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Abstract
In recent times, there has been an increasing focus on investigating the therapeutic capacity of virus particles in the

management of cancer. This paper introduces a novel discrete-time mathematical model with fractional-order of oncolytic
virotherapy. The model captures the complex behavior of how cancer cells and virus particles interact, aiming to elucidate the
process of infecting and eliminating cancer cells in the absence of immune involvement. To evaluate the efficacy of cancer-
targeting virus treatment, we perform an in-depth analysis of both the local stability and the bifurcation trends observed in
our framework. By selecting appropriate bifurcation parameters, we verify the occurrence of codimension one bifurcations,
for instance, fold, flip as well as Neimark-Sacker (N-S), as well as codimension-two flip-N-S bifurcations. The identification of
these bifurcation types is established by deriving necessary and sufficient conditions using algebraic criterion methods. In these
criteria, the reliance does not lie in the attributes of the eigenvalue coefficients from the characteristic equation of the Jacobian
matrix but rather on the coefficients of the Jacobian matrix’s characteristic equation itself. Consequently, we have semi-algebraic
systems comprising equations, inequalities, and inequalities. This algebraic methodology provides appropriate conditions for
both codimension one as well as codimension-two bifurcations in high-dimensional maps. Finally, numerical simulations were
conducted to validate our theoretical findings. Our study concludes that the correlated increase between cancer cell proliferation
and the therapeutic virus indeed resulted in the anticipated infection within the cancer cells. While complete eradication of
cancer cells using viral therapy alone is not impossible, it requires specific conditions.

Keywords: Virotherapy cancer treatment, calculus involving fractional orders, model in discrete time, equilibrium stability,
bifurcations, chaos.
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1. Introduction

Cancer is a major global health concern, with millions of new cases each year, leading to millions
of deaths [9]. The disease’s complexity and variation make it difficult to choose the best treatment,
dosage, and timing. Medical professionals work hard to make informed decisions to achieve the preferred
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outcomes for patients, whether seeking a cure or providing palliative care. However, traditional cancer
treatments often come with high toxicity, side effects, and limited effectiveness [20]. Survivors may endure
late treatment effects, underscoring the necessity for safer and more effective treatments [20]. Researchers
have consistently aimed to discover a treatment that not only effectively eradicates the disease but also
prevents its return, in addition to continuous efforts to find treatments that do not contain side effects.
The development of new systems for diagnosing and treating cancers that directly target cancer cells
without affecting normal cells is essential [19]. A promising approach treatment to achieving this goal is
virotherapy of cancer.

This new promising treatment has the potential to be safer and less complicated than other treatments
and may work against a wide range of cancers. Oncolytic virotherapy is an advanced novel treatment for
cancerous tumours that infects and kills cancer cells but leaves the normal cells unharmed. Oncogenic
viral therapy is important because of its ability to combine tumour-specific lysis and the delivery features
of other anti-cancer drugs. Moreover, oncolytic virotherapy can protect normal tissues from exposure to
therapeutic doses of chemotherapy or radiotherapy if combined with them in the therapeutic process [20].
Oncolytic virotherapy is also a form of immunotherapy by stimulating anti-tumour immune responses
[12]. This type of alternative treatment may be more beneficial, especially in cases of incurable cancerous
tumours, such as brain tumours and gliomas, that are not sufficiently eliminated by traditional and
standard treatments [8, 26]. However, oncolytic viral therapy is still at its conceptual stages, and its full
success in controlling cancer cells remains difficult to achieve. This includes the sensitivity of oncolytic
viral therapy to tumours, which requires further research and extensive study. Virotherapy, like other
anti-cancer therapies, must be examined for efficacy before it is applied to actual patients. Laboratory
experiments need powerful tools such as mathematical models to help analyse experimental data and
provide an archival base of experience for the development of subsequent experiments. The mechanistic
underpinnings of complex and non-linear systems can be evaluated using the language of mathematics
as well as predicting long-range behaviour. Using of mathematical models contributes to determining the
appropriate parameters and simulating experiments to guide prediction for solving biological problems
in real life [4]. We particularly investigate strategies aimed at optimizing the effectiveness of viral therapy
by identifying the parameters that yield the most favorable treatment outcomes. Furthermore, we inquire
about the conditions under which the best treatment outcomes are achievable. Various mathematical
models have been created and examined to describe the behavior of virus dynamics, including the cited
references [5, 14, 18, 23, 25].

One of the earliest attempts to formulate an essential ODE cancer virotherapy model was presented
by Wordaz [34]. This work concluded that the virus and tumour might spread together despite intense
viral lysis within cancer cells. This supports the necessity of choosing accurate techniques to evaluate the
viral lysis process more successfully. Wordaz [34] emphasized that using a large number of infections
to make the virus appear more efficient could be the least efficient at eliminating cancer in vivo. Since
then, many expansions and additions have been made to consider virotherapy for many different cancer
types, for example, hepatocellular carcinoma [3], cholangiocarcinoma [35], haemangioma [24], and glioma
[27]. As one of many discoveries and hypotheses, many mathematical studies have shown that the size
of the tumour can be reduced or even completely eliminated from the body’s tissues, provided that the
size of the viral explosion inside the tumour is huge [31]. One of the major questions associated with
oncolytic virotherapy relates to understanding the role played by the tumour microenvironment during
the virotherapy phase [6]. The occurrence of viral lysis is contingent upon the virus effectively infecting
the host, preventing clearance by the immune system. It is known that oncolytic virus particles help
activate immune cells in the tumour environment, and this is the focus of many researchers. However, we
believe it is crucial to intensify the study of oncolytic virus dynamics within the tumour microenvironment
to understand the consequences of tumour death in the absence of immune system involvement. The
purpose is to determine how well the oncolytic virus performs its lethal function without being subjected
to immune clearance.

Jenner et al. [13] introduced a significant mathematical model detailing the interaction between virus
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particles and cancer cells. This model is designed to target and destroy cancerous tissue directly, bypassing
the immune system’s involvement. To gauge the importance of the effectiveness of oncolytic viral therapy,
the researchers performed a local stability as well as bifurcation analysis with regard to this model. The
results indicate that if the tumour grows weakly, even with viral decay, viral treatment can succeed in
eliminating cancer cells in a large percentage. However, if the tumour percentage grows and the viral
lysis process succeeds, the behaviour of the model shows more fluctuations between losing stability and
maintaining it. The model shows that higher rates of tumour proliferation bring with them longer periods
of oscillations and decay in the amplitude of uninfected cancer cells. The scientists determined that solely
using oncolytic viruses would not suffice to fully eradicate the tumour. The model was derived in ordinary
differential equations with integer order involving three classes: an uninfected cancer cells class U(t), an
infected cancer cells class I(t) as well as a free virus particles class V(t), where t represents time in days
while r is the replicate rate of uninfected tumour cells. The rate of viral infection occurs at a constant rate
within cancer cells and is denoted by β. After successful infection, the lysis process begins, followed by
the explosion of infected tumour cells in the rate δ. New free viral particles are released at a rate of b to
spread to neighbouring cancer cells. γ indicates the rate of decay of free virus particles. The governing
model is given as follows:

dU

dt
= rU−βUV ,

dI

dt
= βUV − δI,

dV

dt
= bδI− γV .

Biologically, unlimited exponential tumour growth cannot be realistically achieved due to nutrient and
space limitations. Therefore, the inclusion of exponential growth in the model may be inappropriate for
tumour growth under oncolytic virus treatment. At the same time, logistic growth operates under the
premise that the expansion rate of a cancer cell population is directly related to the availability of space
and internal resources necessary for its proliferation. As a population grows, the number of resources
available for its growth decreases, resulting in a lower growth rate. Eventually, the growth rate of zero is
obtained, while the population reaches its maximum size, known as carrying capacity [21]. For this rea-
son, we will replace exponential growth with logistic growth in our research. The considered virotherapy
cancer treatment is formulated as:

dU

dt
= rU

(
1 −

U+ I

k

)
−βUV ,

dI

dt
= βUV − δI,

dV

dt
= bδI− γV , (1.1)

where k is the carrying capacity for both types of tumour cells. However, Jenner’s model with integer
differential order misses the memory property, which is abundant in biological dynamics. To avoid this
deficit, fractional order modelling is most appropriate to describe memory characteristics that are found
in most biological phenomena [29]. Biological systems, recognized as complex adaptive entities, are heav-
ily dependent on memory functions. With advancing research, a growing body of experts and academics
notes that the principles of fractional-order theory align closely with real-world biology, providing a more
precise depiction of the memory attributes of biological factors. Therefore, accounting for memory is vi-
tal for researchers investigating virus behavior for treatment purposes. In differential models based on
fractional order, the subsequent state is influenced by the current state as well as all preceding states, a
characteristic absent in integer order-based models [1]. Nevertheless, many differential equations, includ-
ing fractional ones, are challenging to solve, necessitating more effective tools for implementing as well as
simulating fractional-order viral therapy models, particularly in discrete forms. Occasionally, discretizing
the continuous-time virotherapy model becomes necessary to accurately evaluate the impact of varying
time steps on model behavior. In biological phenomena problems (especially those describing diseases
and treatments), data collection is often discontinuous, so discrete-time models are more appropriate [7].
Building upon the insights mentioned earlier, we modify model (1.1) in this study by incorporating a
discrete-time model that derives from a system of fractional order. This modification introduces two ad-
ditional parameters to the new model: the parameter related to the memory effect ”fractional-order” as
well as the step size time parameter.
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The remainder of the document is structured in the following manner. In Section 2, some preliminaries
about the model are given. The fractional-order oncolytic virotherapy model with discrete time is derived
in Section 3. The local stability analysis is presented in Section 4. The analysis of bifurcation is discussed
in Section 5, while numerical simulations are performed in Section 6. To conclude, Section 7 offers a
concise overview and discussion.

2. Equilibria

To reduce the parameters in the model (1.1) we set
∼
t = δt,U = k

∼

U, I = k
∼

I,V = k
∼

V . Now, the non-
dimensionalized model of (1.1) may be expressed as:

d
∼

U

d
∼
t
=
r

δ

∼

U(1 −
∼

U−
∼

I) −
kβ

δ

∼

U
∼

V ,
d
∼

I

d
∼
t
=
kβ

δ

∼

U
∼

V −
∼

I,
d
∼

V

d
∼
t
= b

∼

I −
γ

δ

∼

V . (2.1)

Taking a = r
δ , c = βk

δ ,d = γ
δ and to avoid complexity, we set

∼
t,

∼

U,
∼

I,
∼

V as t,U, I,V , respectively. Then,
model (2.1) becomes:

dU

dt
= aU(1 −U− I) − cUV ,

dI

dt
= cUV − I,

dV

dt
= bI− dV . (2.2)

Solving system (2.2) yields three equilibrium points, known as the trivial point E0 (0, 0, 0), the virus-free
point E1 (1, 0, 0), and the coexistence point E2

(
d
bc , dbV

∗,V∗
)
, where V∗ = a(bc−d)

c(ad+bc) . E2 indicates the
existence of competition between all tumour cells and viruses.

Van den Driessche and Watmough [30] introduced the concept of a crucial parameter in mathematical
models that characterize the spread of viruses within a community, called the basic reproduction number
and typically represented as R0. This threshold provides insights into the propagation of infection within
a population. The fundamental reproduction ratio is described as the average number of subsequent
infections caused by a primary case among tumour cell populations [30]. When R0 < 1, the free virus
equilibrium point tends to be asymptotically stable, indicating that, on average, an infected tumour cell
yields less infections compared to another during its infectious period. In such instances, the infection
cannot persist in the population of tumour cells. Conversely, when R0 exceeds 1, the equilibrium point
for virus presence without any external interventions becomes unstable, initiating an infection outbreak
among the tumour cells. The fundamental reproductive number, R0, serves as an indicator of the capacity
of the virus to propagate within the tumour cell population. To determine the R0, model (2.2) may be
expressed as:

dT(t)
dt

= W (T) − N (T) ,

where T (t) =

 U (t)

I (t)

V (t)

, W (T) =

 0
cU (t)V (t)

0

, and

N (T) =

 −aU (t) [1 −U (t) − I (t)] + cU (t)V (t)

I (t)

−bI (t) + dV (t)

 .

We now define K and L as the Jacobian matrix of W and N at E1, respectively. Then, we obtain:

KL−1 =

 0 0 0
0 cb

d
c
d

0 0 0

 .

KL−1 is said to be the next-generation matrix. According to [30], R0 is expressed as the spectral radius of
KL−1, which gives R0 = bc

d .
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Lemma 2.1. Should R0 = 1, model (2.2) possesses solely a free-virus equilibrium point. Conversely, should R0 > 1,
model (2.2) is characterised by a tumour-infected equilibrium point.

Proof. If there exists a tumour infected equilibrium of (2.2), then E2 must satisfy the following equations:
aU∗(1 −U∗ − I∗) − cU∗V∗ = 0,
cU∗V∗ − I∗ = 0,
bI∗ − dV∗ = 0.

(2.3)

It is assumed that there is a unique coexistence solution to (2.3), which yields
U∗ = 1

R0
,

I∗ = d
bV
∗,

V∗ = a(R0−1)
c(R0+a)

.

It is clear that U∗ is consistently positive. However, both I∗ and V∗ are positive solely when R0 > 1.

3. Fractional-order mathematical model and its discretization

This section is devoted to deriving the fractional-order model from its integer-order counterpart. An
approximation scheme will be applied to the fractional order model to construct a new discrete-time
oncolytic virotherapy model with fractional order.

3.1. Fractional order model
Fractional calculus has attracted the attention of many researchers in the field of mathematical mod-

elling over the past few decades. It is a more suitable tool to describe natural phenomena that have
memory and hereditary properties, such as cancer diseases. Differential equations with fractional order
are closely connected with memory for cancer disease models [11]. Most cancer disease models have
been described by using differential equations with integer order to understand their behaviours. The
behaviours of these models lack the effect of memory characteristics, which is already well-captured by
fractional order differential equations [37]. Long-term memory is an important property in the models
that describe cancer disease problems. Fractional-order models showed greater accuracy in the reten-
tion of memory characteristics, un-locality, and spatial heterogeneity [2]. Several definitions of fractional
derivatives have been introduced in the literature [28, 37]. Caputo’s definition [2] is still the most fre-
quently used in literature till now. Caputo definition of fractional derivatives is as follows below.

Definition 3.1 ([2]). The fractional integral of order β ∈ R+ of the function f(t), t > 0, is defined by

Iβf(t) =
∫t

0
(t−s)β−1

Γ(β) f (s)ds. Meanwhile, the fractional derivative of order α ∈ (n− 1,n) of f (t) , t > 0, is

expressed by Dαf (t) = In−αDnf (t) , α > 0, in which f(n) denotes the n-order derivative of f(t), n = [α]
resembles the α value rounded up to the nearest integer, Iβ denotes the β-order Riemann-Liouville
integer operator, while Γ(.) refers to the Euler’s Gamma function. The operator Dα is known as the
”α-order Caputo differential operator”.

Under specific conditions, Caputo’s definition of the fractional derivative may be more suitable and
convenient for the function f(t) compared to the Riemann-Liouville fractional derivative. This is partic-
ularly true when taking into consideration initial conditions of f(t) as α comes closer to n. Hence, the
fractional-order model (2.2) formulation may be written as:

DαU(t) = aU(1 −U− I) − cUV , DαI(t) = cUV − I, DαV(t) = bI− dV , (3.1)

where t > 0,Dα = dα

dtα is in the sense the Caputo derivative, while α refers to the fractional-order
satisfying 0 < α 6 1.
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3.2. Existence and uniqueness of the solution
The theorem presented below provides the necessary conditions to ensure both the existence as well

as the uniqueness of the solution for model (3.1).

Theorem 3.2. A sufficient condition for the solution of model (3.1) to be both existent and unique within the domain
Φ× (0, T ] given the initial conditions X(0) = X0 and for t ∈ (0, T ] is:

C =
Tn

Γ(1 +n)
max{[a(1 + 3ε) + 2cε], [b+ aε+ 1],d} < 1

for some δ ∈ R+.

Proof. The fractional-order model (3.1) may be expressed as

Dαt X(t) = F(X(t)), t ∈ (0, T ], X(0) = X0, X =

 UI
V

 , X0 =

 U0
I0
V0

 , F(X) =

 aU(1 −U− I) − cUV
cUV − I
bI− dV

 .

Let ‖P‖ = supt∈(0,T ] |P(t)|. Then, the norm of the matrix G =
[
gij[t]

]
is defined by

‖G‖ = max
i

∑
j

gij[t]. (∗)

We investigate the existence as well as uniqueness of the solution within the domain Φ× (0, T ], focusing
on

Φ = {(U, I,V) : max(|U|, |I|, |V |) 6 ε}.

Hence, the solution of model (3.1) is given as follows

X = X0 +
1
Γ(α)

∫t
0
(t− τ)α−1F(X(τ))dτ = Q(X).

Hence,

Q (X1) −Q (X2) =
1
Γ(α)

∫t
0
(t− τ)α−1 [F (X1(τ)) − F (X2(τ))]dτ.

Therefore, we attain the following inequality

|Q (X1) −Q (X2)| 6
1
Γ(α)

∫t
0

∣∣(t− τ)α−1 [F (X1(τ)) − F (X2(τ))]
∣∣dτ,

6
1
Γ(α)

∫t
0

∣∣(t− τ)α−1∣∣ |F (X1(τ)) − F (X2(τ))|dτ.

Using the intermediate value theorem, we have

|Q (X1) −Q (X2)| = ∇Q ‖X1 −X2‖ ,

where ∇F is the matrix norm of the Jacobian matrix of the model (3.1). Now we arrive at

∇F = max{[a(1 − 2U− I) − 2cV], [b− aU− 1], [−d]}.

Using Eq. (∗), we get
∇F < max{[a(1 + 3ε) + 2cε], [b+ aε+ 1],d}.

Then,

‖Q (X1) −Q (X2)‖ 6
Tn

Γ(1 +n)
max{[a(1 + 3δ) + 2cδ], [b+ aδ+ 1],d} ‖X1 −X2‖ 6 C ‖X1 −X2‖ ,

where
C =

Tn

Γ(1 +n)
max{[a(1 + 3ε) + 2cε], [b+ aε+ 1],d}.

If C < 1, it follows that the mapping X = Q(X) is a contraction mapping.
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3.3. Discrete-time model with fractional order

In general, mathematical cancer models use multi-scale approaches, combining continuous modelling
using differential equations and discrete modelling using different equations. Continuous modelling often
describes the dynamics of extracellular environmental factors. In contrast, discrete modelling is designed
to describe cancer cell migration and the progression of metastasis based on a set of scientific hypotheses.
At discrete time steps, new non-overlapping generations of population cells are produced, observing
scientific rules that arise on the state of the current cell and its neighbouring cells. Patient information is
gathered at specific intervals and at discrete times, making discrete-time models potentially more suitable
for analysis and application. In this subsection, a new discrete-time model based on fractional-order the
oncolytic virotherapy model (3.1) is presented. Elsayed et al. [10] introduced a proper approximation
method to formulate a discrete-time model from a fractional-order model. For any n > 0, let Un = U(n),
In = I(n), and Vn = V(n). Now, by applying the approximation method in [10], the model (3.1) may be
discretized as follows:

Un+1(t) = Un +
s
α

Γ(1 +α)
[aUn(1 −Un − In) − cUnVn] ,

In+1(t) = In +
s
α

Γ(1 +α)
[cUnVn − In] ,

Vn+1(t) = Vn +
s
α

Γ(1 +α)
[bIn − dVn] ,

(3.2)

where the time step size parameter s is greater than 0 and initial conditions U0 > 0, I0 > 0, and V0 > 0.
Model (3.2) includes two additional and influential parameters, which are not included in the original
model, known as the fractional order parameter α as well as the time step size s. With these two new
parameters, our new model (3.2) is expected to introduce new and complex dynamic behaviours.

4. Stability analysis

In this segment, we examine the equilibrium stability analysis within the model (3.2). Let us consider
the specified non-linear discrete-time system:

xk+1 = fµ(xk), (4.1)

where xk+1, xk ∈ Rn denote the state vectors, k refers to the iterative index, fµ denotes the non-linear
function vector while µ∈Rm refers to the parameter-independent vector. Here, let the characteristic
polynomial of (4.1) at the fixed point x0 be:

Fµ (λ) = a0λ
n + a1λ

n−1 + · · ·+ an−1λ+ an = 0,

in which ai = ai (µ) , i = 0, . . . ,n while a0 = 1. The fixed point x0 is asymptotically stable provided
that all eigenvalues λi of Jacobian matrix J (µ0, x0) of model (4.1) lie in the unit circle. Otherwise, x0 is
unstable. The statement of the following lemma is necessary.

Lemma 4.1 ([16]). A discrete non-linear dynamical system is considered with a fixed point x0 as well as the
associated Jacobian matrix J (µ0, x0) has n eigenvalues λi (i = 1, 2, . . . ,n). Then

(i) x0 is locally asymptotic stable if |λi| < 1;
(ii) x0 is unstable (source) if |λi| > 1;

(iii) x0 is unstable (saddle) if at least one |λi| > 1 (i ∈ K1 ⊂ {1, 2, . . . ,n}) and the other
∣∣λj∣∣ < 1 (j ∈ K2 ⊂

{1, 2, . . . ,n}) with K1 ∪K2 = {1, 2, . . . ,n} as well as K1 ∩K2 = φ;
(iv) x0 is a non-hyperbolic point if only one of |λi| = 1.
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Theorem 4.2. The equilibrium point E0 refers to a saddle point when s < min
{

α
√

2Γ(1 +α), α

√
2Γ(1+α)
d

}
and

unstable (source), when s > max
{

α
√

2Γ(1 +α), α

√
2Γ(1+α)
d

}
.

Proof. To study the stability analysis of E0, the Jacobian matrix at E0 is given as

J (E0) =

 1 + sα

Γ(1+α) (a) 0 0
0 1 − sα

Γ(1+α) 0
0 sα

Γ(1+α) (b) 1 − sα

Γ(1+α) (d)

 .

The eigenvalues accompanying J (E0) are λ1 = 1+ sα

Γ(1+α) (a), λ2 = 1− sα

Γ(1+α) , and λ3 = 1− sα

Γ(1+α) (d). λ1

is always greater than 1. It is clear that |λ2,3| < 1 if s < min
{

α
√

2Γ(1 +α), α

√
2Γ(1+α)
d

}
, while |λ2,3| > 1 if s >

max
{

α
√

2Γ(1 +α), α

√
2Γ(1+α)
d

}
. According to Lemma 4.1, E0 is a saddle point if s < min

{
α
√

2Γ(1 +α), α

√
2Γ(1+α)
d

}
and unstable (source) if s > max

{
α
√

2Γ(1 +α), α

√
2Γ(1+α)
d

}
.

Theorem 4.3. When R0 6 1, then E1 has the following properties:

(i) E1 is asymptotically stable and called (sink) when s < s1 = min
{

α

√
2Γ(1+α)
a , α

√
4Γ(1+α)
1+d−

√
∆

, α

√
4Γ(1+α)
1+d+

√
∆

}
;

(ii) E1 is unstable (source) when s > s2 = max
{

α

√
2Γ(1+α)
a , α

√
4Γ(1+α)
1+d−

√
∆

, α

√
4Γ(1+α)
1+d+

√
∆

}
;

(iii) E1 is unstable (saddle) when s1 < s < s2;

(iv) E1 is non-hyperbolic when s = α

√
2Γ(1+α)
a or s = α

√
4Γ(1+α)
1+d−

√
∆

or s = α

√
4Γ(1+α)
1+d+

√
∆

, where ∆ = (d− 1)2 + 4bc.

Proof. The Jacobian matrix at E1 has the form:

J (E1) =

 1 − sα

Γ(1+α) (a) − sα

Γ(1+α) (a) − sα

Γ(1+α) (c)

0 1 − sα

Γ(1+α)
sα

Γ(1+α) (c)

0 sα

Γ(1+α) (b) 1 − sα

Γ(1+α) (d)

 .

The corresponding eigenvalues of J (E1) are λ1 = 1 − sα

Γ(1+α) (a) , λ2,3 = 1 − sα

2Γ(1+α)

[
1 + d±

√
∆
]
, where

∆ = (d− 1)2 + 4bc > 0. It is easy to deduce that if R0 6 1, then 1 + d−
√
∆ > 0. Hence, λ2,3 cannot be

greater than 1. Thus, by applying Lemma 4.1, the findings (i)-(iv) may be accomplished.

Now, we investigate the stability with regards to the tumour-infected equilibrium point E2. To deter-
mine the stability conditions of E2, Schur-Cohn [15] put in an alternative criterion when n > 3 using the
following theorem.

Theorem 4.4 ([15]). The characteristic equation F (λ) has all its roots inside the unit circle if and only if

(a) F(1) > 0 and (−1)nF(−1) > 0;
(b) ∆±1 > 0,∆±3 > 0, . . . ,∆±n−3 > 0,∆±n−1 > 0 (when n is even), or ∆±2 > 0,∆±4 > 0, . . . ,∆±n−3 > 0,∆±n−1 > 0

(when n is odd).

Meanwhile, the determinant of the sequences is:

∆i (µ, x) =

∣∣∣∣∣∣∣∣∣∣∣


1 a1 a2 · · · ai−1
0 1 a1 · · · ai−2
0 0 1 · · · ai−3
...

...
...

...
...

0 0 0 · · · 1

±

an−i+1 an−i+2 · · · an−1 an
an−i+2 an−i+3 · · · an 0

...
...

...
...

...
an−1 an · · · 0 0
an 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣
,
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for i = 1, . . . ,n. The stability conditions concerning E2 (U
∗, I∗,V∗) can be examined by computing the

Jacobian matrix at E2 as follows:

J (E2) =


1 + sα

Γ(1+α)

(
a
R0

)
− sα

Γ(1+α)

(
a
R0

)
− sα

Γ(1+α)

(
c
R0

)
sα

Γ(1+α)

[
a(R0−1)
R0+a

]
1 − sα

Γ(1+α)
sα

Γ(1+α)

(
c
R0

)
0 sα

Γ(1+α) (b) 1 − sα

Γ(1+α) (d)

 . (4.2)

The equation that defines the characteristics associated with the Jacobian matrix at E2 can be expressed in
the following manner:

P (λ) = a0λ
3 + a1λ

2 + a2λ+ a3 = 0. (4.3)

Consider that we have:

l1 =
cb (d+ 1) + ad

cb
, l2 =

ad
[
cb (d+ a+ 1) + ad2

]
cb (ad+ cb)

, l3 =
ad2

cb
(R0 − 1) , h(s,α) =

sα

Γ (1 +α)
.

Then, the coefficients of the characteristic equation (4.3) can be written as:

a0 = 1, a1 = l1h− 3, a2 = l2h
2 − 2l1h+ 3, a3 = l3h

3 − l2h
2 + l1h− 1.

Applying Theorem 4.4, all roots of equation (4.3) are located within the unit circle when the following
conditions are met: 

F(1) ≡ 1 + a1 + a2 + a3 > 0,
(−1)F(−1) ≡ 1 − a1 + a2 − a3 > 0,
∆+

2 ≡ 1 + a2 − a1a3 − a
2
3 > 0,

∆−
2 ≡ 1 − a2 + a1a3 − a

2
3 > 0,

which leads to
l3h

3 > 0,
−l3h

3 + 2l2h2 − 4l1h+ 8 > 0,
−h(l23h

5 − 2l2l3h4 + (3l1l3 + l22)h
3 + (−3l1l2 − 5l3)h2 + (2l21 + 4l2)h− 4l1) > 0,

−h3(l23h
3 − 2l2l3h2 + (l1l3 + l

2
2)h− l1l2 + l3) > 0.

(4.4)

Depending on Theorem 4.4, E2 is asymptotically stable if h has at least one solution that satisfies (4.4).
Otherwise, E2 is unstable. We can clearly observe that the stability regions of the E2 equilibrium point may
be expressed in parameter space utilising the inequality conditions outlined in (4.4). These conditions
depend on various parameters, including the fractional-order parameter and step size of the system
(3.2). We illustrate these regions for different parameter scenarios to examine the effective parameters by
investigating possible bifurcation types in our fractional-order oncolytic virotherapy model with discrete
time, as deduced in the numerical simulations section.

5. Bifurcations

Bifurcation, signifying a qualitative shift in dynamical characteristics, represents a critical phenomenon
associated with the destabilization of a system. In the dynamics of virotherapy, numerous parameters ex-
ist, each carrying its own significance, affecting the whole model. Therefore, our purpose in this section
is to highlight these effects by using bifurcation analysis for some important parameters in the model
(3.2). The parameters are examined to understand the possible outcomes of the treatment as each of
them changes, including the fractional-order parameter, which relates to the memory effect α, step size
time s, the infection rate β, and the virus spread rate b. We explore various common bifurcation types
in discretized fractional-order models, including codimension-one and codimension-two bifurcations of
model (3.2). The fundamental idea of detecting bifurcations is centred on calculating the eigenvalues of
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the Jacobian matrix at each essential bifurcation point throughout the parameter space. Nevertheless,
the task of evaluating eigenvalues one by one across the parameter space in complex, high-dimensional
dynamical systems can prove to be quite laborious. Thus, to accelerate the process of identifying stability
conditions within systems involving multiple parameters, it is possible to establish an explicit critical cri-
terion without requiring eigenvalue calculations, thus providing substantial computational simplification
[32]. In our study of bifurcation conditions, we concentrate on the characteristic equations’ coefficients
instead of the functions of the eigenvalues of the Jacobian matrix [15, 22, 32, 33, 36].

5.1. Codimension one bifurcations

In the codim-1 bifurcation section, we explore the concept of bifurcation within the discretised fractional-
order virotherapy model (3.2). Through the use of bifurcation diagrams, we can offer insightful visual
representations of how our system dynamics alter with modifications in its parameters. Algebraic meth-
ods are employed to construct the existing conditions for the codim-1 N-S, flip as well as fold bifurcations
of the model (3.2).

5.1.1. Neimark-Sacker bifurcation
In the realm of non-linear discrete-time systems, the Neimark-Sacker bifurcation mirrors the Hopf

bifurcation seen in continuous-time systems. The Neimark-Sacker bifurcation is characterized by the
matrix J (µ0, x0) possessing a set of complex conjugate eigenvalues that are situated on the unit circle. In
contrast, all other eigenvalues are located within the unit circle. Considering the potential for a Neimark-
Sacker bifurcation at x = x0 when µ = µ0, it is important to revisit the related theorem.

Theorem 5.1 ([32]). For a general system of n dimensions as described by equation (4.1), it experiences a loss of
stability through a Neimark-Sacker bifurcation when the bifurcation parameter is set to µ = µ0, but only if the
specified conditions are satisfied:

(C11) eigenvalue assignment: ∆−
n−1 (µ0) = 0, (−1)n Fµ0 (−1) > 0, Fµ0 (1) > 0,∆+

n−1 (µ0) > 0,∆±j (µ0) > 0, j =
n− 3,n− 5, . . . , 1 (or 2) when n is even (or odd, respectively);

(C12) transversality condition:
d∆−
n−1 (µ)

dµ
6= 0;

(C13) nonresonance condition: cos
(2π
m

)
6= 1 −

Fµ0 (1)∆
−
n−3 (µ0)

2∆+
n−2 (µ0)

, where m = 3, 4, 5, . . ..

The condition denoted by (C11) indicates the presence of a conjugate complex eigenvalue pair situated
on the unit circle, while any additional eigenvalues, should they exist, are positioned within the unit
circle. On the other hand, the condition (C12) means that the conjugate complex eigenvalues should pass
through the unit circle with non-zero speed. Meanwhile, the condition (C13) points to that λl1 (µ0, x0) 6=
1, l = 3, 4, . . .. Let us consider the following:

∆−
2 ≡ ξ1 = m2 −m1 − 2 −

(
m3 +

1
2m2 −m1 − 1

)
(m3 −m1 + 2) ,

∆+
2 ≡ ξ2 = −m2 +m1 + 4 −

(
m3 +

1
2m2 −m1 − 1

)
(m3 +m2 −m1 − 4) ,

F (1) ≡ ξ3 = m3,
F (−1) ≡ ξ4 = m3 + 2m2 − 2m1 − 8,

where

m1 =
ad+ 2b(d+ 1)h(s,α)

bh(s,α)
, m2 =

adβ(ad2 + 2b(d+ a+ 1)h(s,α))
bh(s,α)(ad+ 2bh(s,α))

, m3 =
adβ2(2bh(s,α) − d)

2bh(s,α)
.
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Applying the above conditions (C11)-(C13), we can obtain the existence conditions with regards to N-S
bifurcation of model (3.2) as follows. 

ξ1 = 0,
ξ2 > 0,
ξ3 > 0,
ξ4 < 0,
ξ5 6= 0,

(5.1)

where

ξ5 = h(s,α)3(ln(s) −Ψ (1 +α))

[
− 6

[
ad (2bβ− d)

2bβ

]2

h(s,α)3 + 10
[
ad (2bβ− d)

2bβ

]
×
[
ad(2bβ(d+ a+ 1) + ad2)

2bβ(ad+ 2bβ)

]
h(s,α)2 − 4

[
2bβ(d+ 1) + ad

2bβ

] [
ad (2bβ− d)

2bβ

]
h(s,α)

− 4l22h(s,α) + 3
[

2bβ(d+ 1) + ad
2bβ

] [
ad(2bβ(d+ a+ 1) + ad2)

2bβ(ad+ 2bβ)

]
− 3

[
ad (2bβ− d)

2bβ

] ]
.

N-S bifurcation emerges if there is at least one real solution that satisfies the semi-algebraic system
(5.1). Fig. 1 shows the area of solution of (5.1) when α is chosen as the N-S bifurcation parameter. The red
line in Fig. 1 indicates the equation ξ1 = 0. The green, blue, and black lines shown in Fig. 1 represent the
inequalities ξ2 > 0, ξ3 > 0, and ξ4 > 0, respectively. The shaded region represents the solution of these
three inequalities. There is no real solution for the inequalities ξ2 > 0, ξ3 > 0, and ξ4 > 0 into the blank
region. We have to point out that the line representing the transversality condition in (5.1) doesn’t appear
inside the first quarter of the β−α plane. Theorem 5.1 establishes that an N-S bifurcation point, which is
located on the red line within the shaded region shown in Fig. 1, fulfils the criteria specified in (5.1).

Figure 1: The conditions described in the semi-algebraic system (5.1) are exemplified for the values r = 2,k = 1,β =
2, δ = 0.5,b = 0.9,γ = 0.5, s = 1.8, and α ∈ (0, 0.99).

5.1.2. Flip bifurcation
A flip or period-doubling bifurcation occurs exclusively within a non-linear discrete-time system. At

the point of the flip bifurcation, the system transitions into a new dynamical state, exhibiting a period
that is double that of its original state. This sequence of period-doubling bifurcations has the potential
to drive the system towards chaos. We express the Jacobian matrix J (µ0, x0) of (4.2) at an equilibrium
point x0 and µ0 is a bifurcation parameter. In this bifurcation, the Jacobian matrix J (µ0, x0) possesses a
singular eigenvalue that resides on the unit circle, being real and equivalent to −1, whilst the remainder
are situated within the unit circle. [33] proposed the algebraic criterion conditions that determine the flip
bifurcation to be occurring in a dynamical discrete-time system.

Proposition 5.2 ([2, 33]). In a general n-dimensional framework as described by equation (4.1), a flip bifurcation
occurs at µ = µ0 if and only if the specified criteria are met:
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(C21) eigenvalue assignment: Fµ0 (−1) = 0, Fµ0 (1) > 0, ∆±n−1 (µ0) > 0 and ∆±j (µ0) > 0, j = n− 3,n− 5, . . . , 1
(or 2) when n is even (or odd, accordingly);

(C22) transversality condition:
∑n
i=1 a

′
i(−1)n−i∑n

t=1(n− j+ 1)(−1)n−jaj−1
6= 0, where a

′
i refers to the derivative of ai (µ) with

respect to the bifurcation parameter µ at µ = µ0.

The condition (C21) assures that one real eigenvalue λ1 (µ0) of J (µ0, x0) lies on the unit circle and
equals to −1 while the others lie inside the unit circle. Moreover, the condition (C22) says that λ1 (µ0)

should passes throughout the unit circle with non-zero speed. Applying Proposition 5.2, we conclude
that the conditions of flip bifurcation of the model (3.2) are as follows. Based on the Proposition 5.2, the
model (3.2) may undergo a flip bifurcation at E2 with codimension of one bifurcation parameter of s or α
if the following conditions are met: 

ξ1 > 0,
ξ2 > 0,
ξ3 > 0,
ξ4 = 0,
ξ6 6= 0,
ξ7 6= 0,

(5.2)

where

ξ6 =
adh(s,α)

2β2b(ad+ 2bβ)2

[
8β2((h(s,α) +

h(s,α)2

2
)d+ ah(s,α) + h(s,α) − 2)b2

+ 4aβd(−4 + (h(s,α)2 + 2h(s,α))d)b+ a2d2(−4 + (h(s,α)2 + 2h(s,α))d)
]

,

ξ7 =
−adh(s,α)(4β2(ah(s,α) + dh(s,α) + h(s,α) − 4)b2 + 4adβ(dh(s,α) − 4)b+ a2d2(dh(s,α) − 4))

2β2b(ad+ 2bβ)2 .

Flip bifurcation occurs if there is at least one real solution that satisfies the semi-algebraic system
(5.2) when s is considered as a flip bifurcation parameter. Fig. 2 depicts the area of solution of (5.2). The
shaded area shows the solution’s area of the inequalities ξ2 > 0, ξ3 > 0, and ξ4 > 0, which are surrounded
by the green, black, and blue lines. The blank region is the area in which the inequalities ξ2 > 0, ξ3 > 0,
and ξ4 > 0 fail to get one real solution. The red line stands to the equation ξ1 = 0, while the dotted yellow
line denotes the transversality conditions ξ6 6= 0 and ξ7 6= 0 in (5.2). According to Proposition 5.2, there
is a flip bifurcation point lying on the red line placed into the shaded area in Fig. 2 that can satisfy the
conditions in (5.2).

Figure 2: The conditions described in the semi-algebraic system (5.2) are exemplified for the values r = 2.7,k =
1, δ = 0.5,b = 0.9,γ = 0.5,α = 0.99, s = 1.3, and β ∈ (0.725, 0.9).

A stationary bifurcation (also called a fold bifurcation) can occur if the Jacobian matrix J (µ0, x0) of
(4.2) has a single real eigenvalue equal to 1 [15]. This bifurcation may be one of saddle-node, transcritical,
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or pitchfork bifurcation. In order to avoid redundancy, the fold bifurcation conditions can be obtained
by replacing Fµ0 (−1) = 0, Fµ0 (1) > 0 in the condition (C21) above by (−1)nFµ0 (−1) > 0, Fµ0 (1) = 0 [15].
In the numerical simulation section, we will provide a comprehensive graphical exposition of the fold
bifurcation that transpired due to variations in the burst size rate parameter of the virus, specifically in
case 3. Nevertheless, identifying the exact kind of fold bifurcation within a system requires additional
examination.

5.2. Codimension-two bifurcations
This section focuses on examining the overlap between flip and N-s bifurcations within model (3.2),

specifically addressing the phenomenon known as codimension-two flip-N-S bifurcations. The
codimension-two bifurcation in non-linear dynamical systems, known as “double crises”, relies on con-
tinuing two critical parameters of bifurcation.

5.2.1. Flip-N-S bifurcation
The Flip-Neimark-Sacker bifurcation represents a codimension-two singularity within discrete-time

system bifurcations. The essential conditions for the emergence of a flip-N-S bifurcation are detailed in
the theorem provided.

Theorem 5.3 ([22, 36]). For a general n-dimensional system (4.1), its stability is compromised through a flip-N-S
bifurcation when µ = µ0 if and only if the subsequent criteria are met:

(C31) eigenvalue assignment: F(−1) = 0, ∆−
n−2 (µ0, x0) = 0, F(1) > 0, ∆+

n−2 (µ0) > 0, ∆±l (µ0, x0) > 0,

(−1)n−1∑n
k=1

(
(−1)n−k

∑k
ι=1
(
(−1)k−ιaι−1

))
> 0, in which l = n− 4,n− 6, . . . , 1 (or 2), when n is

odd (or even), accordingly;

(C32) transversality condition: ∂∆
−
n−2(µ,x)
∂µj

∣∣∣
µ=µ0

6= 0,
∑n
i=1 a

′
ij(−1)n−i 6= 0, where j = 1, 2. The term a′ij denotes

the derivative of ai with respect to the bifurcation parameter µj at µ = µ0;

(C33) nonresonance condition: cos
(2π
m

)
6= 1 −

Fµ0(1)∆−
n−4(µ0)

4∆+
n−3(µ0)

, in which m = 3, 4, 5, . . . and ∆±k (µ) = 1 if k 6 0.

Proof. (See [36]). The eigenvalue assignment condition demonstrates that the Jacobian matrix J (µ0, x0)

possesses a singular real eigenvalue of −1, alongside a pair of complex conjugate eigenvalues whose
magnitude is 1. This implies the presence of three eigenvalues positioned on the unit circle, with any
additional eigenvalues (should they be present) residing within the unit circle. Furthermore, the criterion
of transversality mandates that the complex conjugate eigenvalue pair intersects the unit circle at a non-
zero velocity.

Applying the above conditions (C31)-(C33), we can obtain the existence conditions of flip-N-S bifurca-
tion of the model (3.2) as

y1 ≡
(cb−d)adh3(s,α)

(bc) −
2da((d+a+1)cb+ad2)h2(s,α)

(bc(ad+cb)) +
4((d+1)cb+ad)h(s,α)

(bc) − 8 = 0,

y2 ≡ 2 −
(cb−d)adh3(s,α)

(bc) +
da((d+a+1)cb+ad2)h2(s,α)

(bc(ad+cb)) −
((d+1)cb+ad)h

(bc) = 0,

y3 ≡ (cb−d)adh3(s,α)
(bc) > 0,

y4 ≡
(cb−d)adh3(s,α)

(bc) −
da((d+a+1)cb+ad2)h2(s,α)

(bc(ad+cb)) +
((d+1)cb+ad)h(s,α)

(bc) > 0,

y5 ≡
da((d+a+1)cb+ad2)h2(s,α)

(bc(ad+cb)) −
4((d+1)cb+ad)h(s,α)

(bc) + 12 > 0,

y6 ≡ −3(cb−d)adh2(s,α)
(bc) +

2da((d+a+1)cb+ad2)h(s,α)
(bc(ad+cb)) +

(−(d+1)cb−ad)
(cb) 6= 0,

y7 ≡ 1
b2c(ad+cb)2 [−da(b

2((h2(s,α) + h(s,α))d+ ah(s,α) + h(s,α) − 1)c2 + 2
d(−1 + (h2(s,α) + h(s,α))d)abc+ d2(−1 + (h2(s,α) + h(s,α))d)a2)h(s,α)] 6= 0,

y8 ≡ 3(cb−d)adh2(s,α)
(bc) −

4da((d+a+1)cb+ad2)h(s,α)
(bc(ad+cb)) +

(4(d+1)cb+4ad)
(cb) 6= 0,

y9 ≡ 1
b2c(ad+cb)2 [d(2b2((1/2h2(s,α) + h(s,α))d+ ah(s,α) + h(s,α) − 2)c2

+2d(−4 + (h2 + 2h(s,α))d)abcc+ d2(−4 + (h2(s,α) + 2h(s,α))d)a2)ah(s,α)] 6= 0.

(5.3)
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The conditions specified in equation (5.3) are represented in Fig. 3. The shaded area signifies the
parameter domain where all inequalities (y3)-(y5) are satisfied, while in the blank region, at least one
inequality does not hold. These inequalities are represented by the colored lines in blue, magenta, and
cyan, accordingly. The equations (y1) and (y2) are represented by red and green. The nonresonance
conditions are illustrated by (y6)-(y9), but they do not appear in the first quarter of the (s-b) plane in Fig.
3. Notably, we have two intersection points, P1 and P2, between equations (y1) and (y2) in the shaded
solution area. In accordance with Theorem 5.3, points P1 and P2 are identified as bifurcation points,
meeting all the conditions specified in the semi-algebraic system (5.3).

Figure 3: The conditions described in the semi-algebraic system (5.3) are exemplified for the values r = 2,k = 2, δ =
0.5,γ = 0.5,β = 0.725,α = 0.99, and b ∈ (0, 2.5), s ∈ (0, 2.5).

6. Numerical simulations

In this part, we carry out numerical simulations to bolster the theoretical results discussed in the
earlier Sections 4 and 5. Here, we introduce four scenarios, each with a different set of parameters of
numerical simulations to illustrate the occurrence of N-S, flip, and fold bifurcations at the tumour-infected
equilibrium point E2 as well as the intersection between the flip and N-S bifurcations of the model (3.2).
The parameters of fractional order α, the infection rate β, the burst size rate b, and the step size time
s have been selected as critical bifurcation parameters to demonstrate their significant influence on our
discrete-time model with fractional order (3.2). By selecting numerical biologically feasible parameter
values, we obtain the following cases.

Case 1. Consider r = 2,k = 1,β = 2, δ = 0.5,b = 0.9,γ = 0.5, and s = 1.81, and let the fractional order
α ∈ (0, 0.99). Thus the model (3.2) has a tumour-infected equilibrium point E2 (0.277, 0.38, 0.342) with
R0 = 3.6 > 1.

Figure 4: The N-S bifurcation diagram at E2 when α ∈ (0, 0.99).



A. T. Alshammari, N. Maan, M. A. M. Abdelaziz, J. Math. Computer Sci., 36 (2025), 99–120 113

The occurrence of N-S bifurcation is shown in Fig. 4 when the fractional order parameter α varying
into the region (0, 0.99). It can be observed from Fig. 4 that E2 is stable for α < 0.325 and loses its stability
through N-S bifurcation when α = 0.325. Attracting closed invariant circle is observed in Fig. 4 when
α passes the critical value 0.325. Chaotic regions appeared as α increases. Some phenomena of periodic
orbits within the chaotic regions are clearly observed in Fig. 4. These recurrent cycles signal the presence
of stable windows of periodicity or consistent oscillations within the tumour cell population arising from
N-S bifurcation. From a biological standpoint, these oscillations could be seen as a diminishment of the
tumour. The observations in Fig. 4 illustrate the reaction process that occurs after the initiation of viral
therapy doses. A state of instability begins to appear in the cells as a result of the crazy increase in tumour
cells. Of course, this requires taking the targeted virus treatment measures in our research. Fig. 4 shows
the correlative increase between the spread of cancer cells and the therapeutic virus. The result of the
interaction between them yields the expected infection within the tumour cells and then the transfer of a
number of cells that were not infected to the infected ones. These observations are clearly shown in the
chaotic regions of infected cells.

The phase portrait of the observations shown in Fig. 4 is depicted in Fig. 5. A stable steady state of
E2 is shown in Fig. 5 (a) for α = 0.3. Initiating of an attracting closed circle is observed in Fig. 5 (b) when
α = 0.325. The phenomena of periodic-6 and 12 orbits observed within the chaotic regions are depicted
in Figs. 5 (c)-(d) when α = 0.8 and α = 0.891, respectively. These phenomena of periodic orbits that
appear within the chaotic regions explain the success of viral therapy in controlling the rampant spread
of tumour cells. It is known that α-values change directly with the s-values. That explains the positive
development in partial controlling of increasing tumour cells with the time increasing of the virus’s work.
However, this matter does not remain until the end, as it appears in Fig. 5 (e)-(f). The resurgence of
tumour cell proliferation indicates why complete eradication of cancerous cells with viral therapy alone
is not feasible, as noted in biological research [17, 26]. Mathematically, when comparing the outcomes
(refer to Figs. 4 and 5) across varying values of α, it becomes apparent that the stability correlates with
the fractional derivative’s order.

(a) A stable steady state when α = 0.3. (b) An attracting closed invariant cir-
cle initiates when α = 0.325.

(c) Periodic-6 orbits when α = 0.8.

(d) Periodic-12 orbits when α = 0.891. (e) Periodic-8 orbits at E2 when α =
0.94.

(f) Chaos attractor regions at E2 when
α = 0.99.

Figure 5: The phase portrait of the model (3.2) corresponding to Fig. 4.
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Figure 6: Maximal Lyapunov exponent corresponding to Fig. 4.

The positive Maximal Lyapunov exponent is a significant criterion for determining when a dynamical
system is considered ”chaotic”. This generally suggests that the system is not stable and demonstrates
chaotic behaviour. The maximal Lyapunov exponents related to Figure 4 are calculated in Figure 6. It
shows some negative and positive Lyapunov exponent values, so there are stable fixed points or windows
of a stable period located in the chaotic regions. Similar observations can be seen in Fig. 4 and Fig. 5 (e)-
(f). In Fig. 6, the Lyapunov exponent values can be seen shifting from negative to positive approximately
when α ≈ 0.5. This means an attracting invariant closed curve bifurcates from E2 already shown in Fig. 5
(b). Chaotic regions are observed clearly in Fig. 6 with increasing of α-values.

Case 2. Consider r = 2.7, k = 1, δ = 0.5, b = 0.9, γ = 0.5, s = 1.3, and α = 0.99. The infection rate
parameter β is selected as a bifurcation parameter to vary in the range of (0.725, 0.9). In this range, a
flip bifurcation appears in Fig. 7. Fig. 7 shows the occurrence of flip bifurcation at the equilibrium
point E2. Chaotic attractors to period-doubling route (flip bifurcation) along with intermittent periodic
windows are clearly visible in the behavior of the model (3.2) with the change of the β-values in the
range (0.725, 0.795). It begins with chaotic regions within uninfected and infected tumour cells and with
the apparent spread of the therapeutic viruses into the region of (0.725, 0.795) in Fig. 7 as well. This is
followed by stable periodic orbits or stable windows for all cells and the therapeutic virus as β-values
increase. Fig. 7 shows the appearance of complete stability in all cells with increasing β values. This
shows that under the specified conditions and values, viral therapy can completely stop the spread of
cancer cells.

Figure 7: Flip bifurcation diagrams when β ∈ (0.725, 0.9).

The phase portrait of the model (3.2) corresponding to Fig. 7 is depicted in Fig. 8. The chaotic regions
due to the flip bifurcation appear in Fig. 8 (a) when β = 0.726. Fig. 8 (b)-(c) show the periodic-4 orbits
and the periodic-2 orbits when β = 0.7441 and β = 0.75, respectively. A steady state equilibrium point
starts with increasing β values (see Fig. 8 (d)). The Maximal Lyapunov exponent values corresponding
to the observations in Fig. 7 are plotted in Fig. 9. It is noted that some Lyapunov exponent values are
positive, confirming the existence of chaos in the system, while others are negative, confirming steady,
and stable points.
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(a) Chaotic regions at E2 when β = 0.726. (b) Periodic-4 orbits at E2 when β = 0.744.

(c) Periodic-2 orbits at E2 when β = 0.75. (d) A stable steady state at E2 when β = 0.8.
Figure 8: The phase portrait of the model (3.2) corresponding to Fig. 7.

Figure 9: Maximal Lyapunov exponent corresponding to Fig. 7.

Case 3. Consider r = 2, k = 1, β = 2, δ = 0.5, s = 0.4726, and α = 0.99. Choose the burst size rate
b as a bifurcation parameter to be varying in the range (0, 2.1). Firstly, according to the analysis of the
bifurcation section, the occurrence of the fold requires the fulfillment of the condition F(1) = 0. That is,
by extension, it requires R0 = 1. This necessarily requires that γ = bδc, for all varying values of b into
(0, 2.1). The fixed values guarantee that the other conditions are satisfied to achieve a fold bifurcation
when b ∈ (0, 2.1). Fig. 10 shows fold bifurcation diagram at E2 for b ∈ (0, 2.1). From Fig. 10, we notice
a slight disturbance in the stability of all cancer cells, and the virus begins when the basic reproduction
number R0 exceeds the value of unity, with which the fold bifurcation begins to appear. Biologically,
we notice an increase in virus virulence, accompanied by a simultaneous decrease in cancer cells. That
is, as the size of the burst size increases, it results in greater replication of the virus. This is evident
from the observed level of chaos within the viral population, which surpasses that found in cancer cells.
Notably, the bifurcation diagram here does not indicate the complete eradication of cancer cells, but it
demonstrates the possibility depending on the strength of the virus type.
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Figure 10: Fold bifurcation diagrams when b ∈ (0, 2.1).

The phase portrait of observations in Fig. 10 can be shown in Fig. 11. In Fig. 11 (a), a steady state
equilibrium point is depicted for b = 0.21. This indicates that the burst size of the virus has no influence
on the dynamic behavior of the model (3.2). Subsequently, in Fig. 11 (b), we notice an insignificant change
in the stability of the equilibrium point (see example b = 1). The equilibrium point E2 loses its stability
via fold bifurcation as b increases (see Fig. 11 (c) at b = 2.1).

(a) Steady state equilibrium at E2 when
b = 0.21.

(b) Unstable equilibrium at E2 when b =
1.

(c) Chaotic situation at E2 when b = 2.1.

Figure 11: The phase portrait of the model (3.2) corresponding to Fig. 10.

Case 4. Consider r = 2,k = 2, δ = 0.5,γ = 0.5,β = 0.725, and α = 0.99. These fixed value parameters
satisfy the semi-algebraic system (5.3). Solving the equality yields y1 = y2 as s and b are two variables
yielding two critical points of Flip-N-S bifurcation (denoted as P1 and P2 in Fig. 3: (s∗,b∗), (s∗∗,b∗∗) =
(1.1026, 0.9889), (1.3969, 0.8131), respectively). The flip-N-S diagram of infected individuals of the cell
population is depicted with (s− b− I) plane in Fig. 12 when b ∈ (1, 2.5) and s ∈ (1.5, 2.5). In this case,
we explore the implications of modulating two specific parameters within the context of virotherapy, a
therapeutic intervention leveraging viruses to treat diseases. Our analysis reveals the emergence of two
distinct bifurcations, specifically flip-N-S bifurcations, at P1. Over time, the effect of viral blast size on the
therapeutic process becomes more evident through infection of cancer cells, illustrating the correlation
between blast size and time step size during the treatment process. Flip-N-S bifurcation emerges at E2
close to P1 when b ∈ (0.1, 2.5) and s ∈ (0.01, 1.2) (Fig. 12).
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Figure 12: The Flip-N-S bifurcation diagram of the model (3.2) at E2 in (s-b-I) plane when b ∈ (1, 2.5) and s ∈
(1.5, 2.5).

Fig. 13 (a) shows the bifurcation diagram in (b− I) plane at E2 when b ∈ (0.1, 2.5). An amplification is
shown in Fig. 13 (b) to enhance the clarity of periodic orbits or stable windows within chaotic attractors.
In Fig. 14 (a), the bifurcation diagram in the (s-I) plane at E2 is shown at s ∈ (0.01, 1.2). Fig. 14 (b)
shows an amplification to improve the resolution of chaotic attractors followed by periodic orbits or
stable windows. From Fig. 14, it can be seen that the replication of viruses increases with time. Figs
13 and 14 exhibit comparable patterns characterized by the bifurcation of periodic orbits transitioning to
invariant curves, then evolving into hoping chaos attractors, quasi-periodic orbits as well as ultimately
flipping chaos attractors.

(a) Flip-N-S bifurcation in (b-I)
plane.

(b) Amplification of Fig. 13 (a).

Figure 13: The Flip-N-S bifurcation diagram at E2 when b ∈ (1, 2.5).

(a) Flip-N-S bifurcation in (s-I)
plane.

(b) Amplification of Fig. 14 (a).

Figure 14: The Flip-N-S bifurcation diagram at E2 when s ∈ (1.5, 2.5).

The phase portrait of the observations shown in Fig. 13 is depicted in Fig.15 (a)-(f) for various s and
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b values. A stable equilibrium point E2 appears in Fig. 15 (a) when (b = 2.5, s = 0.4). An invariant
closed circle is shown in Fig. 15 (b) to show the beginning of the emergence of N-S bifurcation. Some
interesting phenomena like Periodic-14-28-12 orbits within chaotic attractors when (b = 2.5, s = 1.05),
(b = 2.5, s = 1.117), and (s = 1.12,b = 2.26), respectively, are shown in Figs. 15 (c)-(e). This indicates the
formation of doubling periods (flip) inside the N-S bifurcation. Attracting chaotic sets appears in Fig. 15
(f) when (s = 1.12,b = 2.57). In this scenario, it is observed that Cases 1 and 3 exhibit consistency with
regard to the partial success of the viral treatment. This is characterized by fluctuations transitioning from
chaos to relative stability and then back to chaos, albeit of a lesser intensity than previously observed.
Such patterns may suggest that this partial success has the potential to evolve into complete success of
the treatment. In contrast, Case 2 demonstrates stability under specific conditions, despite an increase in
viral infections.

(a) b=2.5-s=0.4-stable-point. (b) b=2.5-s=0.5-invariant-circle. (c) b=2.5-s=1.05-Period14.

(d) b=2.5-s=1.117-Period28. (e) s=1.12-b=2.26-period12. (f) s=1.12-b=2.57-chaos.
Figure 15: The phase portrait of the model (3.2) corresponding to Figs. 13-14.

7. Conclusions

Virotherapy promises a qualitative and revolutionary transformation in the world of cancer treatment.
Clinical studies investigating the application of oncolytic viruses in treating different cancer types have
demonstrated notable decreases in tumour size and prolonged survival rates among patients [5, 6]. Given
the significant therapeutic potential of this approach in combating cancer, there has been considerable
interest in developing and examining mathematical models to advance our understanding of viral therapy,
uncovering pivotal factors for its evolution. In the study presented, a novel discrete-time virotherapy
model for cancer treatment, labeled as model (3.2), incorporating fractional order has been developed
to enhance the framework previously established by Jenner et al. [13]. This model outlines how cancer
cells and virus particles interact, specifically focusing on the virus’s role in infecting and eradicating
tumours. The existence of tumour-infected equilibrium point is investigated using the basic reproduction
number R0. A detailed analysis of the local stability analysis of three equilibria is presented in this paper.
The emergence of N-S, flip, and fold bifurcations, as well as the intersection between the flip and N-S
bifurcations, is determined using algebraic criterion methods. As a result of the numerical simulations,
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the parameters of the long memory characteristic of the fractional-order α, the infection rate β, the burst
size rate b, and the step size time s have shown substantial dynamic behavior of the model (3.2). In the
discrete-time model with fractional-order dynamics, it was demonstrated that the model is more stable
due to the wider stability domain. Therefore, selecting the appropriate fractional order based on actual
data can result in a more reliable model, since it integrates the memory effect and could potentially lower
mistakes stemming from oversimplifications commonly found in traditional modelling techniques. Our
model encompasses a broader range of scenarios, particularly those involving tumour remission. Under
certain numerical conditions, virotherapy was capable of completely stabilizing the spread of cancer cells
and eradicating the cancer. This represents a significant advancement compared to the research presented
by Jenner et al. [13]. It was observed that an increase in R0 by a very small amount from the unity caused
severe chaos resulting from the non-stop spread in tumour cells despite the proximity of the virus-free
equilibrium point. Some phenomena of periodic orbits have been detected within the chaotic regions,
which explains the existence of stable period windows or stable windows in the cancer cell population.
These stable windows are biologically interpreted as an attenuation in tumourigenesis as a result of
increased viral lysis within tumour cells. Our study concluded that the correlative increase between
cancer cell proliferation and the therapeutic virus produced the expected infection within the cancer cells.
Complete eradication of cancer cells using viral therapy alone is not impossible under special conditions.
In future work, we will study the addition of the effect of immune cells in the case of oncolytic viral
therapy. The purpose of future study is to infer the role of negative and positive immune responses in
tumour cell proliferation during viral oncolytic therapy.
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