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Abstract
Delay differential equations belong to an important class of differential equations in which the evolution of the state

depends on the previous time. This work proposes a novel approach for the numerical solution of delay differential equations
of second order. The suggested numerical scheme is based on Laplace transform (LT) technique. In the suggested technique,
first, the given equation is transformed using the LT method to an algebraic expression. The expression is then solved for the
unknown transformed function and finally the well-known Weeks method is utilized to convert the solution back to time domain.
Functional analysis was used to examine the existence and uniqueness of the considered equations and to generate sufficient
requirements for Ulam-Hyers (UH) type stability. Furthermore, we consider different numerical example from literature to
validate our method.
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1. Introduction

The delay differential equations (DDEs) of second order are of the form

y ′′(υ) = g(υ) + c1y(υ) + c2y(υ−α), υ ∈ [0, 1], (1.1)
y(υ) = ψ(υ),−α 6 υ 6 0, y(0) = β1, y ′(0) = β2, (1.2)

where g : [0, 1] → R is linear continuous function, ψ(υ) is given real valued and sufficiently smooth
function, β1, β2 are real numbers, and α is a positive constant large delay that will be considered in this
work. Ordinary differential equations (ODEs) and DDEs arise in many science fields. DDEs are a type of
differential equation in which the derivative of the unknown function at a certain time is given in terms of
the function at previous times. A time-invariant system is one that runs independent of time. The ODEs
with constant coefficients can defined such systems [34]. Recently, there are numerous research under-
taken in engineering and other science subjects with a focus on the development of mathematical models
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using DDEs. DDEs have applications in a large number of real life problems, including immune system
[8], dynamics of the population [19], cell proliferation [7], the bistable device [31], control theory[10], etc.

Many techniques have been developed to study the solution of DDEs such as in [16], the authors
explored the uniqueness and existence of a solution to DDEs. Jafari et al. [15], studied the numerical
solution of pantograph type DDEs via the transferred Legendre pseudospectral, they also discussed the
convergence of the method. In [24], the authors proposed a hybrid scheme based on Picard and Kras-
noselskii iterative schemes to study the numerical solution of nonlinear DDEs. Ali et al. [3] proposed
an accurate and efficient numerical method for the approximate solution of pantograph-type DDEs with
vanishing proportional delays, they also proved the exponential convergence of the suggested method.
Mechee et al. [22] developed a Runge-Kutta-Nyström to study the solution of a 2nd order DDEs. Zi-
ada [35] obtained the solution of a nonlinear DDE of fractional order with multi terms via the Adomian
decomposition method. The author also proved the existence and stability of the unique solution of the
considered problem. Alshehri et al. [4] obtained the numerical solution of ODEs and DDEs via the Repro-
ducing Kernel Hilbert Spaces method. The authors of [6], utilized the explicit RKM for solving the DDEs,
they also discussed the determination of stability regions. Sedaghat et al. [27], developed a numerical
method based on Chebyshev polynomials to study the approximate solution of DDEs. Ogunlaran and
Olagunju [23] solved the DDEs by using the modified power series method. Senu et al. [28], studied the
numerical solution of the DDEs using the two-derivative RKM with Newton interpolation. The authors
of [18], developed a novel method coupling the Laplace transform (LT) with the Fourier series for the
solution DDEs. Sherman et al. [30] compared the performance of MAPLE and MATLAB for computing
the method of steps and LT solutions for neutral and retarded linear DDEs. Akhmet et al. [2] considered
a general linear impulsive system of DEs with distributed delay. They showed that the trivial solution
of the considered system is asymptotically stable under Perron condition. Alzabut et al. [5] studied the
asymptotic stability of Pantograph equation. They derived their main results using the Krasnoselskii’s
and generalized Banach fixed point theorems. Saini et al. [25] studied the numerical solution of singu-
larly perturbed Robin type parabolic reaction diffusion multiple scale problems with large delay in time.
The authors of [20] solved the time-delayed parabolic partial differential equations with a small diffusion
parameter.

Recently, the authors of [9] have develop an efficient LT method to establish the exact solution of a
class of 2nd order DDEs. In their suggested scheme, they apply the LT to the considered DDE and with
the help of some excellent theoretical results they obtain a transformed problem in LT domain, and then
invert it analytically to obtain the exact solution of the problem. However, for many complex problems
using their method the analytical inversion becomes hard. Thus, a numerical method is needed to obtain
the solution of the problem [26]. The aim of this article is to extend the work of [9], and obtain the
approximate solution of 2nd order DDEs using numerical inversion of the LT. The numerical inversion
of LT is generally an ill-posed problem and has led to numerous numerical methods. Every numerical
method has its own benefits and is suitable for a specific problem. In the present study, the numerical
inversion of the LT is performed via the Weeks method [17, 33].

2. Preliminaries

Let J = [0, 1] and Ω = C(J,R), then for any function y ∈ Ω the supremum norm ‖.‖ on Ω is defined as

‖y‖ = sup
υ∈J

|y(υ)|.

Definition 2.1. Let y(υ) is a real valued piecewise continuous function defined for υ > 0 and is of
exponential order. Then the LT of y(υ) exists, which is denoted and defined as

ŷ(p) = L {y(υ)} =

∫∞
0
e−pυy(υ)dυ.
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Theorem 2.2. Suppose that y(υ),y ′(υ),. . . ,y(n−1)(υ) are real functions, and are continuous on (0,∞), and of
exponential order µ, while yn(υ) is piecewise continuous on [0,∞). Then

L {yn(υ)} = pnL {y(υ)}− pn−1y(0) − · · ·− y(n−1)(0).

Theorem 2.3 ([9, Gronwall’s inequality]). Let y(υ), σ(υ) > 0, ρ(υ) > 0 are real functions and continuous on
(0,∞). If

ν(υ) 6 y(υ) + σ(υ)
∫υ

0
ρ(τ)ν(τ)dτ,

then
ν(υ) 6 y(υ) + σ(υ)

∫υ
0
y(τ)ρ(τ)e

∫υ
τ ρ(ζ)σ(ζ)dζdτ.

Theorem 2.4 ([9]). Let ψ(υ),ψ ′(υ) are continuous on [−α, 0], then the LT of y(υ−α) is given as

L {y(υ−α)} = ψ̄(p) + exp(−pα)L {y(υ)},

and the LT of y ′(υ−α) is given as

L {y ′(υ−α)} = ¯̄ψ(p) + exp(−pα)L {y ′(υ)},

where

ψ̄(p) =

∫ 0

−α
e−p(υ+α)ψ(υ)dυ, ¯̄ψ(p) =

∫ 0

−α
e−p(υ+α)ψ ′(υ)dυ.

Lemma 2.5 ([32]). The solution of

y ′′(υ) = g(υ), 0 < υ 6 1, y(0) = β1, y ′(0) = β2,

can be expressed as

y(υ) = β1 + υβ2 +

∫υ
0
(υ− s)g(s)ds.

3. Existence of solution

In this section, we study the existence and uniqueness of solution to problem (1.1)-(1.2). A detailed
discussion on the uniqueness existence of solution to differential equations, Ulam-Hyers stability, and
error analysis can be found in [11–14].

Lemma 3.1. Let g ∈ C(J,R), then the solution of the problem

y ′′(υ) = g(υ) +C1y(υ) +C2y(υ−α)), υ ∈ J,
y(υ) = ψ(υ), −α 6 υ 6 0, y(0) = β1, y ′(0) = β2, υ ∈ J,

(3.1)

can be expressed as

y(υ) = β1 + υβ2 +

∫υ
0
(υ− s)[g(s) +C1y(s) +C2y(s−α)]ds, υ ∈ J.

Proof. Using (2.5) we have

y(υ) = β1 + υβ2 +

∫υ
0
(υ− s)[g(s) +C1y(s) +C2y(s−α)]ds, υ ∈ J.

To prove the existence of solution to problem (1.1)-(1.2). Let us define an operator S : Ω→ Ω by:

Sy(υ) = β1 + υβ2 +

∫υ
0
(υ− s)[g(s) +C1y(s) +C2y(s−α)]ds, υ ∈ J.

The following assumptions are needed for further analysis.
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(H1) For continuous function K(y) and M > 0, |K(y1) −K(y2)| 6 M|y1 − y2|.
(H2) For µ1 > 0,µ2 > 0, |f(s,y1,y2) − f(s, ŷ1, ŷ2)| 6 µ1|y1 − ŷ1|+ µ2|y2 − ŷ2|.

Theorem 3.2 ([1, The Brouwer’s fixed point theorem]). Suppose that M is a nonempty, convex, and compact
subset of a Banach space Ω and S :M→M is a continuous mapping. Then S has a fixed point in M.

From the considered problem (1.1)-(1.2), the equivalent integral form is obtained as

y(υ) =

{
β1 +β2v+

∫υ
0 (υ− s)g(s)ds+

∫υ
0 (υ− s)[C1y(s) +C2y(s−α)]ds, υ ∈ J,

ψ(υ), −α 6 υ 6 0.

Since g is linear bounded function so we have |g(v)| 6 Kg, Kg > 0.

Theorem 3.3. Under the hypothesis (H1), the considered problem has a solution.

Proof. Let us define the Banach space Ω under the norm described by ‖y‖ = supυ∈J |y(υ)|. Consider a
nonempty, convex, and compact subset M of Ω defined by M = {y ∈ Ω : ‖y‖ 6 r}, where

r >
2(|β1|+ |β2|) +Kg

2 − (|C1|+ |C2|)
.

Define the operator S :M→M by

S[y(υ)] = β1 +β2υ+

∫υ
0
(υ− s)g(s)ds+

∫υ
0
(υ− s)[C1y(s) +C2y(s−α)]ds, υ ∈ J. (3.2)

Let y ∈M, then to show that M is bounded, we have by using (3.2),

|y(υ)| =

∣∣∣∣β1 +β2v+

∫υ
0
(υ− s)g(s)ds+

∫υ
0
(υ− s)[C1y(s) +C2y(s−α)]ds

∣∣∣∣
6 |β1|+ |β2||υ|+

∫ 1

0
(1 − s)|g(s)|ds+

∫ 1

0
(1 − s)[|C1||y(s)|+ |C2||y(s−α)|]ds

6 |β1|+ |β2|+
Kg

2
+

|C1|+ |C2|

2
‖y‖ 6 r

which implies that ‖y‖ 6 r. Thus M is bounded. Obviously S is also bounded by following the same
assertion that ‖Sy‖ 6 r. Thus S maps bounded set to bounded. To show that S is continuous, let yn in M,
since M is compact and contains all of its limit points. Therefore, yn → y, as n→∞. Therefore, we take

‖Syn − Sy‖ = sup
υ∈J

∣∣∣∣ ∫υ
0
(v− s)[C1(yn(s) − y(s)) +C2(yn(s−α) − y(s−α))]ds

∣∣∣∣
6 sup
υ∈J

C1

∫υ
0
(υ− s)|yn(s) − y(s)|ds+ sup

υ∈J
C2

∫υ
0
(υ− s)|yn(s−α) − y(s−α)|ds

6 C1

∫ 1

0
(1 − s)‖yn(s) − y(s)‖ds+C2

∫ 1

0
(1 − s)‖yn(s−α) − y(s−α)‖ds.

(3.3)

According to Lebesgue dominated convergence theorem, we see that at n → ∞, the integrals on right
side go to zero. Therefore, we have

‖Syn − Sy‖ → 0 as n→∞.

Hence, S is continuous. Thus inview of Theorem 3.2, S has a fixed point in M. Consequently, the problem
under consideration has a solution.
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4. Stability

In this section, we establish the stability results of the considered problem. The idea of UH stability is
important for practical issues in economics, biological and physical problems. Consider the problem

y ′′(υ) = g(υ) +C1y(υ) +C2y(υ−α)) + h(υ), υ ∈ J,
y(υ) = ψ(υ), −α 6 υ 6 0, y(0) = β1, y ′(0) = β2.

(4.1)

where, h ∈ Ω such that |h(υ)| 6 ε, for ε > 0, then (4.1) has a solution

y(υ) = β1 + υβ2 +

∫υ
0
(υ− s)[g(s) +C1y(s) +C2y(s−α) + h(s)]ds. (4.2)

Using Theorem (3.3), (4.2) can be written as

y(υ) = Sy(υ) +

∫υ
0
(υ− s)h(s)ds, υ ∈ J.

From equation (4.2), using (4.1), one has

|Sy(υ) − y(υ)| 6 ε
υ2

2
.

Theorem 4.1. Problem (3.1) is UH and generalized UH stable if (|C1|+|C2|)
2 < 1.

Proof. Let y, ȳ ∈ Ω and unique solution of (3.1), then

‖y− ȳ‖ = sup
υ∈J

|y(υ) − Sȳ(υ)|

6 sup
υ∈J

|y(υ) − Sy(υ)|+ sup
υ∈J

|Sy(υ) − Sȳ(υ)| 6
υ2

2
ε+

C1 +C2

2
‖y− ȳ‖ 6

υ2

2 ε

1 −
|C1|+|C2|

2

.

5. Methodology

In the proposed scheme, first we employ the LT to (1.1)-(1.2), we have

L {y ′′(υ)} = L {g(υ) +C1y(υ) +C2y(υ−α)}

⇒
p2L {y(υ)}− py(0) − y ′(0) = L {g(υ)}+C1L {y(υ)}+C2L {y(υ−α)},

then using theorem (2.4), we have

⇒ p2ŷ(υ) − pβ1 −β2 = ĝ(p) +C1ŷ(p) +C2ψ̄(p) +C2 exp(−pα)ŷ(υ),

or

⇒
[
p2 −C1 −C2 exp(−pα)

]
ŷ(υ) = pβ1 +β2 + ĝ(p) +C2ψ̄(p). (5.1)

Eq. (5.1) can be simplified as

ŷ(υ) =
pβ1 +β2 + ĝ(p) +C2ψ̄(p)

p2 −C1 −C2 exp(−pα)
. (5.2)

Taking inverse Laplace transform of (5.2), we have

y(υ) = L −1
{
pβ1 +β2 + ĝ(p) +C2ψ̄(p)

p2 −C1 −C2 exp(−pα)

}
. (5.3)

Our next target is to evaluate the inverse LT in (5.3). Sometimes, an analytical inversion of a Laplace
domain solution is difficult to obtain; thus, a numerical inversion method must be used. If a direct
formulation is available, a numerical inversion could still be useful. The aim of this article is to use Weeks
method for the numerical inversion of LT.
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5.1. Weeks method
Weeks technique is one of the most straightforward easy and accurate techniques for numerically

inverting the LT, provided that the parameters involved in Laguerre expansion are chosen with the best
values. In comparison with trapezoidal rule and Talbot’s technique, the Weeks procedure has a distinct
benefit: it offers a function expansion, particularly the Laguerre series expansion. This suggests that the
unknowns in the series may be identified for any given ŷ(p). In Weeks approach we select p = ρ+ iϑ, ϑ ∈
R to get

yn(υ) =
eρυ

2π

∫∞
−∞ eiυϑŷ(ρ+ iϑ)dϑ. (5.4)

The transform function ŷ(ρ+ iϑ) is expanded as

ŷ(ρ+ iϑ) =

∞∑
κ=−∞aκ

(−γ+ iϑ)κ

(γ+ iϑ)κ+1 , γ > 0, ϑ ∈ R. (5.5)

Using (5.5) in (5.4), we obtain

yn(υ) =
eρυ

2π

∞∑
κ=−∞aκδκ(υ;γ),

where

δκ(υ;γ) =
∫∞
−∞ eiυϑ

(−γ+ iϑ)κ

(γ+ iϑ)κ+1dϑ.

Residues can be utilized to compute the Fourier integral, and for υ > 0 one gets

δκ(υ;γ) =
{

2πe−γυLκ(2γυ), κ > 0,
0, κ < 0.

Here Lκ(υ) denotes the κth degree Laguerre polynomial, ρ > ρ0, ρ0 is the convergence abscissa, and
ρ,γ ∈ R+. The Lκ(υ) are expressed as

Lκ(υ) =
eυ

κ!
dκ

dυκ
(e−υυκ),

aκ are the Taylor series coefficients

C(φ) =
2γ

1 −φ
ŷ

(
ρ+

2γ
1 −φ

− γ

)
=

∞∑
κ=0

aκφ
κ, |φ| < R, (5.6)

where R is the radius of convergence of Maclaurin series (5.6). The coefficients aκ are obtained as

aκ =
1

2πi

∫
|φ|=1

C(φ)

φκ+1dφ =
1

2π

∫π
−π

C(eiβ)e−iκβdβ. (5.7)

In (5.7), the integral is the widely recognized Cauchy’s formula, which can be computed as

ãκ =
e−iκλ/2

2n

n−1∑
j=−n

C(eiβj+1/2)e−iκβj , κ = 0, 1, 2, . . . ,n− 1,

where βj = jλ, λ = π
n .

Theorem 5.1. Let N : T → T be a contraction mapping with constant 0 < L < 1, and Banach space T, then the
solution using inverse LT method can be expressed in the series form as

yn = N(yn−1), yn−1 =

n−1∑
i=1

yi, n = 1, 2, . . .

and
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yn ∈ Sr(y) =
{
y ∈ T : ‖y− y‖ < r

}
, lim

n→∞yn = y, where y0 = y(0).

Proof. To prove the required result, we use mathematical induction, for n = 1, we have

‖y1 − y‖ = ‖Ny0 −Ny‖ 6 L‖y0 − y‖.

Let for n− 1 the result is true, then

‖yn−1 − y‖ 6 Ln−1‖y0 − y‖. (5.8)

Now, we have
‖yn − y‖ = ‖N(yn−1) −N(y)‖ 6 L‖yn−1 − y‖. (5.9)

Using Eqs. (5.8) and (5.9) implies that

‖yn − y‖ 6 LLn−1‖y0 − y‖ 6 Ln.r < r,

which yields that yn ∈ Sr(y). Also as n→∞, Ln → 0. Therefore

lim
n→∞yn = y,

which completes the proof.

5.2. Error analysis
The authors of [33] studied the error of the Weeks method. They made the following observations:

y(υ) = exp(ρυ)
∞∑
κ=0

aκ exp(−γυ)Lκ(2γυ). (5.10)

Three main factors of error were identified as following.

• 1st truncation of the series at n terms;

• 2nd numerically evaluating the unknown coefficients;

• 3rd the numerical inversion of LT.

The real expansion for modelling the aforementioned three errors is

ỹ(υ) = exp(ρυ)
n−1∑
κ=0

ãκ(1 + δκ) exp(−γυ)Lκ(2γυ), (5.11)

here δκ denotes the relative error in the floating-point representation of the evaluated coefficients, i.e.,
fl(ãκ) = ãκ(1 + δκ). Subtracting (5.11) from (5.10) and assuming

∑∞
κ=0 |aκ| <∞ yields

|y(υ) − ỹ(υ)| 6 e(ρυ)
(
ET + ED + EC

)
,

where the truncation, discretization, and conditioning error bounds are, respectively, defined by

erT =

∞∑
κ=n

|aκ|, erD =

n−1∑
κ=0

|aκ − ãκ|, erC = χ

n−1∑
κ=0

|ãκ|.

Here δ is the machine roundoff unit, which satisfies max06κ6n−1|δκ| 6 δ. It is important to note that
we have used the fact | exp(−γυ)Lκ(2γυ)| 6 1. For the purposes of minimizing the error bound we shall
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disregard the discretization error erD in comparison with erT and erC [33]. So, we refer to erT and erC.
For erT and erC the upper bound derived by the author of [33] are as

erT 6
κ(υ)

υn(υ− 1)
, erC 6 δ

υκ(υ)

υ− 1
,

which is true for υ ∈ (1,R). Hence, we have the error bound given as

errorest 6
κ(υ)

υn(υ− 1)
+ δ

υκ(υ)

υ− 1
.

6. Application

In this section we present the numerical results of the proposed numerical method on five problems.
The selected problems have been widely discussed in literature and their numerical solutions are available
for comparison. Two kinds of error measures: maximum absolute error E∞ and root mean squared error
Erms are considered as

E∞ = max
16j6n

|y(υj) − yn(υj))| and Erms =

√∑n
j=1(y(υj) − yn(υj))

2

n
,

where y(υ) and yn(υ) represent exact and numerical solutions of the given problem.

Problem 6.1. Consider the second order DDE of the form

y ′′(υ) + 2y(υ) − y(υ− 1) = 3eυ − e(υ−1), υ ∈ J,

with delay condition

y(υ) = eυ, − 1 6 υ 6 0,

and initial conditions

y(0) = y ′(0) = 1.

The analytic solution of the problem is y(υ) = eυ.

Table 1: Optimal values of (σ,β), E∞, Erms, and Eest using the suggested method for Problem 6.1.

n (σ,β) E∞ Erms Eest CPU time(sec)

20 (3.6384, 1.9574) 4.4409×10−16 9.9301×10−17 1.7853×10−14 0.360449
22 (3.6384, 1.8197) 4.4409×10−16 9.4680×10−17 1.7158×10−14 0.358295
24 (3.6384, 1.7260) 0 0 1.5354×10−14 0.400068
26 (3.6598, 1.8480) 4.4409×10−16 8.7093×10−17 1.7606×10−14 0.391232
28 (3.8007, 1.6554) 8.8818×10−16 1.6785×10−16 1.7950×10−14 0.371862
30 (3.5855, 1.6474) 8.8818×10−16 1.6216×10−16 1.6164×10−14 0.374024
32 (3.5652, 1.5466) 4.4409×10−16 7.8505×10−17 1.7641×10−14 0.375128
34 (3.8168, 1.4590) 1.3323×10−15 2.2848×10−16 2.1274×10−14 0.454199
36 (3.5517, 1.2361) 0 0 1.5923×10−14 0.379240
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Figure 1: The numerical and exact solutions of Problem 1.1.
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Figure 2: Comparison of E∞, Erms, and Eest with υ ∈ [0, 1]
for Problem 6.1.
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Figure 3: Comparison of E∞, Erms, and Eest versus n corre-
sponding to Problem 6.1.

Problem 6.2. Here we consider the following DDE

y ′′(υ) + 2y(υ) +
1
2
y(υ− 1) = 2 + 2υ2 +

1
2
(υ− 1)2, υ ∈ J,

with delay condition

y(υ) = υ2, − 1 6 υ 6 0,

and initial condition

y(0) = 0, y ′(0) = 0.

The analytic solution is y(υ) = υ2.
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Table 2: Optimal values of (σ,β), E∞, Erms, and Eest using the suggested method for Problem 6.2.

n (σ,β) E∞ Erms Eest CPU time(sec)

20 (3.5855, 1.9737) 3.1252×10−10 6.9881×10−11 4.4867×10−8 0.323433
22 (3.5855, 1.9737) 5.8835×10−10 1.2544×10−10 4.6052×10−9 0.348041
24 (3.5855, 1.9737) 7.9861×10−11 1.6301×10−11 4.6418×10−10 0.360817
26 (3.5855, 1.9737) 5.1661×10−12 1.0132×10−12 4.6085×10−11 0.355712
28 (3.5855, 1.9737) 2.5979×10−14 4.9096×10−15 4.5188×10−12 0.418108
30 (3.5855, 1.9737) 4.9960×10−14 9.1214×10−15 4.3953×10−13 0.352980
32 (3.5855, 1.9737) 7.1054×10−15 1.2561×10−15 4.4175×10−14 0.449753
34 (3.5855, 1.9737) 6.6613×10−16 1.1424×10−16 6.2609×10−15 0.408586
36 (3.5855, 1.9737) 2.2204×10−16 3.7007×10−17 2.2602×10−15 0.352346
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Figure 4: The numerical and exact solutions of Problem 6.2.
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Figure 5: Comparison of E∞, Erms, and Eest with υ ∈ [0, 1]
for Problem 6.2.
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Figure 6: Comparison of E∞, Erms, and Eest versus n corre-
sponding to Problem 6.2.
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Problem 6.3. Here we consider the following DDE

y ′′(υ) = y(υ− π), υ ∈ [0,π],

with delay condition

y(υ) = sin(υ), − π 6 υ 6 0,

and initial condition

y ′(0) = 1, y(0) = 0.

The analytic solution of the problem is y(υ) = sin(υ).

Table 3: Optimal values of (σ,β), E∞, Erms, and Eest using the suggested method for Problem 6.3.

n (σ,β) E∞ Erms Eest CPU time(sec)

20 (1.9918, 1.9307) 8.5154×10−14 1.9041×10−14 2.3488×10−12 0.767043
22 (2.0777, 1.9044) 1.0658×10−14 2.2723×10−15 9.5793×10−14 0.397119
24 (1.8657, 1.8752) 2.1094×10−15 4.3058×10−16 1.6647×10−14 0.362369
26 (2.1721, 1.9297) 0 0 2.0330×10−15 0.458420
28 (2.0249, 1.8407) 1.1102×10−16 2.0981×10−17 1.4493×10−15 0.334794
30 (1.9917, 1.6701) 1.1102×10−16 2.0270×10−17 1.4432×10−15 0.374849
32 (1.7619, 1.7315) 0 0 1.3290×10−15 0.360192
34 (1.6124, 1.4735) 1.1102×10−16 1.9040×10−17 1.3437×10−15 0.335430
36 (1.5311, 1.3013) 1.1102×10−16 1.8504×10−17 1.2449×10−15 0.527198

[34] 7.31435×10−8

[29] 2.072245×10−11
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Figure 7: The numerical and exact solutions of Problem 6.3.
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Figure 8: Comparison of E∞, Erms, and Eest with υ ∈ [0, 1]
for Problem 6.3.
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Figure 9: Comparison of E∞, Erms, and Eest versus n corre-
sponding to Problem 6.3.

Problem 6.4. We consider the following DDE

y ′′(υ) = −
1
2
y(υ) +

1
2
y(υ− π),υ ∈ [0, 8π],

with delay condition

y(υ) = sin(υ), − π 6 υ 6 0,

and initial condition

y(0) = 0, y ′(0) = 1.

The analytic solution of the problem is y(υ) = sin(υ).

Table 4: Optimal values of (σ,β), E∞, Erms, and Eest using the suggested method for Problem 6.4.

n (σ,β) E∞ Erms Eest CPU time(sec)

20 (1.9917, 1.9314) 7.8604×10−14 1.7576×10−14 2.2698×10−12 0.359800
22 (2.0876, 1.9178) 1.2434×10−14 2.6510×10−15 1.1183×10−13 0.312349
24 (1.8657, 1.8752) 2.1094×10−15 4.3058×10−16 1.6584×10−14 0.341719
26 (1.9965, 1.9125) 2.2204×10−16 4.3547×10−17 2.1598×10−15 0.325819
28 (1.9917, 1.8034) 0 0 1.2786×10−15 0.351125
30 (1.8604, 1.7324) 1.1102×10−16 2.0270×10−17 1.3577×10−15 0.332441
32 (1.6886, 1.5869) 0 0 1.2057×10−15 0.345769
34 (1.5794, 1.5412) 0 0 1.1606×10−15 0.361486
36 (1.4651, 1.4709) 0 0 1.0788×10−15 0.417640

[34] 7.68531×10−8
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Figure 10: The numerical and exact solutions of Problem 6.4.
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Figure 11: Comparison of E∞, Erms, and Eest with υ ∈ [0, 1]
for Problem 6.4.
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Figure 12: Comparison of E∞, Erms, and Eest versus n cor-
responding to Problem 6.4.

Problem 6.5. We consider the following DDE

y ′′(υ) + y(υ) = y(υ− 1), υ ∈ [0, 1],

with initial conditions

y(0) = 2, y ′(0) = 0,

and delay condition

y(υ) = υ2 + 3υ+ 2, − 1 6 υ 6 0.

The analytic solution of the problem is y(υ) = υ2 + υ− 2 + 4 cos(t) − sin(t).
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Table 5: Optimal values of (σ,β), E∞, Erms, and Eest using the suggested method for Problem 6.5.

n (σ,β) E∞ Erms Eest CPU time(sec)

50 (72.607, 23.779) 3.7238×10−6 5.2662×10−7 4.5177×10−5 0.542118
100 (12.899, 24.778) 9.3516×10−7 9.3516×10−8 1.4430×10−5 0.399772
150 (14.738, 24.571) 4.9185×10−7 4.0159×10−8 8.1668×10−6 0.415064
200 (14.885, 24.801) 3.1447×10−7 2.2237×10−8 5.4459×10−6 0.485590
250 (14.210, 24.417) 2.3376×10−7 1.4784×10−8 4.1396×10−6 0.440651
300 (14.838, 24.671) 1.7543×10−7 1.0129×10−8 3.2425×10−6 0.549823
350 (14.738, 24.671) 1.3980×10−7 7.4724×10−9 2.6639×10−6 0.455142
400 (14.738, 24.671) 1.1449×10−7 5.7247×10−9 2.2383×10−6 0.456882
450 (14.588, 24.801) 9.4704×10−8 4.4644×10−9 1.8957×10−6 0.493372
500 (14.833, 24.671) 8.1274×10−8 3.6347×10−9 1.6643×10−6 0.474972

[34] 1.27698×10−7

[29] 2.6012×10−6

[21] 2.3419×10−6
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Figure 13: The numerical and exact solutions of Problem 6.5.
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Figure 14: Comparison of E∞, Erms, and Eest with υ ∈ [0, 1]
for Problem 6.5.
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Figure 15: Comparison of E∞, Erms, and Eest versus n cor-
responding to Problem 6.5.
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7. Discussion

The E∞, Erms, and Eest obtained for various values of n corresponding to Problems 6.1-6.5 using the
suggested scheme are presented in Tables 1-5. It is observed that the accuracy of the method improves
by increasing the number of nodes n. The comparison of numerical and exact solutions of Problems 6.1-
6.5 are compared in Figs. 1, 4, 7, 10, and 13, respectively. The comparison of E∞, Erms, and Eest for
various values of υ corresponding to Problems 6.1-6.5 are depicted in Fig. 2, 5, 8, 11, and 14, respectively.
Similarly the comparison of E∞, Erms, and Eest for various values of n corresponding to Problems 6.1-6.5
are depicted in Figs. 3, 6, 9, 12, and 15, respectively. It is evident form the computational results that
the suggested scheme has excellent accuracy. The obtained results are compared with other methods
available in literature. It can be seen that our method has produced accurate results.

8. Conclusion

In the current work, the LT method was applied to linear 2nd order DDEs. In the suggested method
the DDEs were transformed to equivalent problems in LT domain, which were then solved for the un-
known function. Then Weeks method was utilized to invert the obtain solution back into real domain.
Numerical examples were considered for the illustration of the suggested method. The results show that
the suggested method can efficiently solve 2nd order linear DDEs. In our future work, we want to extend
the suggested scheme to high order linear DDEs and system of linear DDEs.
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