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Abstract

In this paper, we prove some dynamic Opial type inequalities on time scales. The functions involved in these Opial type
inequalities are positive and monotone. In addition to these generalizations, some integral and discrete inequalities will be
obtained as special cases of our results.

Keywords: Opial type inequalities, dynamic inequalities, time scale.
2020 MSC: 26D15, 26E70.
©2025 All rights reserved.

1. Introduction

In 1960, Opial [23] proved the following inequality:

b—a
4

b b )
J ()| [ (1)) dt < J (1), (L1)

where x is absolutely continuous on [a, b] and x(a) = x(b) =0, and the constant bZ—“ is the best possible.
Equality holds in (1.1) if and only if

x(t)=c(t—a) for a<<x<

and

x(t) =c(b—1t) for

where c is a constant. Opial’s inequality together with its numerous generalizations, extensions, dis-
cretizations and other types has been playing a fundamental role in the study of the existence and unique-
ness properties of solutions of initial and boundary value problems for differential equations as well as
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difference equations [1, 4, 6, 8, 12-14, 19]. In further simplifying the proof of Opial’s inequality, which
has already been simplified by Olech [22], Beescak [5], Levison [18], Mallows [20], and Pederson [24], it is
proved that if x is real absolutely continuous on (0, b) and with x(0) = 0, then

b

b b »
L ()] [ (1)) dt < 2L (1) Pdt. (1.2)

For a generalization of (1.1), Beesack [5] proved that if x is an absolutely continuous function on [a, 7]
with x(a) =0, then
1

T , T 1 T ,
L (0)][x(1)]dt < 3 L ol L r(t)]x' (1) dt, (1.3)

where 1(t) is a positive and continuous function with fz % < oo, and if x(b) = 0, then
b 1 b 1 b By
x(t)||x'(t dth dtJ r(t)[x'(t)|"dt.
| olmae< 3| rar| ol

Yang [25] simplified Beesack’s proof and extended inequality (1.3) and proved that: if x is an absolutely
continuous function on (a, b) with x(a) =0, then

b , 1 b 1 b , ’

J q(0)|x(0)||[x(1)]dt < J dtJ r0)q(t)x (0 dt,

a 2Jar(t) Ja
T dt
a r(t)
nonincreasing function on [a, b]. Hua [15] extended inequality (1.2) and proved that: if x is an absolutely
continuous function with x(a) = 0, then

where r(t) is a positive and continuous function with [ < o0, and q(t) is a positive bounded and

b b
J ‘X(t)PHx/(t)‘dt < (bp_—i—al)p‘[ |X/(t)|p+1dt,

where p is a positive integer. We mentioned here that the result in [15] failed to apply for general values
of p. Maroni [21] generalized (1.3) and proved that: if x is an absolutely continuous function on [a, b]
with x(a) = 0 = x(b), then

b . 1 b 1 x—1 é b ) N %
L Ix(t)||x'(t)]dt < 5 (L (r(t)> dt) (L T(t)[x(1)] dt> ,

-1
where fz ( r(lt) ) N < oo, >1,and % + % = 1. In fact, the discrete analogy of (1.1), which has been
proved by Lasota [17], is given by

h—1 h—1

1Th+1 ,
E IxiAxi| < 5 [2 ] E |AXi %,
i=1 1i=0

where [xi]Jo<i<h is a sequence of real numbers with xg = x;, = 0. The discrete analogy of (1.2) is proved
in [3, Theorem 5.2.2] and given by

h—1 e
D IiAxi| < — > AxiP, (1.4)
im1 i—0

where [xilo<ich is a sequence of real numbers with xo = 0.
In this paper, we are concerned with a certain class of Opial-type dynamic inequalities on time scales
and their extensions. If the time scale equals the real (or the integers), the results represent the classical
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results for differential (or difference) inequalities. The three most popular examples of calculus on time
scales are differential calculus, difference calculus, and quantum calculus (see Kac and Cheung [16]), that
is, when T =R, T=27Z,and T = qiZ = {q*:z € Z}U{0}, where q > 1. For more details on time scale
analysis, we refer the reader to the two books by Bohner and Peterson [9, 10] which summarize and
organize much of the time scale calculus. In [7], Bohner and Kaymakcalan introduced the dynamic Opial
inequality on time scales, which unifies the continuous version (1.2) and the discrete version (1.4), and
proved that if x : [0, b]y — R is delta differentiable with x(0) = 0, then

h h
J \x(t)+x“(t)}|xA(t)\At<hJ x2(t) At
0 0

In the following, we recall some of the related results that have been established for differential inequalities
and dynamic inequalities on time scales that serve and motivate the contents of this paper.

Agarwal and Pang [3] proved the following inequality, which is generalization of Opial’s inequalities
and some extensions of Beesack’s. They proved that, if x;, x, are absolutely continuous functions on [a,
1] with x1(a) = x(a) = 0, then

N / / 1 * 1 * / 2 / 2
Ja q(t) [xa (t)x3(t) + x1 ()x2(t)]] dt < 5 L mdt Lp(t)q(t) (X1 ()1 + Ixp(t)[F] dt, (1.5)

T dt
ap(m) S

increasing on [a,T]. Also, Agarwal and Pang [3] proved that, if x(t) € C (=10, a] and xV(0) = 0,
0<i<n—1(n>1). Further, if XD (t) is absolutely continuous and fz Ix(™)(t)]2dt < oo, then the
following inequality holds:

where p is a positive and continuous function with | oo, and ¢ is bounded, positive, and non-

p%ﬁuw}m, (1.6)

B 1 n 2
“Eom\om—1)

And also in [3] the authors proved that for j = 1, 2, let x(t) € c(m=110, a], such that x).m(()) =0,

0<ig<n—1(n > 1), further, x]gn*l)(t) be absolutely continuous, and fz Ixjgn)(t)Izdt < oo, then the

following inequality holds:

where

Ja [ (O™ 1+ ™ (Ox2(V]] at < epa® J XM R+ kY (0P at,
0 0

where c,, defined by (1.6). Further, equality holds if and only if n = 1 and x&n) (t) = xénJ (t) = c. Zhao
and An [26] generalized (1.1) and proved that: if F € C!([q, b], R), F(a) = F(b) =0, and A1, A, > 1, then
A2
)\)‘1+>‘2 b _ A b
2 ( a) J' }F/(t)‘)\ﬁ_)\z dt.
(A + )20

b
J (F()M (F/(0)2] dt <

Also in the same paper, the authors generalized (1.5) and proved that if F, G : [a, b] — R are real-valued
absolutely continuous functions on [a, b], A;, A > 1,

(1) if F(a) = G(a) =0, then we have
b
J (J(FEDM(G ()] + [(G ()M (F/ (1)) dt

) (b —4(1))‘1 Jb

a

N

(F' (0PN +F (0= +16 (1) +1G'(1)P2) dt;
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(2) if F(a) = F(b) = G(a) = G(b) =0, then we have

b
J (IFE)MG" (1)) + [(G(1)M(F (1)) dt

oo Jb (FOPY +[F (02 + |G (1P + 16/ (1)) at
= oA +2 o :

In this article, we will state and prove some dynamic Opial type inequalities on time scales. Our
results generalize some results of [3, 26] to time scales. After each result, we will study as special cases
when T =R, T =Z, and T = q# to obtain some continuous and discrete results. This paper is organized
as follows. In Section 2, we briefly present the basic definitions and concepts related to the calculus on
time scales. In Section 3, we present some new dynamic Opial type inequalities via time scales integrals
concerning first order derivatives. In Section 4, we present some new dynamic Opial type inequalities
via time scales integrals concerning higher order derivatives. Finally, in the concluding Section 5, we
summaries our results.

2. Preliminaries and lemmas

In this section, we recall the following concepts related to the notion of time scales. A time scale T
is an arbitrary nonempty closed subset of R. We suppose throughout the article that T has the topology
that it inherits from the standard topology on R. In [11], Bohner and Peterson defined the forward jump
operator o and the graininess function p by o(x) :=inf{t € T : t > x} and pu(x) := o(x) —x > 0, respectively.

In the following, we use the notations f°(x) = f(o(x)), for any function f : T — R and [a, bl := [a,
bl NT for any interval on T.

Definition 2.1 ([11]). f: T — R is rd-continuous if it is continuous at right-dense points in T and its left-
sided limits exist (finite) at left-dense points in T, the collection of rd-continuous functions is symbolized
as C.4(T, R).

Definition 2.2 ([11]). Assuming f : T — R and x € T, we define the delta derivative f*(x) to be the
number if it exists, as follows: for any € > 0 there is a neighborhood U = (x —t, x +t) N T for some t > 0
of x, such that

If(o(x)) — (1) — 2 (x)(o(x) —t)| < elo(x) —t], Vte U, t#£o(x).

Theorem 2.3 ([11]). Let f, g : T — R be differentiable at x € T. Then
1. fg: T — R is differentiable at x and the “product rule”holds as
(fg)2(x) = f2(x)g(x) + f(o(x))g* (x) = f(x) g2 (x) + 2 (x)g(0(x));

2. if g(x)g(o(x)) #0, then f/g : T — R is differentiable at x and the “quotient rule”holds as

(f>A o) = FA0)900 — Flx)g® (x)

9 g(x)g(o(x))
Definition 2.4 ([11]). f: T — R is an antiderivative of g : T — R if

fA(x) = g(x) holds ¥x e TX,

in this case, the delta integral of g is
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Theorem 2.5 ([11]). If a,b,c € T, &, p € Rand f, g € Crq(la, blr, R), then
1 [ lof(t) + Bg(t)] At = o [ f(t) AL+ B [T g(t)At
2, ja f(t)At = [C f(t)At + [L f(t)At
5. |J% f(t)At‘ < [P I(t)] At;
4. Iff(t) > 0, Vt € [a, bly, then [ f(t)At > 0.
Theorem 2.6 ([11]). Every rd-continuous function g : T — R has an anti-derivative and if xo € T, then
x A
(J g(t)At> =g(x), vx € T.

x0

The following key relations between T = R, T = Z, and T = qiZ are used as special cases of our
results.

1. If T =R, then oft) = t, fA(t) = f/(t), [ f(t At_j f(t
2. fT=27Z, theno(t) =t—+1, fA( ) (t+ t), [©f(t At_ b2l
3. I T = 47, then o{t) = qt, fA(¢) = LLaU 0 j FlH)AL = ( Zlfgfoz L qtt(qh).

Lemma 2.7 (Chain Rule, [11, Theorem 1.90]). Assume g : R — R is continuous, g : T — R is delta
differentiable on T, and f : R — R is continuously differentiable, then

/

(fog)® (x) =f (g(c) g®(x), c € [x o(x)l.

Lemma 2.8 ([2, Integration by parts]). If a, b € T and u, v € C+4([a, bly, R), then

b b
J u(t)vA(t)At = [u(t)v(t)]® —J u? (t)vO (t)At.

a a

Lemma 2.9 ([2, Holder’s inequality]). If a, b € T and f, g € Cr4(la, bly, R), then

1
q

, 2.1)

1
P

b b
j ()P AL J g(t)[9At

a

b
J f(t)g(D)IAL <

a

wherep >1and 1/p+1/q=1.(2.1) is reversed if 0 <p < Lorp < 0.
The special case p = q = 2 yields the Cauchy-Schwarz inequality.

Lemma 2.10 ([2, Cauchy-Schwarz inequality]). If a, b € T and f, g € Cr4([a, bly, R), then

1

b b 20 b 2
| wrogroiae < || irorar] || lowpat 22)
a a a
3. Opial type inequalities concerning first order derivatives
In what follows, all considered parameters A;, A, will mean positive integer and a, b, <52 € T.
Lemma 3.1. Let T be a time scale, F € C4q([a, blt, R) with F(a) =0, and A, A, > 1. Then
A
b )\7\1“\2 (b—(l))\l b
F)™M (FA(1) ™ at < 2 J FA(L)M AL, 3.1
|| [ roce) el L @)
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Proof. By hypothesis, we have
t
Fl < | P, e lablr.

a

Thanks to Holder’s inequality (2.1), it follows that

A+Ap—1

t t o\ Atk /ot A%
J [FA(s)|As < <J As) <J |FA(S)|>\1+}\2AS> .
a a a

Let G(t) = t [FA(s)MT22As. Then G2(t) = |[FA(t)M 2. Consequently, applying Holder’s inequalit
a q Y, applying q y

: : . : _ AMt+A _ AMt+A
again with indices p = Ao 4 =T we have

b rb
J }(F(t))xl(FA(t))M\A‘t:J F(t)™ [FA (1)

a
b oot A Ay
< J |FA(S)‘ As} (GA(t)) MR AL
A (A1+A—1) M

t A (it SRR )
J As} {J IFA(S)IMH‘ZAS} (G2 (1) M2 At

M (A1+A-1)

JtAs} T Gy (GA(U);&M}N

A Ay
t A1+Ax—1 A+Ag b A Ay

J J As> At) <J G* (t)GA(t)At>

a a a

M A

b SRR A >\1+2>\2
t—a)MTA AL < 2 > G(b
L( @) M+ (b)

A

A
(b— a)MW)W ( A2 ) G(b)

N

N
5 > 0
S —AN— T

N

o A o A (b
)\ A1+A b _ 1 )\ A1+A b _ 1
< M)(b—a)h b) = (A2)*17%2 (b —a) J FA 2 At
AL+ A2 A1+ A2 a
The proof is complete. O

Corollary 3.2. If T = R in Lemma 3.1, we have

)
b A}\1+A2 b o A b
| o ey a< 2B Mrpa,
a 1 2 a
which is inequality (3.1) in [26].
Corollary 3.3. If T = Z in Lemma 3.1, we get
b1 }\Arfzxz (b—a 22
S|P (aFw)| < = > AR
t=a )\1 +7\2 t=a
Corollary 3.4. If T = qZ in Lemma 3.1, then
log, b—1 X }:37\ A log, b—1
A A AT (b —a)M
) L G e e D M AL CU

t:(logq a) t:(logq a)
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Theorem 3.5. Let T be a time scale, F € Cr4q([a, bly, R), F(a) = F(b) =0, and A, A\p > 1. Then

A

b Xy A (b
)\ )7\1+?\2(b_a) 1 ArFA
[ e oo < Bl [l 6
a
Proof. By hypothesis, we employ inequality (3.1) on the interval [a, 2], then
a+b M a+b
2 A (A2) M2 (b —a)™M 2 ArHA
|7 foro o] < Bt OO 5 pa g
Lets=t+ %. Then
b PO N 00 kil Lt A LR
<
Lz“’ (F(eN™ (FA(t) At‘ S T T ng [FA(1)] At,
and the result (3.2) follows. O]
Corollary 3.6. If T = R in Theorem 3.5, then
b }\7\1)\3& (b _ (1)7\1 b
|| Jereer Fro™far< SR | R wR e,
a a
which is inequality (3.2) in Theorem 3.3 of [26].
Corollary 3.7. If T = Z in Theorem 3.5, then
b—-1 }\Al)\f)\z (b— )7\1 b—1
3| e (v | <« S I AR
t=a
Corollary 3.8. If T = qZ in Theorem 3.5, then
logq b—1 X )-\#27\ logq b—1
A A A2 (b - a))\l
Z qt (F(qt)) 1 (FA(qt)) 2 < 2(}\ ~Toh Z qt|FA(qt)|7\1+7\z'
t=(log_ a) 1t 2) t=(log, a)
8q 8q
Theorem 3.9. Let T be a time scale with T € T, p(t) be positive and rd-continuous on [a, TlT with [~ At < oo,
b p(t)
1(t) be positive, bounded and non-increasing on [a, Tlt. Farther, F1, F» € Crq(la, Tlt, R), and Fi(a) = Fz( )=0
Then the following inequality holds:
T 1 T 1 T
ot Rwr @R acs 3 [ ar | pomoirwr irtoms) . 6
a a a

Proof. Fori=1,2, let
J Vaul IFA J|As, te€la,TlT.

So that

and
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Thus, we have

T

J r(t) [[F1(t)F2 (1) + [F () Fa(t)[] At <J [G1(t)G5 (1) + G (1) Ga(t)] At

a a

< J [GLDGA() + GA(1GS (1] At (3.4)

—_

< G1(1)Ga(1) < 5 [Gi(1) + G3(7)],

2
from the definition of G;(t) and the Cauchy-Schwarz inequality (2.2) involving time scale, we have

2
" L FA. 2 3.5
< J (t) AtJ p(t)T(t” i (t)| At. ( )

a a

2 _ * 1 A
Gilt) = Uu V) p(t)r(t)[FT ()AL

The inequality (3.3) now follows immediately from (3.4) and the inequalities analogous to (3.5) for G%(T),
i=1,2. O

Remark 3.10. Taking p(t) =r(t) =1 in Theorem 3.9, we get

|  rom i+ @R st < (- a) || IR 0F + 0P

a

Corollary 3.11. When T = R in Theorem 3.9, then the inequality (3.3) reduces to the following inequality

" / / 1 " 1 * / !/
[ (Rt Fitrion ac< 5 || —a [ ptorionor +pwpiar),

which is inequality in Theorem 2.14.1 of [3].

Corollary 3.12. If T = Z in Theorem 3.9, then
1 T—1 T—1
3 r(0) [P (AR 0] + | (AR (1) Fa(t)] < 7 !Z 1] [Z P (L) (6)[AF (D) + |AF2(t)|2]] .
t=a

Corollary 3.13. If T = qiZ in Theorem 3.9, then

log, T—1

> q'r(q") [IF(q)FL (") + 1 (FR(aY) Falq)]]

t=log, a
log, T—1 log, t—1
5 9-1 ) a'org| | 2 aPa@r@iF @ R P
t=log, a t=log, a

Theorem 3.14. Let T be a time scale. For delta differentiable F, G : [a, blr = R, and F, G € Cyq, A1, A2 > 1,
) if F(a) = G(a) =0, then we have

b
J (JFEN™ (G| + [(G ()™ (FA(0)™2]) At
. (b (13 J' <|FA( )|p?\1 N |FA(t)|q?\2 N |GA(t)|p?\1 N |GA(t)|q>\z> At; (3.6)
@p)r Ja X P q P |
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(2) if F(a) = F(b) = G(a) = G(b) = 0, then we have

b
| Grre e @)+ [ ram) at

VM (b /EA () [PA A(4)|aA A(4)[PA A(g)[aA
<= ;J (IF mPT  FEmIET 6T IGT(t)] Z)At.
2M(2p)v Ja p q P q
Proof.

(1) If Ay = Ay =1, from Remark 3.10, we have

b

b
J (FGA (0] + G (OFA (1)) At < 2= ° j

5 (IFA)1 +1G2 (1)) At.

a

= G(a) =0, then we have

Ft)] < j FA(x)1Ax < J ()7 (J |FA(x)|PMAx> "

a a a

It follows that

b b b t
J F(tnpmtq FOPM AL < J (t—a)P“J IFA () PN A

a a a a

_q)PM P — A\PM
< p;) J Fraohax < 0 2;) J [FA(1) P AL
1 a

Thanks to Holder’s inequality and the elementary inequalities o, B > 0, «

1

b b % b q
J |(F(t))A1(GA(t))Mt<{J IF(t)P“At\} {J \GA(t)qMAt\}

< w (Jb IFA(t)|p7\1At> ' (Jb |GA(t)‘”2At\> q
(2p)» a a
a

M Jb PF%NPM N |GA(tJ|‘W] At
p q

Similarly, we have

N
o
=

a

[ iwmEsw s L ['GAM'% n 'FA(t)lqM] At.
a p q

Then the result (3.6) follows.

@) 1 F(a) = F(b) = G(a)

G(b) = 0, we employ inequality (3.6) on the interval [a, ], then

a+b

J IR GA )]+ 1(G)M (FA (1)) At

g J <|FA(t)|vM L IFAeR[GAE) PN +|GA(t)|qu> At
T o2p)r Ja p q p q '

(3.7)
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b_
Lets=t+ Ta. Then

b
J [FENM(GA ()] + (G (0) M (FA (1) 2] At

a+b
2
(PN Jb (|FA(t)|PM FA(R)]a%  |GA(L)PM |GA(t)|qM>
—=— + + + At,
(2p)p Jep p g P q

and the result (3.7) follows. O

<

Corollary 3.15. When T = R in Theorem 3.14, we get
(1) if F(a) = G(a) = 0, then we have
b
| e + e r ) e

(o—ay J (lF(Wl+|F’(t)qxz+|6'(t)|%+|G'(t)|qkz>dtl
2p)p Ja p q P q

when p = q = 2 in (3.8), we obtain

(3.8)
<

b
J [I(FENM (G ()72 + (G ()™ (F'(1))*2(] dt

(b—a)™

<
4

b
[ J (F' (P + [F (0P + 16" ()P +1G' (1)) dt] ,

which is inequality (3.8) in [26];
(2) if F(a) = F(b) = G(a) = G(b) = 0, then we have
b
| Qe + e r ) e

_ A\A1 b F’ PA1 F’ qAy / PA1 / qAr
< (b ct)1 J (I WP~ [P +IG WP 1G] >dt’
2M(2p)r Ja P q P q

(3.9)

when p = q =2 in (3.9), we obtain

b
J [ICFEE™M (G ()72 + [(G(£)™ (F' ()] dt

(b—a)™ | [* /. oa 7\ 2A 751 2A 151 2A
<t || (PP PP +16 (0P + 16" (0P) at
which is inequality (3.9) in [26].

Corollary 3.16. When T = Z in Theorem 3.14, then
(1) if F(a) = G(a) = 0, then we have

i NMAG(E)M| +|(G(1)M(AF(1)™2)

|AF(t) I‘[’Al JAF(1)|9%2 JAG(t)[PM |AG(t)|9
Z + q + - + q ;

l
P t=a
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2) if F(a) = F(b) = G(a) = G(b) = 0, then we have
Z NM(AG(E) 2] + | (G ()M (AF())*2)
b—a)™ & JAFR)PM ARG [AG(H)PM AG(t)]9
<( a)lz<| (t)] +| (t)] +| (t)] +| (t)] >
2M(2p)P = p q P q
Corollary 3.17. When T = qiZ in Theorem 3.14, then
(1) if F(a) = G(a) = 0, then we have
log, b—1
Z q )\](GA }\2‘ _’_} )Al(FA(qt))AzD
t=log, a
(b—a™ BT FAGOPY FAQYIe | GA(qHPY | [GA(qhe:
<——— ) ¢ ( + - + ) ;
(Zp)p t=log, a P q P q
2) if F(a) = F(b) = G(a) = G(b) = 0, then we have
log, b—1
> 4 IDMGA(g)] +[(GlgM (FA ("))
t=log, a
logq b—1 Aty [PA A tygA Aty [PA A tygA
U a)M [F2(g")P™  [F2(gh)19% 1G2(qY)IP™M | 1G2(q)[97
—— > q + - + :
2>‘1 (Z‘p)v t=log, a p q p q
4. Opial type inequalities concerning higher order derivatives
Lemma 4.1. Let T be a time scale with a, b € T, F € C¥,([a, bl, R), FA'(a) =0, i € [0, k— 1] and Ay, Az > 0.
Then
b . \ b
| Jro et e an < Hiepar ¢ | FA M e @)
where

(1—co) CoM
b t 1 Co 1
H= J {J hy— (t,s)llcoAs} At , Co= .
(a a A ° )\1+}\2

Proof. By hypothesis, we have

F(t) :J hk_l(t,s)FAk(s)As, t € [a, blT.

a

Letting ¢o = x5, +>\ , and using Hélder’s inequality with indices p = - «» 9 = ¢, we obtain

t . 1—co t . Co
Flt)] < {J a1t 8) 75 As} {J P (smlﬂms} .
a a
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Then, we get

Jb (F(O)M(FA" (1) At

a
b t 1 Al(l_CoJ
<J {j |hk_1(t,s)|lcoAs}
a a

Consequently, applying Holder’s inequality again with indices p =

b
J (FO (FA (0)2] At
(I—co)

< (Jj {E Ihkq(t,s)lﬁ As} - At) - (Ji FA ()

Ap+Ay ] CoAz

sH ( ; ) JbWAk(t)Pl“mt ;
h }\1+7\2 a

A NN Y Ak cora ) 7 1eAk A tA
<H [F2 (1)1 2At p < H(coA2) [F27 (1) 2AL .
}\1 + Ao a a

t—s)k—

Corollary 4.2. When T =R in Lemma 4.1, hy_4(t, s) = ((kﬁ

rb t 1
H=— {J R 1 (&, 5) 75 ds}
Ja a

1 (1
-\ (k=1)! <k_co)

then the inequality (4.1) reduces to the following inequality

Jb (FO)Y (F1) ()

a

where

C = coAy2e (k)™M (
which is inequality (4.1) in [26].
Corollary 4.3. If T = Z in Lemma 4.1, hy_1(t, s) = <]:: 51>

b—1

t=a

FA ()

dt<C(b—a

A%(s)

L

1
A1co’

M

1
, S0 that

(1—co) CoM
Co
dt)

(1—co) CoAp

P Jt (t—s)kflﬁds - dt
lJa ) Jal (k=1)

b
)Alk J |F(k) (t)‘7\1+7\2 dt,

a

k(1 —co) A1(l—co)
k_ CO ’

, then

b—1
Z ‘(F(t)))‘l (AkF(t))Az‘ < Q (CO}\Z)C(Q\Q {Z |AkF(t)|7\1+7\z} )

t=a

A1+2A2 CoM
As

q= 7\2%, we have
o

(4.2)
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where
(1—co)\ CoA1

e

Corollary 4.4. If T = qiZ in Lemma 4.1, hy_1(t, s) = Hk_z 224" then

t—1

- | Lz

and c, is defined by (4.1).

v=0 37 _oq"’
logqb 1
k
M (A (1))
t= logq
logqb 1 o log,, b—1 (43)
)y gty e (qY el Y R (g
t=log, a t=log, a
where
logq t—1 k—2 tquqS ﬁ
Yy =<(q-1) ) qSHﬁ :
s:logq a v=0 u=0 q

and c, is defined by (4.1).
Lemma 4.5. Let T be a time scale with a, b € T, F € C¥;([qa, blr, R), FY(a) = FY(b) = 0,1 € [0, k—1],

(1—co) CoA1 (1—co) CoAq
let K = [jjb {Jihcas)res asp = at) = [fb;b {Jihca(es)me ash = Al and Ay,
A > 1. Then
b X )\2 CoA2 b "
J (FIOP (P () M1At < K ( ) j FA* (g reag b (44)
a )\1 +}\2 a

where c,, is defined by (4.1).
Proof. By hypothesis, we employ inequality (4.1) on interval [a, a“’] Then

a+b
2

(F()™M (FA™ (1) At

a+b

a+b t (1—co) CoM A Cols
2 1 co 2 ° 2 EAK LV ALHA
< hi_1(t,s)|[T=c0 As At F2 (t)|™MTM2AL 5.
(L {Ja| -1 (L) } ) (7\1+7\2> {Ja P }

b
J (FOM (A" (1)) At

a+b
2
co)\l
b ¢ 1 co A\ A ALA
< [hi—1(t, s)|T=c0 As At [FE ()AL,
a}Lb a )\1+)\2 a42rb

and the result follows by

a+b b

2 |(F(t))M(FAk(t))M|At+Lb I(F(0)M (FA ()2t
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%b t . (1;Co) Co)\l 7\ CO?\Z &zb
° k
<] {J R 1 (t, 5)/ 75 As} At ( : ) | 7 pea
a a }\1 +7\2 a

b t . U;zo) CoAp )\2 oy b )
o [ meramsas T ad (20) L P op
agb a M+ A atb
}\2 CoA2 J'b Ak N
<K FA ()M M2AL 5
(525 { )

Corollary 4.6. When T =R in Lemma 4.5, hy_1(t,s) = ﬁ, so that

wib . (1=co) CoAq
2 1 co
K= (J {J [hi_1(t,s)|Tco0 ds} dt)
a a

(1—co) CoM
a+b co

AR e
B 1—co coM /b a\ KM
- (k—ll)! (11—22) (C?O) ' (b2a> ’

b Ak b
J (F(t))}‘l(F(k)(t)))\z dt<C (b;a> J |F(k)(t)|7\1+7\2dt,

a

then inequality (4.4) becomes

where C is defined in (4.2), which is inequality (4.2) in [26].

Corollary 4.7. If T = Z in Lemma 4.5, hy_1(t, s) = <t N S), then

k—1
b—1 b1
3 | (FOMAF0)™] < A (eoha) A{ S lakF pm}
t=a t=a
where
ba_1 . 4 1 (1=co)\ oMl
2 — 1 %
t_S I—co
t=a s=a

and c, is defined by (4.1).
Corollary 4.8. If T = qZ in Lemma 4.5, hye_1(t,s) = [[522 &9°5, then

v=0 Zuzoqw
log, b—1 §
7\ A A
)M (F (')
t=log, a
607\1
log, 254 log, b—1
o ty Uz oy co?\z X 1Ak AL+HAn
<fla=1 ) gy = (qY > qYFA(qY)] ,
t=log, a t=log, a

where Y (t) is defined by (4.3) and c,, is defined by (4.1).
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Theorem 4.9. Let T be a time scale with a,b € T, F € C?gl([a, blr, R) be such that FAi(a) =0,0<ig<n—-1

(n > 1). Further, FA"' € C,q and jz [FA™(t)|9At < oco. Then the following inequality holds

2

q

4

a 2 a

J: (E Thn_1(t,s)P As> At

Proof. In view of the assumptions on F(t), for any t € [a, b]y, we have

b . Na o o
j FIOFA™ ()AL < An () U FA" (0] 9At

where .
5

An =

F(t) = Jt hn_1(t, s)FA" (s)As.

a

Multiplying (4.6) by FA"(t) and using Hoélder’s inequality with indices p, q we obtain

FIOFA" (1)]At < [FA" (1) (Jt M (t,5)P As> ’ (Jt |FA“(s)|qu> ’

a a

(4.5)

(4.6)

(4.7)

Thus, integrating (4.7) from a to b and applying Holder’s inequality to the right side again, we obtain

b rb rt
J|F(t)FA“(t)|At< < |hn1(t,s)|ms> At

a Ja Ja

o=

[ b t
J [FA™ (1)]9 (J |FA“(s)qu> At

a a

1
(b /ot 17 b q t 214 q
< ( hn_1(t,s)P As) At J 5 [(J [FA (s)Iqu) At
Ja Ja a a
- S 1 2
rb rt P 71\ a b " q
< (| (] mnateoras)ad - (3) U A" (1) 9t
_.xa Ja i a

Corollary 4.10. When T = R in Theorem 4.9, hn_1(t, s) = %, so that

poe ([ { [ meorafa)
S (RINCE=s A

B 1 b (t_a)(n—l)p—H %
~ 1) (H (n—T)p+1 }dt>
+

=

then the inequality (4.5) becomes

(n=1)+3 3
jb|F(t)F(“>(t)dt< ! ,( b—a)™” ><1> Ubw(“)(tnth]
a =D\ ((n—Dp+Uln—1p+2)r ) \2/ [a

1
q

(4.8)
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Corollary 4.11. When p = q =2, a =0in (4.8), we get

b bn n % b
(n) - (M) ()2
L ‘F(t)F (t)‘dtg - <2n_1> UO F) (1)) dt],

which is the inequality in Theorem 3.3.1 of [3].

Corollary 4.12. When T = Z in Theorem 4.9, h,_1(t,s) = (1::31) , then

éF(t)AnF(t) < rzl (tzl <f1:sl) Dr (;)

t=a \s=a

b1 i
> |A“F(t)|q]
t=a

Corollary 4.13. When T = qiZ in Theorem 4.9, h,,_1(t,s) = 1_[3:_02 Zt%;%’ then
N

log, b—1
> alFa (g
t=log_ a
q , : (49)
log, b—1 P 1 [log,b—1 q
2_ n
<=1 [(a-1) Y atBalq) () Y Q|
t=log, a t=log, a
h
where logqt : . S
t-d'q”
Bn(t) = ( ) ) T )
s=log, a ”*0

Theorem 4.14. Let T be a time scale with a,b € T, for j = 1,2, Fj(t) € C?El([a, blt, R), such that Fin(a) =0,

0<i<n—1(n>1). Further, let F].An_l(t) be rd-continuous, and fz IFjAn(t)lth < oo. Then the following

inequality holds:

a1
q

An [° [pan n
2o [ e R 0] Ay (&.10

a

b
J [|F1(t)F2 )+ [FAT ()R (1)]| At < 2

a

where Ay, is defined by (4.5).

Proof. Following the proof of Theorem 4.9 it is straight forward to obtain

b N ) N t N 1
J [Fi(£)F2" (t)IAt < Ay J [Fo ()[4 (J |F{ (s)lqu) At

o=

and

Q=

b [ b t
J FR (DF2 (1At < Ay J FR (4)]9 (J |F2A“(s)|qu> At

1 1
Thus in view of the elementary inequalities x? 34 <
we have

o
x4

b
J [\Fl(tm NOES (t)Fz(t)ﬂ At

a
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b N t N b N t N %
J Fa (1)1 <J F (s)|qu> At J [FA™ ()9 (J F5 (s)lqu> At

q-1 b t b t
<2%A, J FA" ()] (J |F1A“(s)|qu> At| + j FA™ (g9 (J |F2“(s)|qu> At

1
q

a1 b N t N ] [ b N o(t) N
<2 AL J A" ()] <J FA (anAs) At] + j A" ()] j A" (5)|94s | At
a a a a

) b A
<27 AL [(Jt |F1A“(s)|qu> <Jt |F2“(s)|qu>] At
1 [/ (b b q

<2 A, (J |F1A“(t)|th> (J |F2“(t)|th>

q—1
270 An [° [ean n
R [ i 1 0] A

a

o=

1
q

O

Corollary 4.15. If T = R in Theorem 4.14, h,,_1(t,s) = (t(;i);;l as Corollary 4.10, then the inequality (4.10)

becomes

b
[ [Form @i+ P R ] a

ZEqu (b — Cl) (nil)Jr% ) b (n) (n)
< - [Fo 7 (6)[9+[F, (1)]9] dt
q(“—”!<u(n—1)p+m(n 1)p +2))7 J r o o]

Corollary 4.16. When p = q = 2 in (4.11), we get

(4.11)

Jb [FORM @]+ [Fr R[] ac< 88 (2nn_1)%£)(|F§“)(t)|2+|F§“)(t)|2)dt

which is the inequality in Lemma 4.9 of [26].
Corollary 4.17. When p = q =2, a =0in (4.11), we get

X HFl(t)Fé“)(t)MFi“)(t) <3 (3 1) (P R+ ) a

which is the inequality in Theorem 3.8.1 of [3

Corollary 4.18. If T = Z in Theorem 4.14, hy,_1(t,s) = <Tt1 > then
1
b—1 a1l b—1 /t—1 f—s » b—1
D (DA™ (1) + [(A™F1 (1) F2 [Z (Z <n_1> )] D IAMF () + AN (1)]9].
t=a t= s=a t=a

Corollary 4.19. If T = qiZ in Theorem 4.14, hn_1(t, s) = 1_[3: Zt qvqs then

0

log, b—1

>t (IFu(a)Fs" (a")1+I(F" (a*)Fa(q")])

t=log, a
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ZqT_] log, b—1 % logqb—1
<@ Y aBala)] X a" (@) +F" @),
q t:logq a t=logqa

where By, (t) is defined by (4.9).

5. Conclusion

In this paper we have proved some new generalizations of dynamic Opial type inequalities on time
scales. These inequalities have certain conditions that have not been studied before. Besides that, in
order to obtain some new inequalities as special cases, we also extended our inequalities to discrete and
continuous calculus.
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