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Abstract

The object of this study is to introduce the new generalized discrete U-Bernoulli-Korobov-kind polynomials. Additionally,
we give several of its explicit representations, as well as relations with other families of polynomials. We state some properties
for the ∆ and ∇ operators associated with this polynomial class. Finally, we focus our attention on the orthogonality relation
and the three-term recurrence formula satisfied by these polynomials.
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1. Introduction

The study of generating functions and their various extensions leads to polynomials and numbers
known for their exceptional and valuable properties, which have applications in some branches of mathe-
matics, probability, engineering, and other scientific disciplines. Many mathematical physics issues can be
solved analytically, thanks to the recent developments in generating functions theory [19, 20, 28, 29, 32, 33].
Numerous authors have been active in the study of degenerate numbers and polynomials, which has led
to the discovery of some interesting results. We can find certain works related to degenerate Bernoulli
polynomials, a study on the generalized degenerate form of 2D Appell polynomials using fractional op-
erators, degenerate Stirling numbers of both types associated with hypergeometric degenerate numbers,
r-Stirling degenerate numbers of the second type worked within the framework of a double-indexed se-
quence, a study of the λ-Stirling numbers of both types that are λ-analogues of the Stirling numbers, a
version of the degenerate polylogarithm function that allows the construction and study of a new type of
polynomials and degenerates Bernoulli numbers, and a study of the polynomials and completely degen-
erate numbers that arise naturally from the Volkenborn integral of the degenerate exponential function of
Zp (see, e.g., [2, 4, 6, 8–11, 14, 16–18, 23, 25–27, 31] for more details). Furthermore, in the literature, we
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find the use of a certain degenerate differential and degenerate difference operator to study the degener-
ate harmonic numbers and some properties of the degenerate Laguerre polynomials [7]. We also found
a study on a new generalized family of degenerate three-variable Hermite-Appell polynomials defined
using a fractional derivative [30]. The polynomials and Korobov numbers, some properties, identities,
recurrence relations, connections with other polynomials, and some of their generalizations in different
contexts have also been studied by several authors using umbral calculus [5, 15, 23]. The New U-Bernoulli,
U-Euler, and U-Genocchi polynomials and their matrices have been introduced recently in [22] and they
provide some generalizations and their relationship with the Riemann zeta function. On the other hand,
in recent years, the investigations of discrete orthogonal polynomials have gained high attention for their
applications to functional equations and differentials and their use to establish various analytic number
theory properties (cf. [3, 5, 13, 15]).

This work is to introduce a novel family of polynomials, denominated as, new generalized discrete
U-Bernoulli-Korobov-kind polynomials, with a parameter that outlines the advantages of techniques as-
sociated with the generating function. We will give some representative properties and we will show that
these polynomials are orthogonal on N with respect to the inner product that will be studied. Here C,
R, and N will denote the sets of the numbers complex, real, positive integers, and N0 = N∪ {0}. P is the
space of all polynomials in one variable with real coefficients, and log(z) denotes the principal value of
the multi-valued logarithm function.

The outline of this paper is as follows. In Section 2, we provide well-known basic formulas and
definitions that we shall need to use for the rest of the work. In Section 3, a new class of discrete
polynomials is introduced using their generating function. We derive certain properties and explicit
formulas for these polynomials. In Section 4, we study relations with the Korobov polynomials, the
Stirling numbers of the first kind, the Daehee numbers, and their relations with the difference operators
∆ and ∇. Moreover, in Section 5, we establish that these new polynomials satisfy an orthogonality
relationship. Finally, we study whether they satisfy the three-term recurrence relation.

2. Background and previous results

In this section, we recall some definitions and preliminary results, that will be used in this paper.
The classical Bernoulli polynomials, Bn(x) are defined by employing the following generating function

(see [24, 25]): (
z

ez − 1

)
ezx =

∞∑
n=0

Bn(x)
zn

n!
, (|z| < 2π). (2.1)

For x = 0 in (2.1), we find the classical Bernoulli numbers Bn:=Bn(0) = B
(0)
n defined by the generating

function:
z

ez − 1
=

∞∑
n=0

Bn
zn

n!
, (|z| < 2π). (2.2)

The Bernoulli polynomials of the second kind, bn(x) in the variable x, are defined utilizing the generating
function (see [23, p. 167, Eq. (1.2)]):

z

log(1 + z)
(1 + z)x =

∞∑
n=0

bn(x)
zn

n!
, (|z| < 1). (2.3)

At the point x = 0 in (2.3), bn:=bn(0) is called the Bernoulli numbers of the second kind (cf. [4, 15]),
defined by the generating function:

z

log(1 + z)
=

∞∑
n=0

bn
zn

n!
, (|z| < 1). (2.4)
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The Bernoulli polynomials of the second kind are also called Korobov polynomials of the first kind.
The Daehee polynomials Dn(x) are defined by employing the generating function (see [4, 12, 16]):

log(1 + z)

z
(1 + z)x =

∞∑
n=0

Dn(x)
zn

n!
, (|z| < 1). (2.5)

If x = 0, in (2.5), Dn:=Dn(0) denotes the so called Daehee numbers, defined by the generating function:

log(1 + z)

z
=

∞∑
n=0

Dn
zn

n!
, (|z| < 1). (2.6)

The falling factorial x of order n, 〈x〉, is (see [16]):

〈x〉n = x(x− 1) · · · (x−n+ 1), n > 1; 〈x〉0 = 1. (2.7)

The Stirling numbers of the first kind, s(n,k), appear as the coefficients in the following generating
function (see [25]):

(log(1 + z))k

k!
=

∞∑
n=k

s(n,k)
zn

n!
, (|z| < 1). (2.8)

These numbers can also be given as (see [16, 25]).

〈x〉n =

n∑
k=0

s(n,k)xn. (2.9)

The U-Bernoulli numbers Mn are defined by the following generating function [22]:

z

e−z − 1
=

∞∑
n=0

Mn
zn

n!
, |z| < 2π. (2.10)

Of the classical exponential function, is received

e−αz − 1 =

∞∑
m=0

(−α)m+1zm+1

(m+ 1)!
. (2.11)

Let f be some function of a real variable x. The backward and forward difference operators ∆ and ∇
respectively, are defined as (see [21]):

∇f(x) := f(x) − f(x− 1), (2.12)
∆f(x) := f(x+ 1) − f(x). (2.13)

Further, for any real number a, we have

∆af(x) := f(x+ a) − f(x). (2.14)

If a = 1 in (2.14), we obtain (2.13). The operators ∆ and ∇ also satisfied the following properties (see [21]):

∇f(x) = ∆f(x) −∆∇f(x). (2.15)
∇(f(x)g(x)) = f(x)∇g(x) + g(x− 1)∇f(x). (2.16)

For two arbitrary sequences {ck}k>0 and {dk}k>0, if d−1 = 0, then applying summation by parts there
holds (see [21]): ∞∑

k=0

(∆ck)dk = −

∞∑
k=0

ck∇dk.



A. Urieles, J. L. Escalante, M. J. Ortega, J. Math. Computer Sci., 36 (2025), 52–69 55

If we consider σ a polynomial of degree6 2 and τ a polynomial of degree6 1, we have a first-order
difference equation

∇ [σ(x)ω(x)] = τ(x)ω(x). (2.17)

This equation is known as the Pearson equation. We note that in (2.17), the operator ∇ is used for
orthogonal polynomials on the lattice, and it is replaced by differentiation in the case of orthogonal
polynomials on an interval of the real line.

3. New family of generalized discrete U-Bernoulli-Korobov-kind polynomials

In this section, a new class of discrete polynomials is introduced, which we denote by Pn(x;α) and
will we call generalized discrete U-Bernoulli-Korobov-kind polynomials, and study certain properties and
explicit formulas that satisfy these new polynomials.

Definition 3.1. The new family of generalized discrete U-Bernoulli-Korobov-kind polynomials Pn(x;α)
of degree n in the variable x, and parameter α ∈ R − {0} are defined through the following generating
function:

L(x, z;α) =
(

z

e−zα − 1

)
(1 + z)x =

∞∑
n=0

Pn(x;α)
zn

n!
,
(
|z| <

2π
|α|

)
. (3.1)

From (3.1), we see that

L(x, z;α) =
(

z

e−αz − 1

)
(1 + z)x =

z e−α

1 − eαz

(
d(x)

dα(x)
eα(1+z)

)
. (3.2)

By using (3.1), we can compute the first generalized discrete U-Bernoulli-Korobov-kind polynomials
Pn(x;α), as follows:

P0(x;α) = −
1
α

,

P1(x;α) = −
x

α
−

1
2

,

P2(x;α) = −
x2

α
+

(
1 −α

α

)
x−

α

6
,

P3(x;α) =
(
−1
α

)
x3 +

3(2 −α)

2α
x2 +

(3α−α2 − 4)
2α

x,

P4(x;α) =
(
−1
α

)
x4 +

(
6 − 2α
α

)
x3 +

(
−α2 + 6α− 11

α

)
x2 +

(
α2 − 4α+ 6

α

)
x+

α3

30
,

P5(x;α) =
(
−1
α

)
x5 +

(
20 − 5α

2α

)
x4 +

(
45α− 105 − 5α2

3α

)
x3 +

(
10α2 − 55α+ 100

2α

)
x2

+

(
α4 + 20α2 + 90α− 144

6α

)
x.

For x = 0, in (3.1) corresponds to the generating function of the generalized U-Bernoulli-Korobov-kind
numbers Pn(α) = Pn := P(0;α) given by

z

e−zα − 1
=

∞∑
n=0

Pn(α)
zn

n!
,
(
|z| <

2π
|α|

)
. (3.3)

From (3.3), we get some of these numbers, as below:

P0(α) = −
1
α

, P1(α) = −
1
2

, P2(α) = −
α

6
, P3(α) = 0, P4(α) =

α3

30
, P5(α) = 0.
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By comparing (3.3) with (2.2) and (2.10), we have

Pn(0,−1) := Bn, Pn(0, 1) :=Mn.

Therefore, the generating function of Pn(α) in (3.3) includes, as its special cases, the generating func-
tion of the Bernoulli numbers Bn in (2.2) and the generating function of the U-Bernoulli numbers Mn

investigated in [22].

Proposition 3.2. Let α ∈ R − {0}, and {Pn(α)}n>0 be a sequence of generalized U-Bernoulli-Korobov-kind num-
bers. Then, the following relationship is fulfilled:

n∑
k=0

(−α)k+1

(k+ 1)

(
n

k

)
Pn−k(α)

n!
=

{
1, if n = 0,
0, if n 6= 0.

Proof. By using (3.3), we have

z = (e−αz − 1)
∞∑
n=0

Pn(α)
zn

n!
. (3.4)

From (2.11) and (3.4), it follows that

z = αz

( ∞∑
n=0

(−1)n+1 αn

(n+ 1)!
zn

)( ∞∑
n=0

Pn(α)
zn

n!

)
. (3.5)

In (3.5), we obtain

1
α

=

∞∑
n=0

n∑
k=0

(−1)k+1 αk

(k+ 1)!
Pn−k(α)

(n− k)!
zn,

and thus

1 =

∞∑
n=0

n∑
k=0

(−α)k+1

(k+ 1)

(
n

k

)
Pn−k(α)

zn

n!
. (3.6)

Comparing the coefficients in (3.6) completes the proof from Proposition 3.2.

Proposition 3.3. Let α ∈ R − {0}, and {Pn(x;α)}n>0 be a sequence of generalized discrete U-Bernoulli-Korobov-
kind polynomials. Then, the following relations hold:

Pn(x;α) =
n∑
k=0

〈n〉k
(
x

k

)
Pn−k(α), (3.7)

Pn(x;α) −Pn(α) =

n−1∑
k=0

n

k+ 1

(
n− 1
k

)
〈x〉k+1 Pn−1−k(α), (3.8)

with 〈x〉k given in (2.7).

Proof. From (3.1), (3.3), the Cauchy product rule, and the Newton binomial expansion, we can write

n∑
k=0

Pn(x;α)
zn

n!
=

( ∞∑
n=0

Pn(α)
zn

n!

)( ∞∑
n=0

(
x

n

)
zn

)

=

∞∑
n=0

n∑
k=0

(
x

k

)(
n

k

)
k!Pn−k(α)

zn

n!
=

∞∑
n=0

n∑
k=0

〈n〉k
(
x

k

)
Pn−k(α)

zn

n!
.

(3.9)
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As a result of (3.9), we obtain (3.7). Using (3.1), (3.3), the Newton binomial expansion, and the Cauchy
product rule, we obtain

∞∑
n=0

[Pn(x;α) −Pn(α)]
zn

n!
=

z

e−αz − 1
[(1 + z)x − 1]

=

( ∞∑
n=0

Pn(α)
zn

n!

)( ∞∑
n=0

(
x

n+ 1

)
zn+1

)

=

∞∑
n=1

(
n−1∑
k=0

(
x

k+ 1

)(
n− 1
k

)
nk!Pn−1−k(α)

)
zn

n!
.

Therefore,

∞∑
n=1

[Pn(x;α) −Pn(α)]
zn

n!
=

∞∑
n=1

n−1∑
k=0

n

k+ 1

(
n− 1
k

)
〈x〉k+1 Pn−1−k(α)

zn

n!
. (3.10)

Because of (3.10), we get (3.8). Which completes the proof of the Proposition 3.3.

Proposition 3.4. For n ∈ N, α,β ∈ R − {0}, let {P(x;α)}n>0 be the sequence generalized discrete U-Bernoulli-
Korobov-kind polynomials. Then the following summation formulas hold:

Pn(x+ y;α) =
n∑
k=0

(
n

k

)
〈x+ y〉k Pn−k(α), (3.11)

n∑
k=0

(
n

k

)
Pn(x+ y;α)Pn−k(β) =

n∑
k=0

(
n

k

)
Pn−k(x;α)Pk(y;β), (3.12)

n∑
k=0

(
n

k

)
Pn(x+ y;α)Pn−k(α) =

n∑
k=0

(
n

k

)
Pn−k(x;α)Pk(y;α), (3.13)

n∑
k=0

(
n

k

)
Pk(x;α)αn−k = e−α

n∑
k=0

(
n

k

)
Pn−k(α)

(
d

dα

)(x)

eααk, (3.14)

Pn(x;α) =
n∑
k=0

(
n

k

)
Pk(x;α)αn−k +

n−1∑
k=0

n 〈x〉k
(
n− 1
k

)
αn−k−1. (3.15)

Proof. The representation (3.11) follows from (2.7) and (3.1). On the other hand, because of (3.1) for α, β,
and x,y ∈ Z+, we have (

z

e−αz − 1

)
(1 + z)x =

∞∑
n=0

Pn(x;α)
zn

n!
, (3.16)

(
z

e−βz − 1

)
(1 + z)y =

∞∑
n=0

Pn(y;β)
zn

n!
. (3.17)

Multiplying member by member to (3.16) and (3.17), we deduce

∞∑
n=0

n∑
k=0

(
n

k

)
Pn−k(β)Pk(x+ y;α)

zn

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)
Pn−k(x;α)Pk(y;β)

zn

n!
. (3.18)

Therefore, of (3.18), we derive (3.12). Similarly, we can obtain (3.13).
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We now prove (3.14). By (3.1) and (3.2), we have

∞∑
n=0

Pn(x ;α)
zn

n!
=

(
z e−αz e−α

e−αz − 1

) ∞∑
n=0

(
d

dα

)(x)

eα αn
zn

n!
.

Then, ( ∞∑
n=0

Pn(x ;α)
zn

n!

)( ∞∑
n=0

αn
zn

n!

)
= e−α

( ∞∑
n=0

Pn(α)
zn

n!

)( ∞∑
n=0

(
d

dα

)(x)

eααn
zn

n!

)
. (3.19)

Because of (3.19), we find

∞∑
n=0

n∑
k=0

(
n

k

)
Pk(x;α)αn−k

zn

n!
=

∞∑
n=0

e−α
n∑
k=0

(
n

k

)
Pn−k(α)

(
d

dα

)(x)

eααk
zn

n!
. (3.20)

Therefore, from (3.20) holds (3.14). To prove (3.15), we see that multiplying (3.1) by eαz leads to

z

( ∞∑
n=0

αn zn

n!

)( ∞∑
n=0

(
x

n

)
zn

)
=

∞∑
n=0

Pn(x;α)
zn

n!
−

( ∞∑
n=0

αn zn

n!

)( ∞∑
n=0

Pn(x;α)
zn

n!

)
.

Hence,

∞∑
n=0

n∑
k=0

〈x〉k
(
n

k

)
αn−k

zn+1

n!
=

∞∑
n=0

Pn(x ;α)
zn

n!
−

∞∑
n=0

n∑
k=0

(
n

k

)
Pk(x ;α)αn−k

zn

n!
. (3.21)

From (3.21), we derive

∞∑
n=1

n−1∑
k=0

〈x〉k
(
n− 1
k

)
αn−k−1 n

zn

n!
=

∞∑
n=0

[
Pn(x;α) −

n∑
k=0

(
n

k

)
Pk(x;α)αn−k

]
zn

n!
. (3.22)

Whence the formula (3.15) follows from (3.22), which completes the proof of the Proposition 3.4.

Theorem 3.5. For every n ∈ N and α ∈ R − {0}, the generalized discrete U-Bernoulli-Korobov-kind polynomials
satisfy

(n− 1)Pn(x;α) −nxPn−1(x− 1;α) =
n∑
j=0

n−j∑
l=0

(
n

j

)(
n− j

l

)
(−1)l(α)l+1Pn−j−l(α)Pj(x;α). (3.23)

Proof. By differentiating both sides of (3.1) with respect to z, we get

(1 + z)x

(e−αz − 1)
+
x z (z+ 1)x−1

(e−αz − 1)
+
αze−αz(1 + z)x

(e−αz − 1)2 =

∞∑
n=0

Pn(x;α)n
zn−1

n!
,

and from this follows

z(1 + z)x

(e−αz − 1)
+
x z2 (z+ 1)x−1

(e−αz − 1)
+αe−αz

(
z

e−αz − 1

)(
z(1 + z)x

e−αz − 1

)
=

∞∑
n=0

Pn(x ;α)n
zn

n!
,

which gives

∞∑
n=0

xPn(x− 1;α)
zn+1

n!
+α

( ∞∑
n=0

(−α)n
zn

n!

)( ∞∑
n=0

Pn(α)
zn

n!

)( ∞∑
n=0

Pn(x;α)
zn

n!

)
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=

∞∑
n=0

Pn(x;α)n
zn

n!
−

∞∑
n=0

Pn(x;α)
zn

n!
.

So,
∞∑
n=0

Pn(x;α)n
zn

n!
−

∞∑
n=0

Pn(x;α)
zn

n!
−

∞∑
n=0

nxPn−1(x− 1;α)
zn

n!

= α

( ∞∑
n=0

(−α)n
zn

n!

)( ∞∑
n=0

Pn(α)
zn

n!

)( ∞∑
n=0

Pn(x;α)
zn

n!

)
,

therefore ∞∑
n=0

[nPn(x;α) −Pn(x;α) −nxPn−1(x− 1;α)]
zn

n!

= α

( ∞∑
n=0

n∑
l=0

(
n

l

)
(−α)lPn−l(α)

zn

n!

)( ∞∑
n=0

Pn(x;α)
zn

n!

)

= α

∞∑
n=0

 n∑
j=0

n−j∑
l=0

(
n

j

)(
n− j

l

)
(−α)lPn−j−l(α)Pj(x;α)

 zn

n!
.

As a result of the above, expression (3.23) follows. This proves the Theorem 3.5.

Theorem 3.6. The following relations hold for the generalized discrete U-Bernoulli-Korobov-kind polynomials de-
fined in (3.1):

∂Pn(x;α)
∂x

=

n−1∑
k=0

(−1)k n
(
n− 1
k

)
k!
k+ 1

Pn−k−1(x;α), (n ∈N), (3.24)

(n− 1)Pn(x;α) −nγ(x, z)
∂

∂x
Pn−1(x;α) −nψ(z;α)

∂

∂x
Pn−1(x;α) = 0, (3.25)

where α ∈ R − {0}, z ∈ C − {0,−1}, and n ∈N, with

γ(x, z) =
x

(1 + z) log(1 + z)
and ψ(z;α) =

αe−αz

(e−αz − 1) log(1 + z)
.

Proof. By differentiating (3.1) with respect to x, we have

∞∑
n=0

∂Pn(x;α)
∂x

zn

n!
=

( ∞∑
n=0

Pn(x;α)
zn

n!

)( ∞∑
n=0

(−1)n

n+ 1
zn+1

)

=

∞∑
n=1

n−1∑
k=0

Pn−1−k(x;α)(−1)k
(
n− 1
k

)
k!

(k+ 1)(n− 1)!
zn.

Therefore,

∞∑
n=0

∂Pn(x;α)
∂x

zn

n!
=

∞∑
n=1

n−1∑
k=0

(−1)k
(
n− 1
k

)
nk!

(k+ 1)
Pn−1−k(x;α)

zn

n!
.

As a result of these computations, we obtain (3.24). To prove (3.25), we differentiate (3.1) concerning z as
follows:

∂

∂z
L(x, z;α) =

∞∑
n=1

Pn(x;α)
zn−1

(n− 1)!
,
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and

∂

∂z
L(x, z;α) =

(1 + z)x

(e−αz − 1)
+

[
z (1 + z)x

(e−αz − 1)

] [
x

(1 + z)

]
+

[
z (1 + z)x

(e−αz − 1)

] [
αe−αz

(e−αz − 1)

]
. (3.26)

Furthermore, by differentiating (3.1) concerning x, we have

∂

∂x
L(x, z ;α) =

∞∑
n=0

∂

∂x
Pn(x ,α)

zn

n!
, (3.27)

∂

∂x
L(x, z;α) =

z (1 + z)x log(1 + z)

(e−αz − 1)
. (3.28)

Equation (3.26) yields

∂L(x, z ;α)
∂z

−
(1 + z)x

(e−αz − 1)
−

[
z (1 + z)x log(1 + z)

(e−αz − 1)

] [
x

(1 + z) log(1 + z)

]
−

[
z (1 + z)x log(1 + z)

(e−αz − 1)

] [
αe−αz

(e−αz − 1) log(1 + z)

]
= 0.

(3.29)

Combining (3.29) with (3.27) and (3.28), we can write

∂

∂z
L(x, z;α) −

[
x

(1 + z) log(1 + z)
+

αe−αz

(e−αz − 1) log(1 + z)

]
∂

∂x
L(x, z;α) −

(1 + z)x

(e−αz − 1)
= 0. (3.30)

Thus, from (3.30), we have

z
∂

∂z
L(x, z;α) −

[
zx

(1 + z) log(1 + z)
+

zαe−αz

(e−αz − 1) log(1 + z)

]
∂

∂x
L(x, z;α) − L(x, z;α) = 0. (3.31)

Hence, from (3.27) and (3.31), and after simplifying, we can get

∞∑
n=0

Pn(x;α) n
zn

n!
−

∞∑
n=0

Pn(x;α)
zn

n!

−

∞∑
n=0

[
x

(1 + z) log(1 + z)
+

αe−αz

(e−αz − 1) log(1 + z)

]
∂

∂x
Pn−1(x;α)

nzn

n!
= 0,

and consequently

nPn(x;α) −Pn(x;α) −
[

nx

(1 + z) log(1 + z)

]
∂

∂x
Pn−1(x;α)

−

[
nαe−αz

(e−αz − 1) log(1 + z)

]
∂

∂x
Pn−1(x;α) = 0.

(3.32)

In (3.32), doing γ(x, z) =
x

(1 + z) log(1 + z)
, ψ(z;α) =

αe−αz

(e−αz − 1)(log(1 + z))
follows (3.25). Theorem 3.6 is

proved.

4. Some connection formulas for the polynomials Pn(x;α) and the difference operators ∆ and ∇

Based on (3.1), we introduce here some interesting algebraic relations connecting the polynomials
Pn(x;α) and other families of polynomials. Also, we study its relation with the operators ∆ and ∇.
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Theorem 4.1. Given α ∈ R− {0}, and let {Pn(x;α)}n>0 be a sequence of generalized discrete U-Bernoulli-Korobov-
kind polynomials. Then, the following assertions hold:

Pn(x;α) =
∞∑
k=0

n∑
j=0

(
n

j

)
xkPn−j(α)s(j,k), with s(n,k) given in (2.8), (4.1)

Pn(x;α) =
n∑
q=0

q∑
l=0

n−q∑
j=0

∞∑
k=0

(
n

q

)(
q

l

)(
n− q

l

)
xkPq−l(α)s(l,k)bn−q−jDj, (4.2)

where bn and Dn are given in (2.3) and (2.5), respectively, and

Pn(x;α) =
n∑
k=0

k∑
j=0

(
k

j

)(
n

k

)
bn−k(x)Pk−j(α)Dj, (4.3)

where bn(x) is defined in (2.3), and

Pn(x;α) =
n∑
l=0

l∑
j=0

n−l∑
q=0

∞∑
k=0

(
n

l

)(
l

j

)(
n− l

q

)
bjDl−js(q,k)Pn−l−q(α)xk, (4.4)

where bn is defined in (2.4).

Proof. The statement (4.1) follows from (2.8) and (3.1). By using (2.4), (2.6), (2.8), and (3.1), we observe
that

∞∑
n=0

Pn(x;α)
zn

n!
=

( ∞∑
n=0

Pn(α)
zn

n!

)(
ex log(1+z)

)
=

(
z

∞∑
n=0

Pn(α)
zn

n!

)( ∞∑
k=0

xk

z

[log(1 + z)]k

k!

)

=

( ∞∑
n=0

Pn(α)
zn

n!

)( ∞∑
n=0

s(n,k)
zn

n!

)( ∞∑
n=0

bn
zn

n!

)( ∞∑
n=0

Dn
zn

n!

) ∞∑
k=0

xk

=

∞∑
n=0

 n∑
q=0

(
n

q

)(
q

l

)(
n− q

j

) q∑
l=0

n−q∑
j=0

∞∑
k=0

xkPq−l(α)s(l,k)bn−q−jDj

 zn
n!

,

which completes the proof of (4.2). Taking (2.3), (2.6) into account, and (3.1), we can find (4.3). To prove
(4.4), we use (2.4) as well as (2.8), and (3.1). Then, we deduce

∞∑
n=0

Pn(x;α)
zn

n!
=

( ∞∑
n=0

bn
zn

n!

)( ∞∑
n=0

Dn
zn

n!

)( ∞∑
n=0

Pn(α)
zn

n!

)( ∞∑
k=0

xk
[log(1 + z)]k

k!

)

=

∞∑
n=0

n∑
l=0

l∑
j=0

n−l∑
q=0

∞∑
k=0

(
n

q

)(
l

j

)(
n− q

q

)
bjDl−js(q,k)Pn−l−q(α)xk

zn

n!
.

From which assertion (4.4) follows. Theorem 4.1 is fully proven.

Theorem 4.2. Let α ∈ R− {0} and {Pn(x;α)}n>0 be the sequence of generalized discrete U-Bernoulli-Korobov-kind
polynomials in the variable x. Then, the following relations hold:

∆aPn(x;α) =
n∑
k=0

(
n

k

)
〈a〉k Pn−k(x;α) −Pn(x;α), (4.5)
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∆Pn(x;α) = nPn−1(x;α), (4.6)
∇Pn(x;α) = nPn−1(x− 1;α), (4.7)

∆Pn(x;α) +n∆Pn−1(x;α) = nPn−1(x+ 1;α), (4.8)

with ∇ and ∆a the operators given in (2.12) and (2.14), respectively.

Proof. We see that from (2.14) and (3.1), it follows

∞∑
n=0

∆aP(x;α)
zn

n!
=

z

e−αz − 1
(1 + z)x(1 + z)a −

z

e−αz − 1
(1 + z)x

=

( ∞∑
n=0

Pn(x;α)
zn

n!

)( ∞∑
n=0

(
a

n

)
zn

)
−

∞∑
n=0

Pn(x;α)
zn

n!
.

(4.9)

Hence, in (4.9), we have

∞∑
n=0

∆aP(x;α)
zn

n!
=

∞∑
n=0

(
n∑
k=0

(
a

k

)
n!

(n− k)!
Pn−k(x;α) −Pn(x;α)

)
zn

n!

=

∞∑
n=0

(
n∑
k=0

(
n

k

)
〈a〉k Pn−k(x;α) −Pn(x;α)

)
zn

n!
,

from which, (4.5) follows. For the case a = 1, we obtain (4.6). To prove (4.7), we see that for (2.12) and
(3.1), we get ∞∑

n=0

∇Pn(x;α)
zn

n!
=

(
z2

e−αz − 1

)
(1 + z)x

(
1

1 + z

)
,

and consequently

∞∑
n=1

∇Pn(x;α)
zn

n!
=

∞∑
n=0

Pn(x− 1;α)
zn+1

n!
=

∞∑
n=1

Pn−1(x− 1;α)n
zn

n!
,

from which, (4.7) follows. Taking (3.1) into account, as well as using the operator ∆, we get the following
expression: ∞∑

n=0

∆Pn(x;α)
zn

n!
=

(
z

e−αz − 1

)
(1 + z)x+1 z

1 + z
.

Then, we see that

(1 + z)

∞∑
n=0

∆Pn(x;α)
zn

n!
=

∞∑
n=0

Pn(x+ 1;α)
zn+1

n!
.

Thus, we have ∞∑
n=1

[∆Pn(x;α) +n∆Pn−1(x;α) −nPn−1(x+ 1;α)]
zn

n!
= 0,

and, as a consequence, (4.8) follows. Hence, Theorem 4.2 is proved.

On the other hand, by using (4.7) and (4.8), we can see that the polynomials Pn(x;α) satisfy (2.15) in
such a way that

∇Pn(x;α) = ∆Pn(x;α) −∆∇Pn(x;α). (4.10)
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Proposition 4.3. For α ∈ R − {0}, let {Pn(x;α)}n>0 be the sequence of generalized discrete U-Bernoulli-Korobov-
kind polynomials in the variable x. Then, the following relations hold:

∆(2Pn(x;α) +nPn−1(x;α)) − 2∆∇Pn(x;α) = 2nPn−1(x;α) +n(n− 1)Pn−2(x;α), (4.11)
∆Pn(x;α) −∆∇Pn(x;α) = nPn−1(x;α) −n(n− 1)Pn−2(x− 1;α). (4.12)

Proof. By using (3.1) and applying the operator ∆, (4.8), and (4.10), it follows(
z

e−αz − 1

)
(1 + z)x+1(1 + z) = (1 + 2z+ z2)

∞∑
n=0

Pn(x;α)
zn

n!

⇔
∞∑
n

[Pn(x+ 1;α) −Pn(x;α)]
zn

n!
= 2

∞∑
n=1

nPn−1(x;α)
zn

n!
+

∞∑
n=2

n(n− 1)Pn−2(x;α)
zn

n!

−

∞∑
n=0

Pn(x+ 1;α)
zn+1

n!

⇔
∞∑
n=1

∆Pn(x;α)
zn

n!
=

∞∑
n=1

[2nPn−1(x;α) +n(n− 1)Pn−2(x;α) −nPn−1(x+ 1;α)]
zn

n!

⇔ nPn−1(x+ 1;α) = 2nPn−1(x;α) +n(n− 1)Pn−2(x;α) −∆Pn(x;α)
⇔ 2∆Pn(x;α) +n∆Pn−1(x;α) = 2nPn−1(x;α) +n(n− 1)Pn−2(x;α)
⇔ 2∆Pn(x;α) − 2∆∇Pn(x;α) +n∆Pn−1(x;α) = 2nPn−1(x;α) +n(n− 1)Pn−2(x;α).

As a consequence of these computations, we obtain (4.11). To prove (4.12), we use (3.1) and the operator
∇, (4.8), and (4.10), as follows:

(1 + z)2
∞∑
n=0

Pn(x− 1;α)
zn

n!
= (1 + z)

∞∑
n=0

Pn(x;α)
zn

n!

⇔ 2
∞∑
n=0

Pn(x− 1;α)
zn+1

n!
+

∞∑
n=0

Pn(x− 1;α)
zn+2

n!

=

∞∑
n=0

Pn(x;α)
zn+1

n!
+

∞∑
n=0

Pn(x;α)
zn

n!
−

∞∑
n=0

Pn(x− 1;α)
zn

n!

⇔ 2nPn−1(x− 1;α) −nPn−1(x;α) +n(n− 1)Pn−2(x− 1;α) = ∇Pn(x;α)
⇔ 2nPn−1(x− 1;α) = nPn−1(x;α) −n(n− 1)Pn−2(x− 1;α) +∇Pn(x;α)
⇔ ∆ (2Pn(x;α) +nPn−1(x;α)) = 2∆∇Pn(x;α) = 2nPn−1(x;α) +n(n− 1)Pn−2(x;α)
⇔ ∇Pn(x;α) +n(n− 1)Pn−2(x− 1;α) −nPn−1(x;α) = 0,

from which, (4.12) follows. This proves the Proposition 4.3.

5. Orthogonality of the generalized discrete U-Bernoulli-Korobov-kind polynomials

We define the discrete weight function ωα for U-Bernoulli-Korobov-kind polynomials as

ωα(x;β) =
(−α)xeα(1 − eαβ)2

x!
, (5.1)

with x ∈ N, α < 0, z, v ∈ C, and λ1 ∈ Re(z), σ1 ∈ Re(v), β = λ1 = σ1. With this weight, we can consider
on P, the inner product 〈f, g〉ωα as

〈f, g〉ωα =

∞∑
x=0

f(x)g(x)ωα(x;β), (5.2)



A. Urieles, J. L. Escalante, M. J. Ortega, J. Math. Computer Sci., 36 (2025), 52–69 64

which has positive weights for every α < 0. Note that of (2.17), the weight function ωα(x;β) satisfies the
Pearson-type difference equation

∇ωα(x;β) = ωα(x;β) −ωα(x− 1;β)

=

(
1 −

x

(−α)

)(
eα(−α)x(1 − eαβ)2

x!

)
=

(
α+ x

α

)
ωα(x;β).

(5.3)

Theorem 5.1. If α∈R, with α < 0 and m, n∈R, then, the generalized discrete U-Bernoulli -Korobov-kind
polynomials satisfy the following orthogonality relation:

∞∑
x=0

Pm(x;α)Pn(x;α)ωα(x;β) = (−α)n−1 n2 Γ(n)δmn, (5.4)

where δmn denotes the Kronecker delta, Γ is the gamma function, ωα(x;β) given in (5.1), and |z|, |v| <
2π
|α|

.

Proof. Using (3.1), (3.3), the Cauchy product property, and taking into account the binomial theorem, we
can see that

L(x, z;α) =
∞∑
n=0

n∑
k=0

(
x

k

)
Pn−k(α)

(n− k)!
zn. (5.5)

Hence, from (5.5), it follows that

L(x, z;α) =
∞∑
n=0

Ln(x;α)zn, (5.6)

we note that

Ln(x;α) =
n∑
k=0

(
x

k

)
Pn−k(α)

(n− k)!
. (5.7)

Therefore, by using (2.7) in (5.7), it follows that

Ln(x;α) =
n∑
k=0

〈x〉k
k!

Pn−k(α)

(n− k)!
.

Likewise, we see that

L(x, v;α) =
∞∑
m=0

Lm(x;α) vm, (5.8)

then we have

Lm(x;α) =
m∑
k=0

(
x

k

)
Pm−k(α)

(m− k)!
=

m∑
k=0

〈x〉k
k!

Pm−k(α)

(m− k)!
.

Now, for any k, it follows from (5.6) and (5.8) that

L(x, z ;α)L(x, v ;α) =
[

zveαz+αv

(1 − eαz)(1 − eαv)

]
[(1 + z)(1 + v)]x

⇔ (−α)kL(k, z;α)L(k, v;α) =
[

zveαz+αv

(1 − eαz)(1 − eαv)

]
[−α(1 + z)(1 + v)]k ,
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which gives
∞∑
k=0

(−α)kL(k, z;α)L(k, v;α)
k!

=
zveαz+αv

(1 − eαz)(1 − eαv)

∞∑
k=0

[−α(1 + z)(1 + v)]k

k!

=

[
zv e−α

(1 − eαz)(1 − eαv)

]
e−αzv =

∞∑
n=0

[
ne−α(−α)n−1

(1 − eαz)(1 − eαv)

]
zn vn

n!
.

(5.9)

On the other hand, because of (5.6) and (5.8), we also have∞∑
k=0

(−α)kL(k, z;α)L(k, v;α)
k!

=

∞∑
k=0

(−α)k

k!

∞∑
n=0

Ln(k;α) zn
∞∑
m=0

Lm(k;α) vm

=

∞∑
m ,n=0

∞∑
k=0

Lm(k;α),Ln(k;α)
(−α)k

k!
znvm.

(5.10)

So, from (5.9) and (5.10) follows∞∑
m,n=0

∞∑
k=0

Lm(k;α)Ln(k;α)
(−α)k

k!
znvm =

∞∑
n=0

[
e−α(−α)n−1

(1 − eαz)(1 − eαv)

]
nznvn

n!
. (5.11)

It is immediate that, from equation (5.11), we conclude

∞∑
k=0

Lm(k;α)Ln(k;α)
(−α)k

k!
=


(−α)n−1 ne−α

n!

[
1

(1 − eαz)(1 − eαv)

]
, if m = n,

0, if m 6= n.
(5.12)

Let us now take that t1 = eαz, t2 = eαv, and considering z = λ1 + iλ2, v = σ1 + iσ2. It follows that

t1 = eαz = eαλ1eiαλ2 and t2 = eαv = eασ1eiασ2 ,

so we see that |t1| = e
αλ1 , |t2| = e

ασ1 with |λ1|, |λ2|, |σ1|, |σ2| <
2π
|α|

. Thus, we get

(1 − eαz)(1 − eαv) = (1 − |t1|e
iαλ2)(1 − |t2|e

iασ2). (5.13)

If now we establish λ2, σ2 → 0, and β = λ1 = σ1, then we can be write (5.13) as

(1 − eαz)(1 − eαv) = (1 − eαβ)2.

Therefore, in (5.12), we find∞∑
x=0

Pm(x;α)
m!

Pn(x;α)
n!

ωα(x;β) =
n (−α)n−1

n!
δmn ⇔

∞∑
x=0

Pm(x;α)Pn(x;α)ωα(x;β) =
n (−α)n−1

n!
δmn,

And, as a consequence (5.4) follows, so Theorem 5.1 is proved.

Under the assumption of Theorem 5.1, we can then obtain a three-term recurrence relation that the
sequence {Pn(x;α)}n>0 satisfies.

Theorem 5.2. Let α < 0 and {Pn(x;α)}n>0 be a sequence of generalized discrete U-Bernoulli-Korobov-kind poly-
nomials that are orthogonal on N for the inner product (5.2). Then, we have the following three-term recurrence
relation:

xPn−1(x;α) = γnPn(x;α) + ξnPn−1(x;α) + λnPn−2(x;α), n > 2, (5.14)

with

γn =
nα

2
ξn =

[
(s(n− 1,n− 2) − s(n,n− 1)) −

α(2n+ 1)
6

]
λn =

(−α)(n− 1)3

n(n− 3)2
Γ(n− 1)
Γ(n− 2)

,

and s(n,k) given in (2.8).
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Proof. To prove (5.14), we first expand the polynomial xPn−1(x;α), which is of degree n in terms of
{Pn(x;α)}n>0:

xPn−1(x;α) =
n∑
k=0

a(k,n− 1)
gk(α)

Pn(x;α), (5.15)

with α < 0 is a fixed parameter, n, x ∈N. From the orthogonality of {Pn(x;α)}n>0, we obtain

a(k,n− 1)
gk(α)

=
〈xPn−1(x;α),Pk(x;α)〉ωα
〈Pk(x;α),Pk(x;α)〉ωα

=
〈Pn−1(x;α), xPk(x;α)〉ωα
〈Pk(x;α),Pk(x;α)〉ωα

.

As xPk(x;α) is a polynomial of degree k+ 1, by orthogonality a(k,n− 1) = 0 for k < n− 2 and therefore
(5.15) can be written in the form

xPn−1(x;α) =
a(n,n− 1)
gn(α)

Pn(x;α) +
a(n− 1,n− 1)
gn−1(α)

Pn−1(x;α) +
a(n− 2,n− 1)
gn−2(α)

Pn−2(x;α). (5.16)

On the other hand, taking (2.9), (3.7) into account, and (5.16), we can obtain:

Pn(x;α) = P0(α)x
n +

(
P0(α)s(n,n− 1) +P1(α)

(
n

n− 1

))
xn−1

+

(
P0(α)s(n,n− 2) +P1(α)

(
n

n− 1

)
s(n,n− 2) +P2(α)

(
n

n− 2

))
xn−2 + · · · ,

(5.17)

also

Pn−1(x;α) = P1(α)

(
n

n− 1

)
xn−1 +

(
P1(α)s(n− 1,n− 2)

(
n

n− 1

)
+P2(α)

(
n

n− 2

))
xn−2 + · · · , (5.18)

in an analogous way

Pn−2(x;α) = P1(α)

(
n− 1
n− 2

)
xn−2 +

(
P1(α)s(n− 2,n− 3)

(
n− 1
n− 2

)
+P2(α)

(
n− 1
n− 3

))
xn−3 + · · · , (5.19)

we can find

xPn−1(x;α) = P1(α)

(
n

n− 1

)
xn +

(
P1(α)s(n− 1,n− 2)

(
n

n− 1

)
+P2(α)

(
n

n− 2

))
xn−1 + · · · ,

moreover

xPn−2(x;α) = P1(α)

(
n− 1
n− 2

)
xn−1 +

(
P1(α)s(n− 2,n− 3)

(
n− 1
n− 2

)
+P2(α)

(
n− 1
n− 3

))
xn−2 + · · · ,

also, we can write xPn−2(x;α) in terms of {Pn(x;α)}n>0, we have

xPn−2(x;α) =
n−1∑
k=0

a(k,n− 2)
gk(α)

Pk(x;α)

=
a(n− 1,n− 2)
gn−1(α)

Pn−1(x;α) +
a(n− 2,n− 2)
gn−2(α)

Pn−2(x;α) +
a(n− 3,n− 2)
gn−3(α)

Pn−3(x;α).

(5.20)

Now, from (5.19) and (5.20), we deduce:

a(n− 1,n− 2)
gn−1(α)

=

(
n− 1
n

)
.
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So,

xPn−2(x;α) =
(
n− 1
n

)
Pn−1(x;α) + P(x). (5.21)

From (5.16) and (5.21), it is seen that

a(n− 2,n− 1)
gn−2(α)

=
〈Pn−1(x;α), xPn−2(x;α)〉ωα

gn−2(α)
=

(n− 1)gn−1(α)

ngn−2(α)
. (5.22)

By using (5.16), (5.17), and (5.18), we obtain

a(n,n− 1)
gn(α)

=
P1(α)

P0(α)

(
n

n− 1

)
. (5.23)

Now the substitution of (5.22) and (5.23) into (5.16) gives

xPn−1(x;α) =
P1(α)

P0(α)

(
n

n− 1

)
Pn(x;α) +

a(n− 1,n− 2)
gn−1(α)

Pn−1(x;α) +
(n− 1)gn−1(α)

ngn−2(α)
Pn−2(x;α). (5.24)

Comparing the coefficients of the highest terms on the left-hand and right-hand sides of (5.24), we have

a(n− 1,n− 2)
gn−1(α)

= (s(n− 1,n− 2) − s(n,n− 1)) −
α(2n+ 1)

6
. (5.25)

Because of Theorem 5.1, it follows

a(n− 2,n− 1)
gn−2(α)

=
(−α)(n− 1)3

n(n− 3)2
Γ(n− 1)
Γ(n− 2)

, (5.26)

finally from (5.23), we have
a(n,n− 1)
gn(α)

=
nα

2
. (5.27)

Using (5.25), (5.26), and (5.27) into (5.24) follows (5.14), so Theorem 5.2 is proved.

By using the orthogonality of the polynomials Pn(x;α), we give the following relation.

Proposition 5.3. The generalized discrete U-Bernoulli-Korobov-kind polynomials, which are orthogonal with re-
spect to the inner product (5.2), fulfill the relation

∆Pn(x;α) = Jαk,nPn−1(x;α), (5.28)

where Jαk,n are the Fourier coefficients.

Proof. If we write the polynomial ∆Pn(x;α) in terms of {Pn(x;α)}n>0, we have

Pn(x+ 1;α) −Pn(x;α) =
n−1∑
k=0

Jαk,nPk(x;α),

besides, for 0 6 k 6 n− 1,

Jαk,n =
〈∆Pn,Pk〉ωα
〈Pk,Pk〉ωα

.

Hence, by (2.7) and (2.16), we have

〈Pk,Pk〉ωα J
α
k,n = 〈∆Pn,Pk〉ωα
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=

∞∑
g=0

∆Pn(g;α)Pk(g;α)ωα(g;β)

= −

∞∑
g=0

Pn(g;α)∇(ωα(g;β)Pk(g;α))

= −

∞∑
g=0

Pn(g;α)ωα(g;β)∇Pk(g;α) −
∞∑
g=0

Pn(g;α)Pk(g− 1;α)∇ωα(g;β),

from which, by orthogonality, the first sum is zero since ∇Pk is of degree k < n+ 1. For the second sum
let us consider (5.3),

〈Pk,Pk〉ωα J
α
k,n = −

1
α

∞∑
g=0

Pn(g;α)Pk(g− 1;α)(α+ g)ωα(g;β),

if we use orthogonality again, only Jαn−1,n can be non-zero, and as a consequence, (5.28) follows, so
Proposition 5.3 is proved.
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