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Abstract

Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of bi-derivations and bihomomor-
phisms in Banach algebras, associated with the bi-additive functional inequality

‖f(x+ y, z+w) + f(x+ y, z−w) + f(x− y, z+w) + f(x− y, z−w) − 4f(x, z)‖
6 ‖s (2f (x+ y, z−w) + 2f (x− y, z+w) − 4f(x, z) + 4f(y,w))‖ ,

(1)

where s is a fixed nonzero complex number with |s| < 1.
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1. Introduction

Ulam [55] initially proposed the concept of a stability problem for a functional equation concerning
the stability of group homomorphisms in 1940 at the University of Wisconsin’s Mathematics Club, in
relation to the stability of group homomorphisms. Hyers [22] presented a partial response to Ulam’s
question for additive groups in the next year, assuming that groups are Banach spaces. The direct method,
which was introduced by Hyers in [22], has been used to investigate the stability of numerous functional
equations. Hyers’ Theorem was generalized by Aoki [5] for additive mappings and by Rassias [48] for
linear mappings by considering an unbounded Cauchy difference.

∗Corresponding author
Email addresses: sajjadafridi@hanyang.ac.kr (Sajjad Khan), baak@hanyang.ac.kr (Choonkil Park), mana.do@up.ac.th
(Mana Donganont)

doi: 10.22436/jmcs.035.04.07

Received: 2024-02-28 Revised: 2024-05-13 Accepted: 2024-05-16

http://dx.doi.org/10.22436/jmcs.035.04.07
http://dx.doi.org/10.22436/jmcs.035.04.07
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.035.04.07&domain=pdf


S. Khan, C. Park, M. Donganont, J. Math. Computer Sci., 35 (2024), 482–491 483

Theorem 1.1 ([48]). Let f : E→ E ′ be a mapping from a normed vector space E into a Banach space E ′ subject to
the inequality

‖f(x+ y) − f(x) − f(y)‖ 6 ε(‖x‖p + ‖y‖p) (1.1)

for all x,y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞ f(2

nx)

2n

exists for all x ∈ E and L : E→ E ′ is the unique additive mapping which satisfies

‖f(x) − L(x)‖ 6 2ε
2 − 2p

‖x‖p (1.2)

for all x ∈ E. If p < 0, then inequality (1.1) holds for x,y 6= 0 and (1.2) for x 6= 0. Also, if for each x ∈ E the
function f(tx) is continuous in t ∈ R, then L is R-linear.

A generalization of the Rassias theorem was obtained by Găvruta [20] by replacing the unbounded
Cauchy difference by a general control function in the spirit of Rassias’ approach.

Rassias [49] during the 27th International Symposium on Functional Equations asked the question
whether such a theorem can also be proved for p > 1. Gajda [19] following the same approach as in
Rassias [48], gave an affirmative solution to this question for p > 1. It was shown by Gajda [19], as well as
by Rassias and Šemrl [51] that one cannot prove a Rassias’ type theorem when p = 1. The counterexamples
of Gajda [19], as well as of Rassias and Šemrl [51] have stimulated several mathematicians to invent new
definitions of approximately additive or approximately linear mappings, cf. Găvruta [20], Jung [27], who
among others studied the Hyers-Ulam stability of functional equations.

Park [41, 42, 44] defined additive ρ-functional inequalities and proved the Hyers-Ulam stability of the
additive ρ-functional inequalities in Banach spaces and non-Archimedean Banach spaces. The stability
problems of various functional equations, functional inequalities and differential equations have been
extensively investigated by a number of authors (see [1–4, 7, 8, 12–14, 16–18, 21, 23, 24, 26, 28–35, 39, 46,
50, 52–54, 57]).

In 1996, Isac and Rassias [25] were the first to provide applications of stability theory of functional
equations for the proof of new fixed point theorems with applications. By using fixed point methods,
the stability problems of several functional equations and differential equations have been extensively
investigated by a number of authors (see [9–11, 15, 43, 47]).

Maksa [37, 38] introduced and investigated bi-derivations and symmetric bi-derivations on rings.
Öztürk and Sapanci [40], Vukman [56], and Yazarli [58] investigated some properties of symmetric bi-
derivations on rings.

Definition 1.2 ([37, 38]). Let A be a ring. A bi-additive mapping D : A×A → A is called a symmetric
bi-derivation on A if D satisfies

D(xy, z) = D(x, z)y+ xD(y, z), D(x,y) = D(y, x),

for all x,y, z ∈ A.

In this paper, we introduce bi-derivations and bihomomorphisms in Banach algebras.
Let A be a complex Banach algebra. Suppose that a C-bilinear mapping D : A×A→ A is a derivation

in each variable, i.e.,

D(xy, z) = D(x, z)y+ xD(y, z), D(x, zw) = D(x, z)w+ zD(x,w),

for all x,y, z,w ∈ A. It is easy to show that

D(xy, zw) = D(x, z)wy+ zD(x,w)y+ xD(y, z)w+ xzD(y,w)

for all x,y, z,w ∈ A.
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Definition 1.3. Let A be a complex Banach algebra. A C-bilinear mapping D : A×A → A is called a
biderivation on A if D satisfies

D(xy, zw) = D(x, z)wy+ zD(x,w)y+ xD(y, z)w+ xzD(y,w)

for all x,y, z,w ∈ A.

Definition 1.4. Let A and B be complex Banach algebras. A C-bi-linear mapping H : A×A→ B is called
a bihomomorphism if H satisfies

H(xy, zw) = H(x, z)H(y,w)

for all x,y, z,w ∈ A.

This paper is organized as follows. In Sections 2 and 3, we prove the Hyers-Ulam stability of bi-
derivations and bi-homomorphisms in Banach algebras associated with the bi-additive s-functional in-
equality (1) by using the direct method. In Sections 4 and 5, we prove the Hyers-Ulam stability of
bi-derivations and bi-homomorphisms in Banach algebras associated with the bi-additive s-functional
inequality (1) by using the fixed point method.

Throughout this paper, let X be a complex normed space and Y a complex Banach space. Let A and B
be complex Banach algebras. Assume that s is a fixed nonzero complex number with |s| < 1.

2. Hyers-Ulam stability of bi-derivations on Banach algebras: direct method

We investigate the bi-additive s-functional inequality (1) in complex normed spaces.

Lemma 2.1 ([36, Lemma 2.1]). If a mapping f : X2 → Y satisfies f(0, z) = f(x, 0) = 0 and

‖f(x+ y, z+w) + f(x+ y, z−w) + f(x− y, z+w) + f(x− y, z−w) − 4f(x, z)‖
6 ‖s (2f (x+ y, z−w) + 2f (x− y, z+w) − 4f(x, z) + 4f(y,w))‖

for all x,y, z,w ∈ X, then f : X2 → Y is bi-additive.

In [45], Park proved the Hyers-Ulam stability of the bi-additive s-functional inequality (1) in complex
Banach spaces.

Theorem 2.2 ([45, Theorem 2.2]). Let ϕ : X2 → [0,∞) be a function satisfying

∞∑
j=1

4jϕ
( x

2j
,
y

2j
)
<∞ (2.1)

for all x,y ∈ X and let f : X2 → Y be a mapping satisfying f(x, 0) = f(0, z) = 0 and

‖f(x+ y, z+w) + f(x+ y, z−w) + f(x− y, z+w) + f(x− y, z−w) − 4f(x, z)‖ (2.2)
6 ‖s (2f (x+ y, z−w) + 2f (x− y, z+w) − 4f(x, z) + 4f(y,w))‖+ϕ(x,y)ϕ(z,w)

for all x,y, z,w ∈ X. Then there exists a unique bi-additive mapping P : X2 → Y such that

‖f(x, z) − P(x, z)‖ 6 1
4(1 − |s|)

Ψ(x, x)ϕ(z, 0) (2.3)

for all x, z ∈ X, where

Ψ(x,y) :=
∞∑
j=1

2jϕ
( x

2j
,
y

2j
)

for all x,y ∈ X.
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Theorem 2.3 ([45, Theorem 2.3]). Let ϕ : X2 → [0,∞) be a function satisfying

Ψ(x,y) :=
∞∑
j=0

1
2j
ϕ
(
2jx, 2jy

)
<∞ (2.4)

for all x,y ∈ X and let f : X2 → Y be a mapping satisfying (2.2) and f(x, 0) = f(0, z) = 0 for all x, z ∈ X. Then
there exists a unique bi-additive mapping P : X2 → Y such that

‖f(x, z) − P(x, z)‖ 6 1
2(1 − |s|)

Ψ(x, x)ϕ(z, 0) (2.5)

for all x, z ∈ X.

Now, we investigate bi-derivations on complex Banach algebras associated with the bi-additive s-
functional inequalitiy (1).

Lemma 2.4 ([6, Lemma 2.1]). Let f : X2 → Y be a bi-additive mapping such that f(λx,µz) = λµf(x, z) for all
x, z ∈ X and λ,µ ∈ T1 := {ν ∈ C : |ν| = 1}. Then f is C-bi-linear.

Theorem 2.5. Let ϕ : A2 → [0,∞) be a function satisfying (2.1) with X = A and f : A2 → A be a mapping
satisfying f(x, 0) = f(0, z) = 0 and

‖f(λ(x+ y),µ(z+w)) + f(λ(x+ y),µ(z−w)) + f(λ(x− y),µ(z+w))
+ f(λ(x− y),µ(z−w)) − 4λµf(x, z)‖

6 ‖s (2f (x+ y, z−w) + 2f (x− y, z+w) − 4f(x, z) + 4f(y,w))‖+ϕ(x,y)ϕ(z,w)
(2.6)

for all λ,µ ∈ T1 and all x,y, z,w ∈ A. Then there exists a unique C-bi-linear mappingD : A2 → A satisfying (2.3)
with X = A, where P is replaced by D in (2.3). If, in addition, the mapping f : A2 → A satisfies f(2x, z) = 2f(x, z)
and

‖f(xy, zw) − f(x, z)wy− zf(x,w)y− xf(y, z)w− xzf(y,w)‖ 6 ϕ(x,y)ϕ(z,w) (2.7)

for all x,y, z,w ∈ A, then the mapping f : A2 → A is a bi-derivation.

Proof. Let λ = µ = 1 in (2.6). By Theorem 2.2, there is a unique bi-additive mapping D : A2 → A satisfying
(2.3) defined by

D(x, z) := lim
n→∞ 2nf

( x
2n

, z
)

for all x, z ∈ A. Letting y = w = 0 in (2.6), we get f(λx,µz) = λµf(x, z) for all x, z ∈ A and all λ,µ ∈ T1. By
Lemma 2.4, the bi-additive mapping D : A2 → A is C-bi-linear. If f(2x, z) = 2f(x, z) for all x, z ∈ A, then
we can easily show that D(x, z) = f(x, z) for all x, z ∈ A. It follows from (2.7) that

‖D(xy, zw) −D(x, z)wy− zD(x,w)y− xD(y, z)w− xzD(y,w)‖

= lim
n→∞ 4n

∥∥∥f( xy

2n · 2n
, zw

)
− f

( x
2n

, z
) wy

2n
− zf

( x
2n

,w
) y

2n
−
x

2n
f
( y

2n
, z
)
w−

xz

2n
f
( y

2n
,w

)∥∥∥
6 lim

n→∞ 4nϕ
( x

2n
,
y

2n
)
ϕ(z,w) = 0

for all x,y, z,w ∈ A. Thus

D(xy, zw) = D(x, z)wy+ zD(x,w)y+ xD(y, z)w+ xzD(y,w)

for all x,y, z,w ∈ A. Hence the mapping f : A2 → A is a bi-derivation.
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Corollary 2.6. Let r > 2 and θ be nonnegative real numbers, and f : A2 → A be a mapping satisfying f(x, 0) =
f(0, z) = 0 and

‖f(λ(x+ y),µ(z+w)) + f(λ(x+ y),µ(z−w)) + f(λ(x− y),µ(z+w))
+ f(λ(x− y),µ(z−w)) − 4λµf(x, z)‖

6 ‖s (2f (x+ y, z−w) + 2f (x− y, z+w) − 4f(x, z) + 4f(y,w))‖+ θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r)
(2.8)

for all λ,µ ∈ T1 and all x,y, z,w ∈ A. Then there exists a unique C-bi-linear mapping D : A2 → A such that

‖f(x, z) −D(x, z)‖ 6 θ

(1 − |s|)(2r − 2)
‖x‖r‖z‖r (2.9)

for all x, z ∈ A. If, in addition, the mapping f : A2 → A satisfies f(2x, z) = 2f(x, z) and

‖f(xy, zw) − f(x, z)wy− zf(x,w)y− xf(y, z)w− xzf(y,w)‖ 6 θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r) (2.10)

for all x,y, z,w ∈ A, then the mapping f : A2 → A is a bi-derivation.

Proof. The proof follows from Theorem 2.5 by taking ϕ(x,y) =
√
θ(‖x‖r + ‖y‖r) for all x,y ∈ A.

Theorem 2.7. Let ϕ : A2 → [0,∞) be a function satisfying (2.4) with X = A and f : A2 → A be a mapping
satisfying (2.6) and f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bi-linear mapping
D : A2 → A satisfying (2.5) with X = A.

If, in addition, the mapping f : A2 → A satisfies (2.7) and f(2x, z) = 2f(x, z) for all x, z ∈ A, then the mapping
f : A2 → A is a bi-derivation.

Proof. The proof is similar to the proof of Theorem 2.5.

Corollary 2.8. Let r < 1 and θ be nonnegative real numbers, and f : A2 → A be a mapping satisfying (2.8) and
f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bi-linear mapping D : A2 → A such that

‖f(x, z) −D(x, z)‖ 6 θ

(1 − |s|)(2 − 2r)
‖x‖r‖z‖r (2.11)

for all x, z ∈ A. If, in addition, the mapping f : A2 → A satisfies (2.10) and f(2x, z) = 2f(x, z) for all x, z ∈ A,
then the mapping f : A2 → A is a bi-derivation.

Proof. The proof follows from Theorem 2.7 by taking ϕ(x,y) =
√
θ(‖x‖r + ‖y‖r) for all x,y ∈ A.

3. Hyers-Ulam stability of bi-homomorphisms in Banach algebras: direct method

Now, we investigate bi-homomorphisms in complex Banach algebras associated with the bi-additive
s-functional inequality (1).

Theorem 3.1. Let ϕ : A2 → [0,∞) be a function satisfying (2.1) with X = A and f : A2 → B be a mapping
satisfying (2.6) and f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bi-linear mapping
H : A2 → B satisfying (2.3) with X = A and Y = B, where P is replaced by H in (2.3). If, in addition, the mapping
f : A2 → B satisfies f(2x, z) = 2f(x, z) and

‖f(xy, zw) − f(x, z)f(y,w)‖ 6 ϕ(x,y)ϕ(z,w) (3.1)

for all x,y, z,w ∈ A, then the mapping f : A2 → B is a bi-homomorphism.
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Proof. By the same reasoning as in the proof of Theorem 2.5, there is a unique C-bi-linear mapping
H : A2 → B, which is defined by

H(x, z) = lim
n→∞ 2nf

( x
2n

, z
)

for all x, z ∈ A. If f(2x, z) = 2f(x, z) for all x, z ∈ A, then we can easily show that H(x, z) = f(x, z) for all
x, z ∈ A. It follows from (3.1) that

‖H(xy, zw) −H(x, z)H(y,w)‖ = lim
n→∞ 4n

∥∥∥f( xy

2n · 2n
, zw

)
− f

( x
2n

, z
)
f
( y

2n
,w

)∥∥∥
6 lim

n→∞ 4nϕ
( x

2n
,
y

2n
)
ϕ(z,w) = 0

for all x,y, z,w ∈ A. Thus
H(xy, zw) = H(x, z)H(y,w)

for all x,y, z,w ∈ A. Hence the mapping f : A2 → B is a bi-homomorphism.

Corollary 3.2. Let r > 2 and θ be nonnegative real numbers, and f : A2 → B be a mapping satisfying (2.8) and
f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mapping H : A2 → B satisfying (2.9)
with X = A and Y = B, where P is replaced by H in (2.9). If, in addition, the mapping f : A2 → B satisfies
f(2x, z) = 2f(x, z) and

‖f(xy, zw) − f(x, z)f(y,w)‖ 6 θ(‖x‖r + ‖y‖r)(‖z‖r + ‖w‖r) (3.2)

for all x,y, z,w ∈ A, then the mapping f : A2 → B is a bihomomorphism.

Theorem 3.3. Let ϕ : A2 → [0,∞) be a function satisfying (2.4) with X = A and f : A2 → B be a mapping
satisfying (2.6) and f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bilinear mappingH : A2 → B

satisfying (2.5) with X = A and Y = B, where P is replaced by H in (2.5). If, in addition, the mapping f : A2 → B

satisfies (3.1) and f(2x, z) = 2f(x, z) for all x, z ∈ A, then the mapping f : A2 → B is a bi-homomorphism.

Proof. The proof is similar to the proof of Theorem 3.1.

Corollary 3.4. Let r < 1 and θ be nonnegative real numbers, and f : A2 → B be a mapping satisfying (2.8) and
f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bi-linear mapping H : A2 → B satisfying (2.11)
with X = A and Y = B, where D is replaced by H in (2.11). If, in addition, the mapping f : A2 → B satisfies (3.2)
and f(2x, z) = 2f(x, z) for all x, z ∈ A, then the mapping f : A2 → B is a bi-homomorphism.

4. Hyers-Ulam stability of bi-derivations on Banach algebras: fixed point method

Using the fixed point method, Park [45] proved the Hyers-Ulam stability of the bi-additive s-functional
inequality (1) in complex Banach spaces.

Theorem 4.1 ([45, Theorem 4.1]). Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(x

2
,
y

2

)
6
L

4
ϕ (x,y) 6

L

2
ϕ (x,y) (4.1)

for all x,y ∈ X. Let f : X2 → Y be a mapping satisfying (2.2) and f(x, 0) = f(0, z) = 0 for all x, z ∈ X. Then there
exists a unique bi-additive mapping P : X2 → Y such that

‖f(x, z) − P(x, z)‖ 6 L

4(1 − |s|)(1 − L)
ϕ(x, x)ϕ(z, 0) (4.2)

for all x, z ∈ X.
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Using the fixed point method, we prove the Hyers-Ulam stability of bi-derivations on complex Banach
algebras associated with the bi-additive s-functional inequality (1).

Theorem 4.2. Let ϕ : A2 → [0,∞) be a function satisfying (4.1) with A = X and f : A2 → A be a mapping
satisfying (2.6) and f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bi-linear mapping D : A2 →
A satisfying (4.2) with X = A. If, in addition, the mapping f : A2 → A satisfies (2.7) and f(2x, z) = 2f(x, z) for all
x, z ∈ A, then the mapping f : A2 → A is a bi-derivation.

Proof. Let λ = µ = 1 in (2.4). By Theorem 4.1, there is a unique bi-additive mapping D : A2 → A satisfying
(4.2) defined by

D(x, z) := lim
n→∞ 2nf

( x
2n

, z
)

for all x, z ∈ A. Letting y = w = 0 in (2.4), we get f(λx,µz) = λµf(x, z) for all x, z ∈ A and all λ,µ ∈ T1.
By Lemma 2.4, the bi-additive mapping D : A2 → A is C-bi-linear. The rest of the proof is similar to the
proof of Theorem 2.5.

Corollary 4.3. Let r > 2 and θ be nonnegative real numbers, and f : A2 → A be a mapping satisfying (2.7) and
f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bi-linear mapping D : A2 → A satisfying
(2.9). If, in addition, the mapping f : A2 → A satisfies (2.8), (2.9), and f(2x, z) = 2f(x, z) for all x, z ∈ A, then the
mapping f : A2 → A is a bi-derivation.

Proof. The proof follows from Theorem 4.2 by taking L = 21−r and ϕ(x,y) =
√
θ(‖x‖r + ‖y‖r) for all

x,y ∈ A.

Theorem 4.4 ([45, Theorem 4.4]). Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ (x,y) 6 2Lϕ
(x

2
,
y

2

)
(4.3)

for all x,y ∈ X. Let f : X2 → Y be a mapping satisfying (2.3) and f(x, 0) = f(0, z) = 0 for all x, z ∈ X. Then there
exists a unique bi-additive mapping P : X2 → Y such that

‖f(x, z) − P(x, z)‖ 6 1
4(1 − |s|)(1 − L)

ϕ (x, x)ϕ(z, 0) (4.4)

for all x, z ∈ X.

Theorem 4.5. Let ϕ : A2 → [0,∞) be a function satisfying (4.3) with X = A and f : A2 → A be a mapping
satisfying f(x, 0) = f(0, z) = 0 and (2.4). Then there exists a unique C-bi-linear mapping D : A2 → A satisfying
(4.4).

If, in addition, the mapping f : A2 → A satisfies f(2x, z) = 2f(x, z) and (2.6), then the mapping f : A2 → A is
a bi-derivation.

Proof. The proof is similar to the proof of Theorem 4.2.

Corollary 4.6. Let r < 1 and θ be nonnegative real numbers, and f : A2 → A be a mapping satisfying (2.7) and
f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bi-linear mapping D : A2 → A satisfying
(2.11). If, in addition, the mapping f : A2 → A satisfies (2.8), (2.9), and f(2x, z) = 2f(x, z) for all x, z ∈ A, then
the mapping f : A2 → A is a bi-derivation.

Proof. The proof follows from Theorem 4.5 by taking L = 2r−1 and ϕ(x,y) =
√
θ(‖x‖r + ‖y‖r) for all

x,y ∈ A.
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5. Hyers-Ulam stability of bi-homomorphisms in Banach algebras: fixed point method

Using the fixed point method, we prove the Hyers-Ulam stability of bi-homomorphisms in complex
Banach algebras associated with the bi-additive s-functional inequality (1).

Theorem 5.1. Let ϕ : A2 → [0,∞) be a function satisfying (4.1) with X = A and f : A2 → A be a mapping
satisfying f(x, 0) = f(0, z) = 0 for all x, z ∈ A and (2.4). Then there exists a unique C-bi-linear mapping D : A2 →
A satisfying (4.2) with X = A. If, in addition, the mapping f : A2 → A satisfies (3.1) and f(2x, z) = 2f(x, z) for all
x, z ∈ A, then the mapping f : A2 → A is a bi-homomorphism.

Proof. By Theorem 4.2, there is a unique C-bi-linear mapping D : A2 → A satisfying (4.2) defined by

D(x, z) := lim
n→∞ 2nf

( x
2n

, z
)

for all x, z ∈ A. The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 5.2. Let r > 2 and θ be nonnegative real numbers, and f : A2 → A be a mapping satisfying (2.7) and
f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bi-linear mapping D : A2 → A satisfying (2.9).
If, in addition, the mapping f : A2 → A satisfies (3.2) and f(2x, z) = 2f(x, z) for all x, z ∈ A, then the mapping
f : A2 → A is a bi-homomorphism.

Theorem 5.3. Let ϕ : A2 → [0,∞) be a function satisfying (4.3) with X = A and f : A2 → A be a mapping
satisfying f(x, 0) = f(0, z) = 0 and (2.4). Then there exists a unique C-bi-linear mapping D : A2 → A satisfying
(4.4) with X = A. If, in addition, the mapping f : A2 → A satisfies f(2x, z) = 2f(x, z) for all x, z ∈ A and (3.1),
then the mapping f : A2 → A is a bi-homomorphism.

Proof. The proof is similar to the proof of Theorem 5.1.

Corollary 5.4. Let r < 1 and θ be nonnegative real numbers, and f : A2 → A be a mapping satisfying (2.7) and
f(x, 0) = f(0, z) = 0 for all x, z ∈ A. Then there exists a unique C-bi-linear mapping D : A2 → A satisfying (2.11).
If, in addition, the mapping f : A2 → A satisfies (3.2) and f(2x, z) = 2f(x, z) for all x, z ∈ A, then the mapping
f : A2 → A is a bi-homomorphism.

6. Conclusion

Using the fixed point method and the direct method, we proved the Hyers-Ulam stability of bi-
derivations and bi-homomorphisms in Banach algebras, associated with the bi-additive functional in-
equality (1).
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