn+r)
0 1 ω cosh(ωxn+1) ω sinh(ωxn+1)

 .

It is then possible to explain the continuous approximation required for obtaining the proposed method
in terms of the following equation:

I(x,u) =
3∑
j=0

det(Wj)

det(W)
Pj(x), (2.1)

where Wj is the result of replacing the jth column of W with J. The proof for the preceding discussion
can be easily obtained by referring to the research work conducted by Abdulganiy et al. in [1]. Moreover,
the Eq. (2.1) gives a continuous approximation to the true solution of the IVP (1.1) in the following form:

I(x,u) = vn + h
(
ξ0,1(x,u)gn + ξr,1(x,u)gn+r + ξ1,1(x,u)gn+1

)
. (2.2)

The above continuous form (2.2) is evaluated at x = xn+1 and the main method has the form

vn+1 = vn + h
(
ξ0,1(u)gn + ξr,1(u)gn+r + ξ1,1(u)gn+1

)
, (2.3)

while the additional method for (2.2) when evaluated at x = xn+r will be as follows:

vn+r = vn + h
(
ξ0,r(u)gn + ξr,r(u)gn+r + ξ1,r(u)gn+1

)
. (2.4)
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The coefficients in the main formula are found to be:

ξ0,1 =
((−u sinh (u) + cosh (u) − 1) cosh (ur) + (u cosh (u) − sinh (u)) sinh (ur) + cosh (u) − 1)

(− sinh (u) cosh (ur) + (cosh (u) − 1) sinh (ur) + sinh (u))u
,

ξr,1 =
(u sinh (u) − 2 cosh (u) + 2)

((cosh (u) − 1) sinh (ur) − sinh (u) (cosh (ur) − 1))u
,

ξ1,1 = −
((u− sinh (u)) sinh (ur) + (cosh (ur) − 1) (cosh (u) − 1))
((cosh (u) − 1) sinh (ur) − sinh (u) (cosh (ur) − 1))u

,

(2.5)

while the coefficients in the additional formula are found to be:

ξ0,r =
(−ru sinh(u) − cosh(u) − 1) cosh(ru) + (ru cosh(u) + sinh(u)) sinh(ru) + cosh(u) + 1

u(− cosh(ru) sinh(u) + (cosh(u) − 1) sinh(ru) + sinh(u))
,

ξr,r =
(cosh(u) − 1) cosh(ru) + ru sinh(u) − sinh(u) sinh(ru) − cosh(u) + 1

u(− cosh ru) sinh(u) + (cosh(u) − 1) sinh(ru) + sinh(u))
,

ξ1,r =
− sinh(ru)ru+ 2 cosh(ru) − 2

u((cosh(u) − 1) sinh(ru) − (cosh(ru) − 1) sinh(u))
.

(2.6)

Upon substitution of the coefficients determined above, the additional (2.4) and the main (2.3) formulae
respectively get the following structure:

vn+r = vn +
gn ((−ru sinh (u) − cosh (u) − 1) cosh (ru) + (ru cosh (u) + sinh (u)) sinh (ru) + cosh (u) + 1)

u (− cosh (ru) sinh (u) + (cosh (u) − 1) sinh (ru) + sinh (u))

+
gn+r ((cosh (u) − 1) cosh (ur) + ur sinh (u) − sinh (ur) sinh (u) − cosh (u) + 1)

u (− cosh (ur) sinh (u) + (cosh (u) − 1) sinh (ur) + sinh (u))

+
gn+1 (− sinh (ur) ru+ 2 cosh (ur) − 2)

u ((cosh (u) − 1) sinh (ur) − (cosh (ur) − 1) sinh (u))

(2.7)

and

vn+1 = vn −
gn ((−u sinh (u) + cosh (u) − 1) cosh (ur) + (u cosh (u) − sinh (u)) sinh (ur) + cosh (u) − 1)

u (− cosh (ur) sinh (u) + (cosh (u) − 1) sinh (ur) + sinh (u))

+
gn+r (u sinh (u) − 2 cosh (u) + 2)

u ((cosh (u) − 1) sinh (ur) − (cosh (ur) − 1) sinh (u))

+
gn+1 ((−u+ sinh (u)) sinh (ur) − (cosh (u) − 1) (cosh (ur) − 1))

u ((cosh (u) − 1) sinh (ur) − (cosh (ur) − 1) sinh (u))
.

(2.8)

The local truncation error (LTE) of the main formula (vn+1) for the above-proposed method is as follows:

LTE =

(
r
(
v(4) (xn) − ω2v ′′ (xn)

)
+

1
2

(
ω2v ′′ (xn) − v

(4) (xn)

))
h4

36

+

((
−
ω2v ′′′ (xn)

12
+
v(5) (xn)

12

)
r2 +

(
−
ω2v ′′′ (xn)

12
+
v(5) (xn)

12

)
r

+
ω2v ′′′ (xn)

15
−
v(5) (xn)

15

)
h5

12
+O(h6).

(2.9)

After equating to zero the coefficients of h4 in the above formula and solving the resulting equation, the

following optimal value of the parameter r is found: r =
1
2

. Upon substitution of r = 1/2 in Eq. (2.9), the
main term of LTE has the following structure:

LTE =
1

2880

(
ω2v ′′′ (xn) − v

(5) (xn)

)
h5 +O(h6).
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Finally, the obtained parameter r when substituted in Eqs. (2.7) and (2.8) yielded the following one-step
optimized proposed hyperbolically fitted method with one intra-step point being optimal:

vn+r = vn +
h

u(−2 sinh(u2 ) + sinh(u))



(
−
u sinh(u2 )

2
+ cosh(u) − 2 cosh(u2 ) + 1

)
gn

+

(
1 − cosh(u) +

u sinh(u)
2

)
gn+r

+

(
−
u sinh(u2 )

2
− 2 + 2 cosh(u2 )

)
gn+1

 ,

vn+1 = vn +
h

u(−2 sinh(u2 ) + sinh(u))



(
− u sinh(u2 ) + cosh(u) − 1

)
gn

+

(
2 − 2 cosh(u) + u sinh(u)

)
gn+r

+

(
− u sinh(u2 ) + cosh(u) − 1

)
gn+1

 .

(2.10)

The pseudocode for the above-devised method (2.10) is explained in the Algorithm 1.

Algorithm 1: A pseudocode for the proposed optimized hyperbolically fitted method given in
(2.10).

Data: x0, xN (integration interval), N (number of steps), u = ωh, we choose parameter ω, v0 (initial values), g.
Result: sol (discrete approximate solution of the IVP (1.1)).

1 Let n = 0, h = XN−x0
N .

2 Let xn = x0, vn = v0.
3 Let sol = {(xn, vn)}.
4 Solve (2.10) to obtain vn+k, where k = 0, r, 1.
5 Let sol = sol ∪{(xn+k, vn+k)}k=0,r,1.
6 Let xn = xn + h, vn = vn+1.
7 Let n = n+ 1,
8 if n = N then
9 go to 13

10 else
11 go to 4;
12 end
13 End

3. Theoretical analysis

This section is devoted to the abstract analysis of the proposed optimized hyperbolically fitted method
given in (2.10). The discussion consists of the derivation of the local truncation error of (2.10), consistency,
order of convergence, and stability analysis, including both zero and absolute stability.

3.1. Local truncation error and consistency
The Taylor series is used for small values of u (see Lambert [28]). Thus the coefficients in (2.5) up to

O(u18) can be expressed as follows:

ξ0,1 =
h

6
−
hu2

720
+
hu4

80640
−

hu6

9676800
+

hu8

1226244096
−

691hu10

111588212736000
+

hu12

21862180454400

−
3617hu14

10926717791109120000
+

43867hu16

18601644367584165888000
−

174611hu18

10523215956519042416640000
,

ξr,1 =
2
3
h+

hu2

360
−
hu4

40320
+

hu6

4838400
−

hu8

613122048
+

691hu10

55794106368000
−

hu12

10931090227200
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+
3617hu14

5463358895554560000
−

43867hu16

9300822183792082944000
+

174611hu18

5261607978259521208320000
,

ξ1,1 =
h

6
−
hu2

720
+
hu4

80640
−

hu6

9676800
+

hu8

1226244096
−

691hu10

111588212736000
+

hu12

21862180454400

−
3617hu14

10926717791109120000
+

43867hu16

18601644367584165888000
−

174611hu18

10523215956519042416640000
.

It is interesting to note that as u→ 0 in the power series expansion of the coefficients, methods based on
the polynomial basis are recovered (Lambert [28]). As a result, we can write down the local truncation
errors (LTEs) for the additional and main methods, respectively, as follows:

LTE(vn+r,h) = −
1

384

(
ω2v ′′ (xn) − v

(4) (xn)

)
h4, LTE(vn+1,h) =

1
2880

(
ω2v ′′′ (xn) − v

(5) (xn)

)
h5.

The optimal proposed method is constructed by combining (2.3) and (2.4), where the coefficients of the
method are explicitly given by (2.5) and (2.6). We describe the block-by-block procedure for calculating the
series of vectors V0,V1, . . . in sequence (see [27]). Let the µ vector (µ = 2 is the number of points within the
block) Vµ,Vµ−1,Gµ, and Gµ−1 be given as Vµ = (vn+r, vn+1)

T ,Vµ−1 = (vn−1, vn)T ,Gµ = (gn+r,gn+1)
T ,

and Gµ−1 = (gn−1,gn)T , then the 1-block 2-point method for (1.1) is given by

Vµ =

1∑
i=1

A(i)Vµ−i +

1∑
i=0

B(i)Gµ−i,

where A(i) and B(i) (i = 0, 1) are 2× 2 matrices whose entries are determined by the coefficients of (2.10).

3.2. Zero stability
Zero stability is a property of a numerical method for solving an IVP that determines how well the

method approximates the solution as the time step size goes to zero. Specifically, a numerical method
for solving an IVP is said to be zero-stable if the numerical solution approaches the exact solution as the
time step size approaches zero for any initial condition. In other words, if the method is zero stable,
then small errors in the initial conditions and in the numerical approximations at each time step do not
accumulate and cause the numerical solution to diverge from the true solution over time. Zero stability
is an important property for numerical methods for solving IVPs since it guarantees that the numerical
solution will converge to the exact solution as the time step size becomes smaller. This property is typically
analyzed using the concept of the stability region or stability function, which describes the region of the
complex plane in which the numerical method remains bound for a given time step size. Mathematically,
the following definition can be used:

Definition 3.1. The optimal hyperbolically fitted method (2.10) is zero stable provided the roots Rj, j = 1, 2
of the first characteristic polynomial σ(R) specified by

σ(R) = det

[
1∑
i=0

A(i)R1−i

]
= 0, A(0) = −I, (3.1)

satisfy |Rj| 6 1, j = 1, 2 and for those roots with |Rj| = 1, the multiplicity does not exceed 1 (see [34]).
The optimal hyperbolically fitted method (2.10) is consistent as it has order p > 1. We see from (3.1) and
Definition 3.2 that optimal hyperbolically fitted method (2.10) is zero-stable since σ(R) = R(R− 1) = 0
satisfies |Rj| 6 1, j = 1, 2, and for those roots with |Rj| = 1, the multiplicity does not exceed 1. The optimal
hyperbolically fitted method (2.10) is thus convergent, as zero-stability + consistency implies convergence.

3.3. Absolute stability analysis
It is preferable for numerical methods to be stable. Whether or not errors introduced at one step

propagate to subsequent ones is a measure of a numerical method’s stability. The error analysis of a



D. Baleanu, S. Qureshi, A. Soomro, M. A. Rufai, J. Math. Computer Sci., 35 (2024), 411–430 417

numerical method when applied to a simple initial-value problem of the type

v ′(x) = βv(x), v(0) = v0, β ∈ C with Re(β) < 0, (3.2)

serves as a model for stability analysis. Since the exact answer v(x) = v0 exp (βx) tends towards zero (since
Re(β) < 0) in an exponential way, the error should also tend towards zero as x (> 0) gets big enough.
If a method does not work well with model (3.2), it probably won’t work well with other initial-value
problems either. To analyze the linear stability of the proposed optimal hyperbolically fitted method, we
use the test equation (3.2) that results in

Vµ = M(z;u)Vµ−i,

where
M(z;u) =

(
A(0) − zB(0)

)−1 (
A(1) + zB(1)

)
,

where the matrix M(z;u) is the amplification matrix. The amplification matrix represents the linearized
relationship between the approximation errors at two successive time steps. It measures the rate of
increase or decrease in errors across successive iterations of a numerical algorithm. The stability of the
approach can be checked by looking at the eigenvalues of the amplification matrix.

Definition 3.2 ([1]). In the z− u plane, stability occurs when the spectral radius of M(z;u) is less than or
equal to one, denoted by the inequality |ρ[M(z;u)]| 6 1. It is easily seen that the eigenvalues of M(z;u)
are as follows:

λ1 = 0, λ2 =

(
(−z− 2)u2 + 2 z2

)
sinh

(
u
2

)
− cosh

(
u
2

)
uz2

((z− 2)u2 + 2 z2) sinh
(
u
2

)
− cosh

(
u
2

)
uz2

.

Now, in order to study the stability characteristics of the method (2.10), we consider the spectral radius
ρ[M(z;u)] of the amplification matrix given by

ρ[M(z;u)] =

(
(−z− 2)u2 + 2 z2

)
sinh

(
u
2

)
− cosh

(
u
2

)
uz2

((z− 2)u2 + 2 z2) sinh
(
u
2

)
− cosh

(
u
2

)
uz2

. (3.3)

The above rational function, when plotted, produced the Figure 1 wherein the left-half z − u complex
plane is covered for z ∈ [−15, 15] and u ∈ [−π,π]. Indeed, the entire left half of the said plane will be
covered by the rational function (3.3). This feature guarantees the absolute A-stability [49] of the proposed
optimal hyperbolically fitted method given in (2.10). Similar approaches to prove A-stability of numerical
methods have been adopted in several existing research works; for example, see [1, 7] and most of the
references cited therein.

Figure 1: The plot of the absolute stability region (A-stable) for the optimized hyperbolically fitted method given in (2.10).
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4. Variable stepsize formulation

It is well known that the best performance of a numerical method occurs when a variable stepsize
formulation is employed. Therefore, variable stepsize, which is based on a lower-order method for deter-
mining the local error at each block’s endpoint [xn, xn+1], must be considered. To formulate the adaptive
stepsize, one has to consider a lower-order method for estimating the local error at the endpoint of each
block. For the proposed implicit block method and the other methods taken for comparison, the second-
order Runge-Kutta (RK) implicit method, called the Trapezoidal method, is used as an embedded method.
This lower order method is considered keeping in mind the number of function evaluations in the simul-
taneous implementation of both methods. As a result, the computational cost of this embedding-like
method will not increase in terms of the number of function evaluations. If a fitted method is chosen
then it may bring additional function evaluations and does not serve the purpose of a variable stepsize
approach. There are several existing block-type methods as well as trigonometrically fitted methods that
use an adaptive stepsize approach and use a non-fitted method for the embedding purpose (see, for
example, [40, 42]).

The difference between the approximate solutions obtained by the higher-order method and those
found by the lower-order method will be employed as an error estimate (est) for the local error, which
will then be used to determine the suitable stepsize of the new step. As a result, in order to measure the
performance of the next step, we consider the following condition:

hnew = Ψhold

(
tol
||est||

) 1
s+1

, (4.1)

where s is an order of the lower order method, and 0 < Ψ < 1, is called the safety factor. The safety
factor’s main goal is to prevent excessive deviations in the new step. The safety factor chosen during the
simulations in the present study is Ψ = 0.95. The abbreviation ”tol” stands for ”tolerance defined by the
user.” In the method’s execution, we also impose the following conditional structure:

If hmin 6 hnew 6 hmax then hold = hnew.

The following simple steps can be used to express the above-stated criterion.

1. Take the first step-size and use the block approach to approximate the solution at grid points xn+r
and xn+1 using the information about the solution at xn.

2. Use the known solution at grid point xn to approximate the solution at grid point xn+1 using the
trapezoidal method of the second order.

3. Estimate the local error by considering the difference est = ||vn+1 − v
∗
n+1||, where vn+1 and v∗n+1

denote the values obtained by the second order trapezoidal method and the block method (2.10)
respectively at the grid point xn+1.

4. If est 6 tol, where tol is the user’s predefined tolerance, then we take hnew = 2hold, that is, double
the step-size to save the time and proceed the integration process with this hnew provided that
hmin 6 hnew 6 hmax.

5. If est > tol, then revise the current step-size as given in the condition (4.1). In this case, return to the
previous step and redo the computation with this new step-size hnew provided that hmin 6 hnew 6
hmax.

Different methods are employed in the scientific literature to choose the correct size of the initial step,
which we refer to as ”hini”. For example, see [45, 46]. On the other hand, if a small hini is chosen (see
[53]), the algorithm will automatically redefine it if it is needed.
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5. Numerical simulations

In this segment of the scholarly investigation, numerical simulations were executed for various IVP
models that emerge in the disciplines of science and engineering. These models were solved employ-
ing the devised A-stable hyperbolically fitted methodology, as specified in equation (2.10), achieving
a minimum third-order convergence. This was accomplished through the utilization of both constant
and adaptive stepsize strategies. For the purpose of comparative analysis, the classical implicit Rad-II
method [12] from the Radau family, recognized for its third-order convergence, was selected. Addition-
ally, two other numerical methods, namely the Jator and FESDIRK methods which are characterized by
their trigonometrically fitted approach and fourth-order convergence, were selected for comparison from
[33] and [35], respectively. The comparative evaluation was based on various metrics of absolute errors,
including the normed error (||NE||∞), the root mean square error (RMSE), the number of function evalu-
ations (FEE), the absolute average error (Mean), the number of steps (N), and the precision factor (scd).
In the scenario involving variable stepsize simulations, differing tolerance values (ε) were taken into ac-
count. Moreover, efficiency curves for each method were delineated utilizing a variable stepsize approach.
The computational formulae pertinent to the aforementioned metrics are outlined as follows:

||NE||∞ = max
16i6n

(
n∑
j=1

||v(xij) − vij||

)
, RMSE =

√∑n
i=1(v(xi) − vi)

2

n
,

Mean =

∑n
i=1 |v(xi) − vi|

n
, scd = − log10

[
max

16i6n
||v(xi) − vi||

]
.

For numerical computations, the software Mathematica 12.1 running on Windows OS having processor
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz working with installed RAM of 24.0GB is used.
Moreover, it may be noted that there are a number of trigonometrically-fitted approaches mentioned in
the literature, but none of them provides a conclusive means of determining the optimum frequency ω
[51]. Therefore, we have arbitrarily chosen the ω value while simulating the differential systems.

Problem 5.1. Consider the following scalar type first-order equation [18]

v ′1(x) = v1(x) cos(x), x ∈ [0 100], ω = 10. (5.1)

The exact solution for the equation (5.1) is v1(x) = exp(sin x). The maximum absolute errors (MaxErr)
are computed as shown in Table 1. It is observed that the errors decrease by four orders of magnitude
as we increase the steps by one order of magnitude. This behavior of the errors shows that the effective
order of accuracy of the proposed optimal method is four.

Table 1: The maximum absolute error for the Problem 5.1 with different number of steps N.
N 102 103 104

MaxErr 1.6083× 10-2 1.5294× 10-6 7.7427× 10-10

Problem 5.2. Consider the following two-dimensional non-homogeneous system given in [12]:

v ′1(x) = v2(x), v ′2(x) = −v1(x) + x, v1(0) = 1, v2(0) = 2, x ∈ [0 1], ω = 2π.

The exact solution is v1(x) = sin(x) + cos(x) + x, v2(x) = cos(x) − sin(x) + 1. The above system
is simulated with the optimized A-stable hyperbolically fitted method given in (2.10) and other existing
methods while taking different values for the number of stepsN using both constant and adaptive stepsize
strategies. As observed in Tables 2-4, the proposed approach (OAHFM) returned the smallest values of
the absolute errors and highest values for the precision factors, leading to prove its better performance
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in comparison to other methods. When the adaptive stepsize approach is used in Table 5 with different
tolerances, the better performance of the proposed approach is confirmed not only in terms of the absolute
errors but also for the factors like the number of steps, function evaluations, and precision factors. To
check the time-efficiency of the proposed method, a plot of the efficiency curves is given in Figure 2
wherein the method in (2.10) takes the minimum amount of CPU time to yield the minor maximum
global error in comparison to other methods.

Table 2: The error distributions and the precision factor (scd) for the Problem 5.2 with number of steps N = 25 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 6.5162× 10−9 4.7172× 10−9 3.9726× 10−9 8.186
Jator 7.0485× 10−8 5.1010× 10−8 4.2924× 10−8 7.152
FESDIRK 7.3812× 10−8 5.3435× 10−8 4.5004× 10−8 7.132
Rad-II 5.8667× 10−7 4.2382× 10−7 3.5471× 10−7 6.231

Table 3: The error distributions and the precision factor (scd) for the Problem 5.2 with number of steps N = 26 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 1.2860× 10−9 9.3140× 10−10 7.8542× 10−10 8.891
Jator 4.4024× 10−9 3.1860× 10−9 2.6807× 10−9 8.356
FESDIRK 9.2275× 10−9 6.6791× 10−9 5.6228× 10−9 8.035
Rad-II 7.3273× 10−8 5.2981× 10−8 4.4462× 10−8 7.135

Table 4: The error distributions and the precision factor (scd) for the Problem 5.2 with number of steps N = 27 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 2.9995× 10−10 2.1744× 10−10 1.8384× 10−10 9.523
Jator 2.7605× 10−10 2.0065× 10−10 1.7087× 10−10 9.559
FESDIRK 1.1535× 10−9 8.3487× 10−10 7.0268× 10−10 8.938
Rad-II 9.1552× 10−9 6.6227× 10−9 5.5653× 10−9 8.038

Table 5: The error distributions and the precision factor (scd) for the Problem 5.2 with initial stepsize hini = 10−4 using variable
stepsize approach.

ε Method ||NE||∞ RMSE Mean N FEE scd

10−4

OAHFM 1.8404× 10−7 1.3320× 10−7 1.1209× 10−7 12 36 6.735
Jator 5.4910× 10−6 3.9735× 10−6 3.3427× 10−6 13 39 5.260

FESDIRK 9.757× 10−7 7.0652× 10−7 5.9550× 10−7 15 60 6.011
Rad-II 7.7460× 10−6 5.5822× 10−6 4.6347× 10−6 15 60 5.111

10−6

OAHFM 2.2332× 10−9 1.6170× 10−9 1.3628× 10−9 52 156 8.651
Jator 1.1435× 10−8 8.5089× 10−9 7.5911× 10−9 53 159 7.942

FESDIRK 9.7235× 10−9 7.038× 10−9 5.9249× 10−9 65 260 8.012
Rad-II 7.7173× 10−8 5.5799× 10−8 4.6824× 10−8 65 260 7.113

10−8

OAHFM 8.9271× 10−11 6.4823× 10−11 5.5060× 10−11 234 702 10.049
Jator2013 2.1945× 10−9 2.1233× 10−9 2.1220× 10−9 237 711 8.659
FESDIRK 9.6714× 10−11 6.9995× 10−11 5.8904× 10−11 295 1180 10.015

Rad-II 7.6728× 10−10 5.5517× 10−10 4.6688× 10−10 295 1180 9.115
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Figure 2: Comparison of the optimized A-stable hyperbolically fitted method given in (2.10) with several other methods via
efficiency curves of the absolute maximum global error versus CPU time (sec) on the logarithmic scale for the Problem 5.2 while
matching the error to the tolerance 10−i, where i = 7, 9, 11.

Problem 5.3. Consider the following nonlinear Duffing system as given in [26]:

v ′1(x) = v2(x), v1(0) = 0.200426728067, v ′2(x) = −v1(x) − v1(x)
3 − 0.002 cos (1.01x), v2(0) = 0,

where x ∈ [0, 10], ω = 2π and the exact solution for the above Duffing system is given as follows:

v1(x) = 0.200179477536 cos(0.101x) + 0.246946143× 10−4 cos(0.303x) + 0.304014× 10−7 cos(0.505x)

+ 0.374× 10−10 cos(0.707x),

v2(x) = −0.2021812723 sin(0.101x) − 0.7482468133× 10−4 sin(0.303x) − 0.153527070× 10−6 sin(0.505x)

− 0.264418× 10−9 sin(0.707x).

The above highly stiff Duffing system is simulated with the optimized A-stable hyperbolically fitted
method given in (2.10) and other existing methods while taking different values for the number of steps
N using both constant and variable stepsize strategies. As observed in Tables 6-8, the proposed approach
(OAHFM) returned the smallest values of the absolute errors and highest values for the precision factors
in each case, leading to prove its better performance in comparison to other methods. Furthermore, when
the variable stepsize approach is used in Table 9 while taking different initial stepsize values hini and
tolerances, the better performance of the proposed approach is further confirmed in terms of the absolute
errors and the precision factors. The frequency factor for the present problem is set to ω = 2π during
the simulations over the integration interval of length 10. To check the time-efficiency of the proposed
method, a plot of the efficiency curves is given in Figure 3 wherein the method in (2.10) takes the minimum
amount of CPU time to yield the minor maximum global error in comparison to other methods.

Table 6: The error distributions and the precision factor (scd) for the Problem 5.3 with number of steps N = 25 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 2.8269×10−5 2.569×10−5 2.5545×10−5 4.549
Jator 1.1461×10−3 1.043×10−3 1.0373×10−3 2.941
FESDIRK 1.0329×10−4 9.6949×10−5 9.6726× 10−5 3.986
Rad-II 8.1851×10−4 7.6263×10−4 7.6041×10−4 3.087

Table 7: The error distributions and the precision factor (scd) for the Problem 5.3 with number of steps N = 26 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 1.9058×10−6 1.817×10−6 1.815×10−6 5.711
Jator 6.6864×10−5 6.0897×10−5 6.0571×10−5 4.175
FESDIRK 1.3093×10−5 1.2153×10−5 1.2114×10−5 4.883
Rad-II 1.0287×10−4 9.582×10−5 9.5539×10−5 3.988
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Table 8: The error distributions and the precision factor (scd) for the Problem 5.3 with number of steps N = 27 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 3.8507×10−7 2.9271×10−7 2.6849×10−7 6.415
Jator 4.1116×10−6 3.8442×10−6 3.8342×10−6 5.386
FESDIRK 1.8783×10−6 1.6501×10−6 1.6315×10−6 5.726
Rad-II 1.3128×10−5 1.2128×10−5 1.2082×10−5 4.882

Table 9: The error distributions and the precision factor (scd) for the Problem 5.3 with different values of hini and tolerance ε
using variable stepsize approach.

hini ε Method ||NE||∞ RMSE Mean scd

10−1 10−2

OAHFM 1.0775×10−3 9.8501×10−4 9.802×10−4 2.968
Jator 3.9218×10−2 3.5961× 10−2 3.5798×10−2 1.407

FESDIRK 8.1236×10−4 7.6457×10−4 7.6297×10−4 3.090
Rad-II 6.3161×10−3 5.8047×10−3 5.7799×10−3 2.191

10−2 10−3

OAHFM 5.7996×10−5 5.254×10−5 5.2225×10−5 4.237
Jator 2.1246×10−3 1.9349×10−3 1.9245×10−3 2.673

FESDIRK 8.7428×10−5 8.1515×10−5 8.1283×10−5 4.058
Rad-II 6.8792×10−4 6.3984×10−4 6.3788×10−4 3.163

10−3 10−4

OAHFM 3.0465×10−6 2.8394×10−6 2.8312×10−6 5.516
Jator 1.0589×10−4 9.6526×10−5 9.6021×10−5 3.975

FESDIRK 9.2195×10−6 8.4777×10−6 8.442×10−6 5.035
Rad-II 7.1646×10−5 6.6545×10−5 6.6332×10−5 4.145

Figure 3: Comparison of the optimized A-stable hyperbolically fitted method given in (2.10) with several other methods via
efficiency curves of the absolute maximum global error versus CPU time (sec) on the logarithmic scale for the Problem 5.3.

Problem 5.4. The sinusoidal stiff system taken from [1] is given below:

v ′1(x) = −2v1(x) + v2(x) + 2 sin(x),
v ′2(x) = 998v1(x) − 999v2(x) + 999 cos(x) − 999 sin(x),
v1(0) = 2, v2(0) = 3, x ∈ [0, 5].

(5.2)

Exact solution is v1(x) = 2 exp(−x) + sin(x), v2(x) = 2 exp(−x) + cos(x), where ω = 4π.

The above stiff sinusoidal system is simulated with the optimized A-stable hyperbolically fitted method
given in (2.10) and other existing methods while taking different values for the number of steps N us-
ing both constant and variable stepsize strategies. As observed in Tables 10-12, the proposed approach
(OAHFM) returned the smallest values of the absolute errors and highest values for the precision factors
in each case, leading to prove its better performance in comparison to other methods. Furthermore, when
the variable stepsize approach is used in Table 13 while taking different initial stepsize values hini and
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tolerances, the better performance of the proposed approach is further confirmed in terms of the absolute
errors and the precision factors. It is worthy to be noted that the methods FESDIRK and standard Radau-II
could not perform well enough using the constant stepsize strategy whereas both methods started to ob-
tain reasonably small errors with their variable stepsize version. The frequency factor for this sinusoidal
problem given in (5.2) is set to ω = 4π during the simulations over the integration interval of length 5.
To check the time-efficiency of the proposed method, a plot of the efficiency curves is given in Figure
4 wherein the method in (2.10) takes the minimum amount of CPU time to yield the minor maximum
global error in comparison to other methods.

Table 10: The error distributions and the precision factor (scd) for the Problem 5.4 with number of steps N = 25 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 1.2874×10−6 1.2615×10−6 1.2612×10−6 5.890
Jator 1.7022×10−4 1.5159×10−4 1.5028×10−4 3.769
FESDIRK 2.3627×1056 1.6707×1056 1.1825×1056 -56.373
Rad-II 3.468×1057 2.4523×1057 1.7358×1057 -57.540

Table 11: The error distributions and the precision factor (scd) for the Problem 5.4 with number of steps N = 26 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 8.6471×10−8 8.3401×10−8 8.3342×10−8 7.063
Jator 1.0419×10−5 9.1474×10−6 9.0434×10−6 4.982
FESDIRK 4.5412×1095 3.2111×1095 2.2729×1095 -95.657
Rad-II 2.6175×1096 1.8509×1096 1.3101×1096 -96.418

Table 12: The error distributions and the precision factor (scd) for the Problem 5.4 with number of steps N = 27 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 8.5004×10−9 8.0004×10−9 7.9837×10−9 8.071
Jator 6.5311×10−7 5.7001×10−7 5.6281×10−7 6.185
FESDIRK 3.5363×10145 2.5005×10145 1.7699×10145 -145.550
Rad-II 6.3967×10151 4.5231×10151 3.2016×10151 -151.810

Figure 4: Comparison of the optimized A-stable hyperbolically fitted method given in (2.10) with several other methods via
efficiency curves of the absolute maximum global error versus CPU time (sec) on the logarithmic scale for the Problem 5.4.
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Table 13: The error distributions and the precision factor (scd) for the Problem 5.4 with different values of hini and tolerance ε
using variable stepsize approach.

hini ε Method ||NE||∞ RMSE Mean scd

10−1 10−2

OAHFM 8.9142×10−5 8.6981×10−5 8.6953×10−5 4.041
Jator 1.2764×10−3 1.233×10−3 1.2322×10−3 2.894

FESDIRK 3.2984×10−4 2.3323×10−4 1.6509×10−4 3.482
Rad-II 1.7832×10−4 1.2617×10−4 9.2307×10−5 3.749

10−2 10−3

OAHFM 5.5058×10−6 5.1088×10−6 5.092×10−6 5.259
Jator 6.9961×10−5 6.355×10−5 6.3188×10−5 4.155

FESDIRK 2.5824×10−5 1.8261×10−5 1.2926×10−5 4.588
Rad-II 2.4837×10−4 1.7583×10−4 1.3017×10−4 3.605

10−3 10−4

OAHFM 2.5488×10−7 2.4599×10−7 2.4582×10−7 6.594
Jator 7.0101×10−6 6.0068×10−6 5.9041×10−6 5.154

FESDIRK 2.7399×10−6 1.9374×10−6 1.3728×10−6 5.562
Rad-II 3.4986×10−5 2.4878×10−5 1.9346×10−5 4.456

Problem 5.5 ([13]). The Lorenz system that describe a simplified model of atmospheric convection. Lorenz
system includes three ordinary differential equations given below:

v ′1(x) = ρ(v1(x) − v2(x)), v1(0) = 1,
v ′2(x) = v1(x)(σ− v3(x)) − v2(x), v2(0) = 1,
v ′3(x) = v1(x)v2(x) −βv3(x), v3(0) = 1, x ∈ [0, 0.5].

(5.3)

In these equations, v1, v2, and v3 represent the state variables that describe the system’s behavior over time.
They correspond to the temperature difference, horizontal temperature variation, and vertical temperature
variation, respectively. The parameters σ, ρ, and β are constants that control the system’s dynamics.
Typically, their values are set to ρ = 10, σ = 28, and β = 83. The system in (5.3) does not have a
closed-form solution, so its reference solution v1 = −1.78252387338970 v2 = 13.4806047749901, and v3 =
3.60221303181254 is used. The frequency factor for this Lorenz system problem 5.3 is set to ω = 20π
during the simulations. It is clear from Tables 14 and 16 that the proposed (OAHFM) method outperforms
the rest of the chosen methods at the final mesh point.

Table 14: The error distributions and the precision factor (scd) for the Problem 5.5 with number of steps N = 25 using constant
stepsize h.

Method Last Err v1(x) Last Err v2(x) Last Err v3(x)

OAHFM 1.5989×10−4 5.1196×10−4 2.0892×10−4

Jator 4.8637×10−3 2.5773×10−3 1.4885×10−3

FESDIRK 1.7436×10−3 2.8923×10−3 1.412×10−3

Rad-II 1.4159×10−2 2.1237×10−2 9.8373×10−3

Table 15: The error distributions and the precision factor (scd) for the Problem 5.4 with number of steps N = 26 using constant
stepsize h.

Method Last Err v1(x) Last Err v2(x) Last Err v3(x)

OAHFM 1.2557×10−5 3.3562×10−5 1.3722×10−5

Jator 2.9881×10−4 1.5962×10−4 9.2228×10−5

FESDIRK 2.1796×10−4 3.5926×10−4 1.7566×10−4

Rad-II 1.7571×10−3 2.748×10−3 1.2746×10−3
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Table 16: The error distributions and the precision factor (scd) for the Problem 5.4 with number of steps N = 27 using constant
stepsize h.

Method Last Err v1(x) Last Err v2(x) Last Err v3(x)

OAHFM 1.5667×10−6 2.4403×10−6 8.5735×10−7

Jator 1.8416×10−5 9.982×10−6 5.9528×10−6

FESDIRK 2.743×10−5 4.4803×10−5 2.2087×10−5

Rad-II 2.1871×10−4 3.4911×10−4 1.6227×10−4

Problem 5.6. Finally, consider the periodic orbit system taken from [47]:

v ′′1 (x) = −s1(x) +
cos(x)
1000

, v1(0) = 1, v ′1(0) = 0,

v ′′2 (x) = −v2(x) +
sin(x)
1000

, v2(0) = 1, v ′2(0) =
9995
10000

.

The exact solution for the periodic orbit system over the interval [0, 1] is given as follows:

v1(x) = cos(x) +
x sin(x)

2000
, v2(x) = sin(x) −

x cos(x)
2000

.

The above periodic orbit system is simulated with the optimized A-stable hyperbolically fitted method
given in (2.10) and other existing methods while taking different values for the number of steps N us-
ing both constant and variable stepsize strategies. As observed in Tables 17-19, the proposed approach
(OAHFM) returned the smallest values of the absolute errors and highest values for the precision factors,
leading to prove its better performance in comparison to other methods. These Tables further noted that
third-order method (Rad-II) did not return acceptable values of the precision factor due to having a com-
paratively most significant normed error. Furthermore, when the variable stepsize approach is used in
Table 20 while taking different initial stepsize values hini and tolerances, the better performance of the
proposed approach is further confirmed in terms of the absolute errors and the precision factors. The
frequency factor for the present problem is set to ω = 6π. To check the time-efficiency of the proposed
method, a plot of the efficiency curves is given in Figure 5 wherein the method in (2.10) takes the mini-
mum amount of CPU time to yield the minor maximum global error in comparison to other methods.

Table 17: The error distributions and the precision factor (scd) for the Problem 5.6 with number of steps N = 25 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 3.9641×10−9 3.3669×10−9 3.301×10−9 8.402
Jator 3.9766×10−7 3.3797×10−7 3.3141×10−7 6.401
FESDIRK 4.4919×10−8 3.8146×10−8 3.7397×10−8 7.348
Rad-II 1.2892 9.4742×10−1 8.9056×10−1 -0.110

Table 18: The error distributions and the precision factor (scd) for the Problem 5.6 with number of steps N = 26 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 7.8314×10−10 6.6463×10−10 6.5145×10−10 9.106
Jator 2.4700×10−8 2.0995×10−8 2.0588×10−8 7.607
FESDIRK 5.6120×10−9 4.7684×10−9 4.6755×10−9 8.251
Rad-II 1.3149 9.6091×10−1 9.0270×10−1 -0.119
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Table 19: The error distributions and the precision factor (scd) for the Problem 5.6 with number of steps N = 27 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 1.8298×10−10 1.5501×10−10 1.5185×10−10 9.738
Jator 1.5399×10−9 1.31×10−9 1.2850×10−9 8.813
FESDIRK 7.0134×10−10 5.9602×10−10 5.8444×10−10 9.154
Rad-II 1.3278 9.6766×10−1 9.0877×10−1 -0.123

Table 20: The error distributions and the precision factor (scd) for the Problem 5.6 with different values of hini and tolerance ε
using variable stepsize approach.

hini ε Method ||NE||∞ RMSE Mean scd

10−1 10−2

OAHFM 3.2940×10−10 2.7667×10−10 2.7028×10−10 9.482
Jator 5.3371×10−9 4.4981×10−9 4.3994×10−9 8.273

FESDIRK 5.9203×10−5 5.2474×10−5 5.1974×10−5 4.228
Rad-II 4.2836×10−4 4.1224×10−4 4.1192×10−4 3.368

10−2 10−3

OAHFM 3.2349×10−12 2.6416×10−12 2.5520×10−12 11.490
Jator 4.1565×10−11 3.6954×10−11 3.6624×10−11 10.381

FESDIRK 7.3481×10−6 6.3895×10−6 6.3036×10−6 5.134
Rad-II 5.6278×10−5 5.0772×10−5 5.0434×10−5 4.241

10−3 10−4

OAHFM 1.3756×10−13 1.2419×10−13 12.862×10−13 12.875
Jator 1.2956×10−8 1.2001×10−8 1.1960×10−8 7.888

FESDIRK 8.5686×10−7 7.2272×10−7 7.0702×10−7 6.067
Rad-II 6.6805×10−6 5.7277×10−6 5.6307×10−6 5.175

Figure 5: Comparison of the optimized A-stable hyperbolically fitted method given in (2.10) with several other methods via
efficiency curves of the absolute maximum global error versus CPU time (sec) on the logarithmic scale for the Problem 5.6.

Problem 5.7. Consider the following nonlinear two-body system taken from [16]:

v ′′1 (x) =
−v1(x)

r3 , v1(0) = 1, v ′1(0) = 0,

v ′′2 (x) =
−v2(x)

r3 , v2(0) = 0, v ′2(0) = 1,

r =
√
v1(x)2 + v2(x)2, 0 6 x 6 200, ω = 2π.

The exact solution is v1(x) = cos(x), v2(x) = sin(x). The above two-body nonlinear system is simulated
with the optimized A-stable hyperbolically fitted method given in (2.10) and other existing methods while
taking different values for the number of steps N using constant strategies. As observed in Tables 21-23,
the proposed approach (OAHFM) returned the smallest values of the absolute errors and highest values
for the precision factors, leading to prove its better performance in comparison to other methods. It has



D. Baleanu, S. Qureshi, A. Soomro, M. A. Rufai, J. Math. Computer Sci., 35 (2024), 411–430 427

further been noted in Tables 21-23 that the methods (FESDIRK, Rad-II,) did not return the acceptable
value of the precision factor owing to having comparatively largest errors.

Table 21: The error distributions and the precision factor (scd) for the Problem 5.7 with number of steps N = 1000 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 3.0637×10−3 3.0428×10−3 3.0427×10−3 2.5138
Jator 1.1497×10−1 1.1417×10−1 1.1417×10−1 0.0939
FESDIRK 1.1122×104 6.9624×103 4.9031×103 -4.046
Rad-II 2.8589×105 2.0263×105 1.5292×105 -5.456

Table 22: The error distributions and the precision factor (scd) for the Problem 5.7 with number of steps N = 2000 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 2.2442×10−4 2.227×10−4 2.227×10−4 3.649
Jator 7.0267×10−3 6.9723×10−3 6.9722×10−3 2.153
FESDIRK 3.7431×102 1.873×102 9.8387× 101 -2.573
Rad-II 1.5314×105 1.092×105 8.6561×104 -5.185

Table 23: The error distributions and the precision factor (scd) for the Problem 5.7 with number of steps N = 4000 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 2.1636×10−5 2.1474×10−5 2.1473×10−5 4.665
Jator 4.365×10−4 4.3321×10−4 4.332×10−4 3.360
FESDIRK 8.8814×102 4.5275×102 2.6814×102 -2.949
Rad-II 8.6622×104 6.2858×104 5.3306×104 -4.938

Problem 5.8. The catenary equation is the mathematical description of the curve formed by a flexible,
uniform cable or chain hanging freely between two points under the influence of gravity. The equation is
given by:

v(x) = a cosh (x/a),

where v is the vertical distance from the lowest point of the cable, x is the horizontal distance from
the lowest point of the cable, a is the constant parameter that determines the shape of the curve, and
cosh is the hyperbolic cosine function. The associated initial value problem for the catenary equation
involves finding the specific solution that satisfies certain conditions at the endpoints of the cable. For
example, if the cable is hanging between two points (x1, v1) and (x2, v2), the initial conditions could be:
v(x1) = v1, v(x2) = v2. These conditions specify the position of the cable at the endpoints, which in turn
determines the value of the constant parameter a. Once the value of a is known, the entire shape of the
cable can be determined using the catenary equation. Consider the following well-known second-order
IVP that produces catenary curve [30]:

v ′′(x) =
√

1 + v ′(x)2, v(0) = 1, v ′(0) = 0, x ∈ [0, 10], ω = 5π. (5.4)

The exact solution (catenary curve) is given as v(x) = cosh(x). The Eq. (5.4) is simulated with the op-
timized A-stable hyperbolically fitted method given in (2.10) and other existing methods while taking
different values for the number of steps N using both constant and adaptive stepsize strategies. As ob-
served in Tables 24-26, the proposed approach (OAHFM) returned the smallest values of the absolute
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errors and highest values for the precision factors, leading to prove its better performance in comparison
to other methods.

Table 24: The error distributions and the precision factor (scd) for the Problem 5.8 with number of steps N = 500 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 1.1211×10−4 1.1211×10−4 1.1211×10−4 3.950
Jator 5.3182×10−3 5.3181×10−3 5.3181×10−3 2.274
FESDIRK 1.4363×10−3 1.4363×10−3 1.4363×10−3 2.843
Rad-II 8.8996×10−3 8.8995×10−3 8.8995×10−3 2.051

Table 25: The error distributions and the precision factor (scd) for the Problem 5.8 with number of steps N = 1000 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 3.1974×10−5 3.1974×10−5 3.1974×10−5 4.495
Jator 3.3154×10−4 3.3154×10−4 3.3154×10−4 3.480
FESDIRK 1.795×10−4 1.795×10−4 1.795×10−4 3.746
Rad-II 1.1151×10−3 1.1151×10−3 1.1151×10−3 2.953

Table 26: The error distributions and the precision factor (scd) for the Problem 5.8 with number of steps N = 2000 using constant
stepsize h.

Method ||NE||∞ RMSE Mean scd
OAHFM 8.2185×10−6 8.2185×10−6 8.2185×10−6 5.085
Jator 2.0991×10−5 2.0991×10−5 2.0991×10−5 4.678
FESDIRK 2.2435×10−5 2.2435×10−5 2.2435×10−5 4.649
Rad-II 1.3955× 10−4 1.3955× 10−4 1.3955× 10−4 3.855

6. Conclusion with future directions

In this paper, we propose an optimized A-stable hyperbolically fitted method (OAHFM), which can
be used to get reliable approximate solutions to IVPs that arise in a variety of scientific and engineering
fields as mathematical models. This method can be used efficiently to get these approximate solutions.
The OAHFM method evaluates the solution at both the endpoint and the intermediate point by taking into
account one intermediate (off-grid) location that has been chosen appropriately by optimizing the amount
of local truncation error. According to the results of the numerical simulations that were discussed in the
previous part, the OAHFM is more effective than the other available numerical methods that were used
for comparison. An intriguing question that will be investigated in subsequent work is how to use the
suggested method to solve integrodifferential and partial differential equations. This is a topic that has a
lot of potential.
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