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Abstract

In this article, the mathematical model of steady state problems based on horizontal radial flow in homogenous confined
aquifers has been presented. Then we design efficient neural network (ANN) to solve the equation in polar coordinates. A
reliable unconstrained optimization method has been used as training algorithm to get high accuracy results. The results
illustrated by contour maps. The new effective Levenberg-Marquardt method (NLM) has been implemented to solve the problem.
A comparison between the training, testing and validation results has been presented. The weight of the ANN will be chosen
such that satisfied local minimizer. Furthermore, the quadratic convergence of NLM has been proved. The results reveal that the
suggested design is effective, time saver, and applicable for solving steady state problems.
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1. Introduction

Differential equations are essential to many fields of science and engineering. Differential equations
are incredibly useful tools for comprehending and resolving challenging issues, from simulating the
development of diseases to forecasting the behavior of electrical circuits. Population dynamics: modeling
population dynamics is one of the most well-known uses of differential equations [3, 14, 16, 26, 29, 32,
46, 48]. In economics, differential equations are also utilized to model a variety of economic events.
For instance, a system of differential equations called the supply and demand equations can be used to
simulate the behavior of a market. In biology, differential equations are also frequently employed to model
a variety of biological phenomena. For instance, the logistic equation system of differential equations can
be used to simulate population expansion. For more information in physics, engineering, optimization,
epidemiology see [17, 21-23, 28, 47], and ecology see [2, 9, 27, 33, 45].
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Partial differential equation-based mathematical models can be used to describe a wide variety of
physical issues. The partial differential equations (PDEs) govern a wide field of physical, chemical, and
biological events. A mathematical model is a condensed, mathematically stated depiction of physical real-
ity [31]. Nonlinear PDEs are also crucial for study in a wide field of domains, including hydrodynamics,
engineering, quantum field theory, optics, plasma physics, etc. [38]. Non-linear steady state problems
SSPs have an important role in representing different applied science such physical or chemical phenom-
ena arising in engineering [42, 49]. Therefore, researchers focus their attention on capturing the behaviors
of these problems. Since having an exact solution for such problems is not easy, researchers have tried
to developing analytic and numerical methods [4, 30, 43] to investigate the behaviors of these problems.
Herein, artificial neural networks techniques have been proposed for the following problem. During the
last several decades, there has been a lot of interest research of various machine intelligence approaches,
particularly artificial neural networks (ANNSs) is used to solve differential equations [13, 42, 50]. Because
ANNSs are known to have universal approximation capabilities [19], parallel processing technique, when
compared to other traditional numerical approaches. So, many authors used ANN for solving ODEs,
PDEs, integral equations and integro equations [35]. The authors proposed various design of ANNs de-
pending on architectural of network: number of layers, number of nodes in each layers, partial or fully
connected between layers and/or between nodes in layers, way of feeding the data forward or backward,
or depending on training supervise or unsupervised learning [11]. Lee and kang [15] proposed Hopfield
neural network for solving differential equations that is unsupervised learning. Lagaris et al. [24] sug-
gested type of neural networks a multi-layer perceptron and used optimization approach to solve each
of ODEs and PDEs. Also they solved some types of PDEs specially two and three dimensional space
with uneven boundaries using multilayer architecture of ANN [25]. Aarts and Van der veer proposed
evolutionary ANN for solving IVP; for more details see [40, 44]. Shirvany et al. in [34] suggested a mul-
tilayer perceptron as type of ANN. Depending on the nature of the problem a variety of transfer function
have been used, such as ridge basis function, radial basis function (RBF) and others. In [18] the authors
used RBF for solving the non-linear Schrodinger problem. Hoda and Nagla [41] used a multilayer ANN
technique to address mixed BVPs. Mai-Duy and Tran-Cong in [39] introduced ANN with a radial basis
function of type multi quadric for solving ODEs and elliptic PDEs. Jianye et al. in [5] employed ANN
with RBF to solve elliptical PDEs. Parisi et al. in [36] used a different strategy to tackle a steady-state heat
transport problem.

This article is organized as follows. In Section 2, definition and preliminaries of the ANNs have been
introduced. Mathematical model of steady state problem based on confined aquifers is introduced in
Section 3. Design efficient ANN for solving SSPDE and illustrated through example and implementation
with discussions of the results are presented in Section 4. Global, local minimizer, strong local minimizer,
and convergence of the results are presented in Section 5. Finally, the conclusions are presents in Section
6.

2. Artificial neural networks

Artificial neural networks (ANNSs) is a structure of parallel processing for distributing information in
the form of connected layers consisting of a set of nodes called neurons (also called processing elements)
is the basic processor in ANNSs, along with directed line segments between them called links (also are
called connections) [10]. All nodes can take any number of arrival connections and can have any number
of coming-out connections, but the signs must be the same [37]. In effect, all nodes have a one coming-out
connection that can branch out to form multiple output connections, each of which carries the same sign.
Each node possesses a transfer (activation) function which can use input signs, and which produces the
node’s output sign. Generally, ANNs have been generalizations of mathematical models of the human
brain, based on the processing of information that occurs at many connection nodes; signs are passed
between nodes over connection links which have an associated weight; each node applies a transfer
function to its weighted input net to determine its sign of output.
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The treatment of given data held by income these data as weighted input vector x, as form W)T x to
enter in hidden layers. In suggested design every hidden neurons has the same activation function o,
but that bias b;. So the output of j! hidden neuron in hidden layer is cr(WjT x + bj) and again weighted
by-product with v; then entered to output layer as the form:

k
g(x) = Zij(Wij—i- b;),
j=1

where g(x) represents the output of the NN. Note that, sigma must be choosing sigmoidal transfer
functions, so herein we choose suitable effective sigmoidal o defined as [1]:
et —1

emi41°

ony) =

Therefore, the equation of input-output ANN process is: Y = d(x"WT +bT)vT, where W € R™ " is
adjustable input weights; v € R1X™ is adjustable output weights and b € R™*! is biased.

The architecture of interconnections ANN can be classified as different types of ANNs sometimes
depending on feeding the data such as feed forward neural network (FFNN): organized of nodes are in
the form of layers and arrival input from the previous layer then feed their output to the next layer, in
a strictly the data goes from the input node to the output node as feed-forward way, i.e., forward loops.
Feedback neural network (FBNN): All possible connections are allowed between layers and neurons. The
data transfer in the network as back loops [6]. Herein we choose FFNN.

3. Steady state confined aquifers

A flow is considered to be steady when the conditions at any point in the fluid do not change with
time, i.e., 0h/0t = 0 and also the properties do not change with time.

In this section we discussed flow in a completely confined aquifer where no recharge occurs. Most con-
fined aquifers, however, are not totally isolated from sources of vertical recharge. For example, aquitards
(confining layers) above or below the aquifer may leak water into the confined aquifer under favorable hy-
draulic gradient conditions. So, the general three-dimensional groundwater flow equation to calculating
hydraulic head for confined flow with vertical leakage in radial coordinates is:

9/0x(T,dh/dx) + 8/dy(T,dh/dy) + 9/0z(T.0h/dz) + Q + 1(h; —h) = Sdh/0t,

where, 1 is leakage factor (L,/T) and hl initial hydraulic head. There are several special cases for the
above equation depending on status of wells, region, and soil. In the confined aquifer with source, we
didn’t have leakage flow, therefore, | = 0 and the equation becomes:

9/0x(T0h/0x) 4+ 9/0y(Tyo0h/dy) +0/0z(T,0h/0z) + Q(x,y,z,t) = Soh/ot

When a fully penetrating well pumps a confined aquifer the influence of the pumping extends radially
outwards from the well with time, and the pumped water is withdrawn entirely from the storage within
the aquifer. In theory, because the pumped water must come from a reduction of storage within the
aquifer, only unsteady-state flow can exist. In practice, however, the flow to the well is considered to be
in a steady state if the change in drawdown has become negligibly small with time. In this article, the
equation of flow will be study and solve with the assumptions and conditions underlying such as:

¢ the aquifer is confined;

¢ the aquifer has a seemingly infinite areal extent;
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¢ the aquifer is homogeneous, anisotropic, and of uniform thickness over the area influenced by the
test;

¢ prior to pumping, the piezometric surface is horizontal (or nearly so) over the area that will be
influenced by the test;

¢ the aquifer is pumped at a constant discharge rate;
¢ the well penetrates the entire thickness of the aquifer and thus receives water by horizontal flow.

The standard equation that governs steady state confined aquifer is [7, 20]:

0’h 0’h 0’h oh

TX A0 7
0z2 ot

where S is storage coefficient, T; is transitivity in the i-direction sz, (i may be x,y, or z). Since the flow is
horizontal in aquifers, assumption (3.1) becomes:

0%h 0%h oh

T 2 o

For polar coordinate suppose that:

R
r=vxX2+y2, 1 = @, T=LTy. (3.3)

Then
o T o Ty o TLoTe o Thetordy
ox Tr' oy Tr'7 o2 2% 7 oy? T2
To get
' N\ 2 l
pon o foner e (VL fonThet T o (T
“ox2  *lor oxz o 92r”? | ox *or T2¢"° or? \Tr
So,
92 Toh Ty®dh | Tyx* 9%h 9> _Toh Tw?dh Tw?d’h
XaXZ - T/ aTl r/3 aT/ T_/2 aT/Z’ Y ay2 Tl aT, r/3 ar/ r/2 ar/Z'
Here
O @ Toh Tydh  Tyx*d%h  Toh Tw?dh  Tay?d%h
XaXZ y ay2 T, aT/ r/s a_r/ T/Z aT'/z T'I a_r/ 1‘,3 a_r/ _r,2 a_r/2/
ie.,
02 02 19h 0%h
Te— 4+ Ty — =T | = — 1+ —|. 34
2 Tl dy? L' ot ar'z] G4
Now, substituting (3.4) in (3.2):
19h 9%h] Soh
Sy =2 35
[r’ o+ ar'z] T ot (3-5)
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Then (3.5) governs the radial flow with homogeneous confined aquifer. Now by the polar coordinates
x = 1cos(0) and y = rsin(0), where 0 is the angle between the positive x-axis and the vector, then (3.3)
can be written in polar coordinates as

, \/Ty cos?(0) + Ty sin?(0)
T =r T .

2
Let To = \/Ty Cosz(e)_lJ_rTXsm (9)’ then

' =1Te, (3.6)

in the steady state case, 0h/0t = 0. So, Eq. (3.5) becomes % gl‘, + % = 0. This can be rewritten as

19 (T/ ah,) = 0. Integrate both sides of this equation to get:
T oT

or
+0h
~— =C1.
T !
From Darcy’s law:
Q _on
2nT,  or'

where T, is the transmissivities in the direction r and defined in [12] as

Ty Tx
T, = : .
Ty cos?(0) + Ty sin”(0)

From Eq. (3.6) %’ =Tgand r = }—;, SO

Q _ /oh _
2nT, "o T G
and
Q o
= ) 7
on 2T, v (37)
Integrating both sides of Eq. (3.7) gives
_Q
h= T Int +C, (3.8)
Consequently, from Egs. (3.6) and (3.8), one can get
h = Q In(rTg) + Cp, v > 0. (3.9)
27T, !

If r, is the radius of the well and its hydraulic head at a distance from the center of the well and in all
directions is equal to h,, then h, = Q/(2nT; )In(r,Tg,) + C2 and so on h —h, = Q/(2nT;)[In(rTe) —
In(r,Tg)] = Q/(27T;) In(r/7,) that is the result

Q T
pr— 1 — .
h=h,+ ST n(rvr)
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Depending on boundary conditions, we can get another estimate to the constant C, from, which specifies
hg = h at R =1, where R is the largest radius of effect, then

ho = Q [ = Ty cos2(0g) + Ty sin®(0y) s
2T, T

After choosing the same direction, the above equation takes the following form

2 2
Cr=hy— Q In (R\/Tycos (00) + Ty sin (90)).

27T, T

Then Eq. (3.9) becomes

. Q T, cos?(0g) + Ty sin?(0p) Ty, cos?(0g) + Ty sin?(0p)
ho_h_ZnTr {ln (R\/y T )ln (r\/y T )]

_Q R

~ 2 (5]

where hy—h, is the drawdown s...

4. Design efficient ANN

The authors suggest suitable design consist three fully interconnection layers, input layer consist three
neurons, but hidden layer consist seven neurons of type (tanhsig.) ridge transfer function but the output
layer consist two neurons of type (linsig.) transfer function (see 1). The suggested ANN is trained
by the back propagation rule based on unconstrained optimization herein we chose the Levenberg-
Marquardt (LM) training algorithm which has the following update rule of the weights wy1 = wy —
(JTJ + ul)~JxE(wy), where I is the identity matrix; p is coefficient always chosen positive; | is the Ja-
cobean matrix, which consists 1% derivatives of the ANN errors (energy functions or objective functions)
with respect to the weights and biases.

2/

IR -\ @\EE
( J L P

Figure 1: Suggested design of ANN.

Let the system of the pumping test and pumping rate Q = 10000(mm?)/s, h, = 10m, r, = 1m, the
distance 1000m on all direction and the transmissivity studying in three case as follows

a) Ty = 5mm?/6s, Ty = m?/2s;

b) Ty =mm?/2s, Ty = 5mm?/6s;
c) Ty =5mm?/6s, Ty = 5mtm?/6s.
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(a) The hydraulic head with T, =150, T, = 90.

/

(c) The hydraulic head with T, = 150, T, = 150.

Figure 2: The effect of transmissivity on the hydraulic head by ANN.

Figure 3: Contour maps.
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Best Validation Performance is 0.0017454 at epoch 902
10%

Mean Squared Error (mse)

o 200 400 s00 800

908 Epochs

Figure 4: Comparison between training, testing and validation results for ANN.

Gradient = 14.4485, at epoch 908

10° M

Mu = 0.0001, at epoch 908

gradient

validation Checks = 6, at epoch 908

wal fal
N B
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LI XY

*
*
+* & *
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Figure 5: Performance of suggested design.

By training suggested ANN, we get the results in Fig. 2 and observe the effect of transmissivity on the
hydraulic head by the effect on the cone. In Fig. 2a, since T, > T, main axes of the ellipses are parallel
to the x-axis, while in Fig. 2b, T, < Ty. So, the main axes of the ellipses are parallel to the y-axis, but
in Fig. 2c the conics are circles, because of Ty = T, the effect of the anisotropic aquifer on the flow by
the contour maps as in Fig. 3. Fig. 4 illustrates a comparison between the results of training, testing and
validation for suggested design. Fig. 5 illustrates the performance of suggested design.

5. Global minimizer

A weight of the network w* is said to be a global minimizer if f(w*) < f(w), ¥w, where w € R™. Note,
the essential assumption is that the global minimizer can be difficult to prove, because our knowledge of
f is only local, so we will show a local minimizer at the least.

5.1. Local minimizer

A weight of the network w* is said to be a local minimizer if the following condition is satisfied: there
exist a neighborhood N, f(w*) < f(w), Vw € N, such that Hw —w*|| < g,Ve > 0.

5.2. Strong local minimizer

A weight of the network w* is called strong local minimizer if there is a neighborhood N of w* and
f(w*) < f(w),¥w € N with w # w*, such that 0 < Hw —w*|| < €. Note that, for the neural network
choose the weights w* such that satisfies strong local minimizer condition.
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5.3. Local convergence of the NLM method
The convergence of NLM is present in this section; firstly we suppose the following hypothesis.

Hypothesis 1:

(a) H E(w) H is smooth (continuously differentiable), and the Jacobian of weights J(w) is satisfies Lipschitz

condition about some neighborhood of w* € W*, i.e., there exist +ve constants L; and b; < 1 such
that

H](Wl) —](Wz)H < L1HWl —wzl||, Ywi,wy € N(w*, bq) =W|HW* —WH < by

(b) A local error bound H E(w) H on N(w*, by), i.e., there is a constant ¢; > 0 such that
HE(W)H > cpdist(w, w*), Yw e N(w™*,bq). (5.1)
Note that, by Hypothesis 1 (a), we get:

2
/VWLWZ €N (W*I bl)

HE(W1) — E(wz) — J(w2) (w1 —w3) H < T-1HW1 — W
and, there is a constant L, > 0 such that:

HE(Wl) —E(WZ)H < I-2HW1 —wa||, Ywi,wy € N(w*, by).

For simplification, we use Ex = E(wy) and Jx = J(wx).

5
Hypothesis 2: we choose py = HEkH Vk, where 6 € [1,2].
In [13], Yamashita and Fukushima proved the convergence is quadratic of the LM method when

2
, based on the properties of an unconstrained optimization. Herein, first we prove the

choosing py = HEk

5
NLM method has super linear convergence if we choose i = HEkH , then, depending on the properties

of singular value decomposition (SVD) of the Jacobian matrix, we get the quadratic convergence. In the
next, we denote Wy the vector in W* that satisfies

HWk —V_\)kH = dist(wy, W*).

Theorem 5.1. Under the conditions of Hypothesis 1 and 2, if the initial weight wy is chosen close to W* sufficiently,
then w41 = Wy + px converges to the solution W super linearly.

Proof. Suppose r = min{; b1

I ESE T ﬁ}, first we show that if wy € N(w*, 1), then wy € N(w*, %), Vk. By

C3
using induction and since [wy.+1 = wy + px] , we have

[ =7 = o+ o0 =] < | + o =]
The search direction py can be chosen such that
HPkH = codist(wy, W*), (5.2)
where a constant ¢, > 0. From (5.2) we have

e R A R
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Since [wo e Nw*,r) — HWO —w*|| < T}, then we get
b
[wr —w| < (2 +1r < 2,
which means w; € N(w*, (b1)/2). Suppose w; € N(w*,by,2), Vi =2,...,k, Then we have
#
HWi —Wi|| < C3HWF1 Wi_1
245 (22t
gcé z) 1Hwo—w* :
2((258yi (32)
<C§((2) UHWO*W* 2
1\ (i1 1\ (B 1\ )
< r(z) = 2r<2> < 2r<2> , since &¢€[1,2].
Hence, from the definition of r we have
HWk+1 *W*H = [[Wi41 — Wk + Wi *W*H
<o o]
= [|Pk|| + [[WKk —Wk—1 +Wk—1—W*H
< ||k ||+ |[wk _kalH + Hkal —w*
= ||Pk|| + ||Pk—1]| + [[WKk—1 —WKk—2 + Wr_2 —W"
< [Pk ||+ |[Pk—1]| + ||[WKk—1 _Wk—Z‘ + HWk—z —W*H
= |lox|| + ||Px—1]| + pkuH + Hkaz —w*
< ||Pk|| + ||Pk—1]| + pk—zH +oo ‘pk—(k—l)H + Hwk—(k—l) —W*H
< [Pk ||+ [[Pr—1|| + pkuH +-+ ‘le + le —wr|.
Hence,
k
HWk+1 —W*H < le —w* +Z ’ Pi
i=1
k
<(I+c)r+c Z HWi — Wy
i=1
< (T4 co)r+2re i(l)(g)i
= "2
i=1
K 1. 3y
< 1 _ (j)l
(1+co)r+2rcy <4+Z(2) >
i=1
< (14 9c¢cy)r+2rc i(l)i < (T4+11e)r £ L}
B 2 2 . 7 B 2 B 2 ’
i=1
SO, Wi 11 € N(w*, %. Therefore, if wy is chosen close to W* sufficiently, then all wy are in. O
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Theorem 5.2. Under the conditions of Hypothesis 1 and 2, if the sequence wy is generated by the NLM method
with wy close to w* sufficiently, then wy, converges to the solution quadratically.

Proof. By the SVD of Jy, the step at the current iterates is
pr = —(JiTk + D) T Ey,
when Jy = UkaV]I , then we have
-1
pr = — [(Wk D Vi) T (Wi Zie Vi) + D] (WD VB

=~ VIl UlUe SV 4 ] (VIR U)E, {U orthogonal, de., Uy ' = UJ)

= —(VkZ]z(V]I + ukl)*l(VkaU{)Ek, {since Z{ = Ly is diagonal matrix}

e L AT (Y AYAR] ! (VieZiU k) ") Ey, {V orthogonal, ie., V' =V}

-1

= Vi (22 + D) (Vi Vi) ZkULEy.

Hence
Pk = —Vie(Zf + miel) T I U Exe.

Now when Jy = U1£1V1T + U, I, VT, so, we have

pr = —V1(Z2 + i ) T U By — Vo(23 4 D) T 50U By,
)

E(Wii1) = E(wi) + E (wi) (Wiep1 — wi) +0(w2) = Ex + Jipi,

Now we need to show

*

oot =o (s

According to the Taylor expansion, E(wy) can be written as

since Wy ;1 = Wy + px. Now we have

B+ Jkpk = B+ (W Z V) + UpLoVg ) — [VA(ZF + D) 'Sy Uf By — Vie (55 + D) ' 55U By
=By — [U1 21 (V] V) (23 + D) 10U Ei] — [UnZq (V] Vo) (53 + D) 120U Ey
— [UaZo(VF V) (22 + e ) 1 Z U Ex] — [UnZo (V7 Vo) (23 + ) 15U By
= B — Wiz (27 4 D) 7 5 U By — WpZp (55 + D) ' SpUg .

Since V is orthogonal, i.e., V| = Vg and V]I Vi =0,Vk # 1, so, by the SVD we get
Ex + Jipr = tieUs (£F + D) U By 4 U (55 + i) 7HUS By 4 UsUg By,

Since wy converges to w* super-linearly, without loss of generality, we suppose that

] Hwk —w¥|| < %, Vk sufficiently large. (5.3)
Then we get
et et < T -
[zl [ < =] R e
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2
= < s

—Lx Hwk —W*H)Z.

Therefore
1

HaH*z < . (5.4)
(07 = L [wic — w2

From (5.3) we obtain

-2 1 4
=)< -

2 x2
%)

And
S+ md > e (53 + w7 <l
Then
|+ w7 < e (55)

By above two inequalities (5.4) and (5.5), we have

4T —1yT T 4 s |
Ex + Ikpk < Uy e Ul Ex + l—lkuQHk U2 Ex + U3U3 Ex < e L2 + 204 Wi — W , 6¢e11,2].
T T

This result with help that Uy is orthogonal, i.e., U 1= U{. Let cy = ﬁl.%“’ +2L4, then we get

2
HEk+JkPkH < C4HWk—W*H . (5.6)
From (5.1) we get
crdist(wy 1, W) < HE(wk+1)H - HE(war pk)H-
From Taylor series we have
2
cidist(wy 41, W¥) < HEk + IkPkH +I—1HPkH :

From (5.6) we get
2

*

2 2
cidist(wy 1, W*) < C4Hwk —w* H -+ C%Ll Hwk —w* H < (cq+ C%Ll) Hwk —w

(W1 —

2
That is HpkHH = O(HpkH ), which implies that {wy} converges quadratically to w*, namely,

2
). O

*

w*)

= o(Hwk—w

5
Remark 5.3. From the above theorem, if the parameter of Levenberg-Marquardt is chosen as p = HEkH
with & € [1, 2], then under the condition of local error bound we have
5 5 5 25
HEk+1H HWk+1 _V_Vk+1H ‘karlH HDkH
< = JLLB | N, —

LR § ) )

e

B

- B

Hence, px41 < ui, which implies the parameter {u} and {‘ EkH} converges quadratically to zero as the
sequence {wy} converges quadratically to the solution of the nonlinear equations.
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6. Conclusions

In this article, the effective parallel processing technique based on ANN and the novel effective training
algorithm based on modified NLM have been implemented to solve nonlinear SSPDE involving initial
value problems. The nonlinear problems are reduced to nonlinear algebraic system of equations solved
with Mathematica @12. The novel approximate solutions were obtained and proved accurate and reliable,
even within a few polynomial orders. Moreover, the Mse for the proposed ANN were calculated. The
results show that the proposed design has higher accuracy and less error. It is also observed that the
Mse results of the proposed ANN decrease vastly compared to the ADM. Therefore, the proposed novel
MLMTA have better accuracy than the usual LM. The main conclusion from the results is that the ANN-
based one hidden layer with 5 nodes has slightly better accuracy than the other methods for solving
the WLE. Moreover, the ANN based on the one hidden layer is more accurate than the ANN with two
hidden layer in solving the SSPDE. In addition, the ANN based on the modified BFGS training algorithm
is slightly more accurate than the usual LM in solving the SSPDE. Furthermore, the suggested design
has sampling time is 0.5 seconds with/without noise and disturbances. The average computation time
for the parallel and serial implementations are approximately 31.5259 and 4.4117 seconds, respectively at
each identification. Note that none of the serial and parallel implementation meets the sampling time of
0.5 seconds for the suggested design. Thus, the parallel implementation of the combined identification
and control strategies on real-time embedded multiprocessor systems, such as field programmable gate
arrays, is recommended. So that the proposed algorithm can be used much with the sampling time.

In future the authors can be design other types of ANNSs or use other architectural for ANNs. Also
can be used other training algorithms to solve SSPDEs or any problems in the polar coordinates.
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