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Abstract

In this paper, a fractional coronavirus disease model including unreported cases is suggested. The considered model
includes a general fractional derivative incorporating well-known types, specifically Caputo-Fabrizio, Atangana-Baleanu and
Weighted Atangana-Baleanu. Our theoretical results are two-fold. First, under suitable assumptions, the existence of a solution
for the considered system is proven. Moreover, the local stability of the free-disease and endemic equilibrium points is addressed
in terms of R0. Secondly, a particular example is considered where the fractional derivative has two varying parameters, and
an approach allowing for their estimation is proposed, with the aim of providing the best approximation of the real COVID-19
dynamics. The main novelty of our proposed approach is its use of physics-informed-neural-networks (PINNs) for estimating
the fractional orders. On the other hand, to validate our results, a numerical simulations are conducted to illustrate the local
stability of the disease dynamics, as well as the effectiveness of our proposed method in providing the best approximation of the
two fractional derivative parameters.
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1. Introduction

The COVID-19 outbreak has had a profound impact on global health. The virus, which emerged in
2019, quickly spread over a large region area. Drawing on prior experiences with outbreaks such as HIV,
Zika, Ebola, cholera, and the Spanish flu, scientists and epidemiologists have assisted governments in
swiftly implementing control measures. These measures include closing borders, enforcing lockdowns,
isolating infected individuals, and sanitizing contaminated surfaces to manage this unprecedented crisis
that affects public health, the economy, and society. Several advanced technologies are being used to
expedite the mitigation process, including artificial intelligence-based algorithms for classifying infected
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cases, mathematical models to analyze disease spread dynamics [24], and Big-Data approaches for track-
ing population migration and identifying transmission hotspots [13]. Healthcare delivery encompasses
emerging technologies to combat and anticipate emerging diseases. The main applications of artificial
intelligence in the coronavirus pandemic include early identification and diagnosis of infections [17],
treatment monitoring [8], forecasting of cases and deaths, tracing individuals’ contacts, development of
medicines and vaccines [31], reducing the responsibility of the healthcare professionals [15] and preven-
tion of the diseases. Many mathematical models are employed to understand the progression of diseases,
drawing from sources such as books and research on mathematical models in medicine and biology. The
study [7] analyzes the dynamics of hepatitis B virus (HBV) epidemic using stochastic Lyapunov functional
theory. In [16, 18] , the authors model the COVID-19 epidemic in various countries using early reported
case data to project the cumulative number of reported cases over time. The model emphasizes the timing
of key public policy measures that limit social movement, the identification and isolation of unreported
cases, and the influence of asymptomatic infectious (refer to [1] for more information). Mathematicians
have proposed so various types of non-integer order derivatives including Caputo, Caputo and Fabrizio,
and Atangana-Baleanu. In [2], the authors organized a study of an epidemic model via Atangana-Baleanu
fractional derivatives in Caputo sense and some results on existence and stability of solutions are estab-
lished. Kumar et al. , addressed a coronavirus model with a time-delay in Caputo fractional derivatives
using a predictor-corrector method. The concept of fractional derivative is an extension of the integer-
order derivative. Recently, it has lately been utilized to investigate the influence of memory in dynamics
systems from diverse disciplines such as virology, economics, ecology and epidemiology.

Machine learning approaches are highly successful in solving inverse problems and data-driven for-
ward of the partial differential equations (PDEs). Neural networks, particularly physics-informed neural
networks (PINNs), have a significant capacity for function approximation. The paper [20] employs ad-
vanced PINNs to estimate changing parameters in the SEIRD compartmental model. The results are
compared with those of previous publications for analyzing COVID-19 transmission dynamics. In [36],
the authors identify the distribution of parameters in stochastic PDEs and optimize complex systems
using neural network algorithms as discussed in [29]. Various studies are performed in the field of frac-
tional derivatives, incorporating neural networks and exploring different applications. In [11], the use of
artificial neural networks (ANNs) for analyzing fractional differential equations in the Caputo sense is
examined. This approach is extended to address higher-order fractional differential equations in [27]. In
[22], researchers employ training ANN and optimization techniques to solve fractional differential equa-
tions, while the authors in [34] use wavelet neural networks to solve them. The authors in [30] present a
numerical technique based on neural networks for generalized Caputo-type fractional differential equa-
tions. In [23, 37], a novel neural network scheme named fractional PINNs is discussed. The authors
propose an adaptive loss weighting auxiliary output approach based on fractional physics-informed neu-
ral networks (fPINNs) to solve fractional partial integro-differential equations. The method effectively
combines the automatic differentiation technique with a numerical differentiation algorithm to construct
a universal numerical scheme for fractional derivatives of different orders.

The fundamental aspects of our model revolve around specific elements. Firstly, it focuses on the
precise timing of implementating significant public policies to limit social mobility, secondly, it empha-
sizes the diligent identification and isolation of cases that have not been officially reported. Thirdly, it
assesses the influence of asymptomatic infectious individuals. To achive this assessment, we employ a
general fractional operator, including the Caputo-Fabrizio operator, which is useful for time-dependent
problems, the Atangana-Baleanu operator, which has gained considerable interest in recent years, and the
modified Atangana-Baleanu operator. We analyze the applicability and effects of these operators on the
model and use a PINNs-based approach to estimate the fractional orders. The current study encompasses
critical components of COVID-19 outbreaks, including the population of asymptomatic individuals ex-
hibiting negligible symptoms, the cohort of symptomatic patients displaying severe symptoms who have
been officially reported, and the group of symptomatic individuals with mild symptoms who remain
unreported. Our primary objective is to advocate for incorporation general fractional derivatives into a
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COVID-19 epidemic model and rigorously establish the specific conditions governing the existence and
uniqueness of their solutions using a fixed point theory. Subsequently, we will elucidate the impact of
these fractional derivatives, supported by artificial intelligence, through numerical simulations. Addition-
ally, we will explore the aspects of hereditary properties and memory in fractional-order models.

The paper structure is presented as follows. In Section 2, we formulate the mathematical model for the
COVID-19 disease and establish the number R0, as well as the stability of the disease-free and the endemic
equilibrium points. In Section 3, we present numerical simulations to explain the results. In Section 4, we
begin with a brief summary of the basics of machine learning and emphasize the importance of neural
networks. Then, we explore the fundamentals of various neural network algorithms and techniques.
Finally, we provide a brief discussion and conclusion in Section 5.

2. Preliminary results and description of the model

2.1. Preliminaries
We briefly provide some basic definitions and properties which will be useful in the next sections. We

define the Banach space Ω = E× E× · · · × E and E = C[0, T ], with the norm

‖W‖ = ‖(w1,w2, . . . ,wn)‖ = max
t∈[0,T ]

{| w1(t) | + | w2(t) | + · · ·+ | wn(t) |} ,

wi ∈ C[0, T ] for i = 1, . . . ,n.

Definition 2.1 ([14]). We assume that α ∈ [0, 1) and β, γ are a positive parameters and f ∈ H1(a,b). The
general fractional derivative of the function f in Caputo sens is defined as follows:

CD
α,β,γ
a,t,wf(t) =

N(α)

1 −α

1
w(t)

∫t
a

Eβ[−
α

1 −α
(t− z)γ]

d

dz
(wf)(z)dz, (2.1)

where Eβ is a Mittag-Leffler function parametrized by β. N is a normalization function following N(0) =
N(1) = 1 and w is a wieght function obeying w > 0 and w′ > 0.

Definition 2.2 ([14]). Let α ∈ [0, 1) and β, γ are a positive parameters and f ∈ H1(a,b). The general
fractional derivative of the function f of Riemann-Liouville sens is defined as follows:

RD
α,β,γ
a,t,wf(t) =

N(α)

1 −α

1
w(t)

d

dt

∫t
a

Eβ[−
α

1 −α
(t− z)γ]w(z)f(z)dz.

Theorem 2.3.

1. Let wf be an analytic function, then:

RD
α,β,γ
a,t,wf(t) =

CD
α,β,γ
a,t,wf(t) +

N(α)

1 −α

1
w(t)

Eβ[−
α

1 −α
(t− a)γ](wf)(a).

2. When w = 1,β = γ = 1, we get the Caputo-Fabrizio fractional derivative.
3. When w = 1,α = β = γ, we obtain the Atangana-Baleanu fractional derivative.
4. When α = β = γ we attain the weighted Atangana-Baleanu fractional derivative.

Proof. Refer to [14].

Definition 2.4. When β = γ, the integral corresponding the general fractional derivative is defined as

I
α,β
a,t,wf(t) =

1 −α

N(α)
f(t) +

α

Γ(β)N(α)

1
w(t)

∫t
a

(t− z)β−1w(z)f(z)dz.

Theorem 2.5. We consider Π : F −→ F be a contraction mapping, where F is a Banach space. In this case, Π has a
unique fixed point.
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2.2. The proposed model
We consider the epidemic model based on the differential equations introduced by Magal et al. in

[16, 18]: 

dS(t)

dt
= Λ− τ(t)S(t)[I(t) +U(t)] − µS(t),

dI(t)

dt
= τ(t)S(t)[I(t) +U(t)] − (ν+ µ)I(t),

dR(t)

dt
= ν1I(t) − (η+ µ)R(t),

dU(t)

dt
= ν2I(t) − (η+ µ)U(t),

dH(t)

dt
= η(R(t) +U(t)) − µH(t),

(2.2)

where S refers to the total number of individuals who are susceptible, I stands for the asymptomatic
infectious individuals, R represents the total number of reported infectious individuals showing symp-
toms, U signifies the unreported infectious individuals showing symptoms, H indicates the total number
of healed individuals, and τ is the transmission rate provided as follows:{

τ(t) = τ0, for t ∈ [0,N],
τ(t) = τ0e

(−µ1(t−N)), N < t.

The parameters are defined as follows. Λ represents the flux of population, µ stands for the natural death
rate, µ1 denotes to the intensity of the public interventions, ν1 indicates the transmission rate from I to
R, ν2 is the transmission rate from I to U and η signifies the transmission rate from the symptomatic
individuals to H. The model supplemented by initial data S0 = S(t0), I0 = I(t0), R0 = R(t0), U0 = U(t0),
and H0 = H(t0). This model incorporates key features of the COVID-19 epidemic. First, it highlights the
significance of the timing and magnitude of major government public restrictions designed to mitigate the
severity of the epidemic. Secondly, it emphasizes the importance of both reported and unreported cases
in interpreting the number of reported cases, and Lastly, it underscores the importance of asymptomatic
infectious cases in disease transmission. In the model formulation, infectious individuals are divided into
asymptomatic and symptomatic groups. Additionally, the symptomatic group is further classified into
reported and unreported cases.

S I R

U

H
τS(I+U) ν1I

ν2I

ηR

ηU

Λ

µS µI µR

µU

µH

Asymptomatic Symptomatic

Figure 1: Illustrative diagram of the SIRUH model.
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Now, we extend the previous model by substituting the integer-order derivative with the general
fractional derivative, as follows:

cD
α,β,γ
a,t,wS(t) = Λ− τ(t)S(t)[I(t) +U(t)] − µS(t),

cD
α,β,γ
a,t,w I(t) = τ(t)S(t)[I(t) +U(t)] − (ν+ µ)I(t),

cD
α,β,γ
a,t,wR(t) = ν1I(t) − (η+ µ)R(t),

cD
α,β,γ
a,t,wU(t) = ν2I(t) − (η+ µ)U(t),

cD
α,β,γ
a,t,wH(t) = η(R(t) +U(t)) − µH(t).

(2.3)

2.3. Existence of solutions
We explore firstly, the existence of a solution for the epidemic simulation (2.3) using the fixed point

technique. To this aim, we need to reformulate the model in the appropriate form:

cD
α,β,γ
a,t,wS(t) = g1(t,S),

cD
α,β,γ
a,t,w I(t) = g2(t, I),

cD
α,β,γ
a,t,wR(t) = g3(t,R),

cD
α,β,γ
a,t,wU(t) = g4(t,U),

cD
α,β,γ
a,t,wH(t) = g5(t,H),

where 
g1(t,S) = Λ− τ(t)S(t)[I(t) +U(t)] − µS(t),
g2(t, I) = τ(t)S(t)[I(t) +U(t)] − (ν+ µ)I(t),
g3(t,R) = ν1I(t) − (η+ µ)R(t),
g4(t,U) = ν2I(t) − (η+ µ)U(t),
g5(t,H) = η(R(t) +U(t)) − µH(t).

The fractional integral equation when β = γ is as follows:

S (t) − S (0) = 1−α
N(α)g1 (t,S) + α

Γ(β)N(α)w(t)

t∫
0
g1(z,S)w(z)(t− z)β−1dz,

I (t) − I (0) = 1−α
N(α)g2 (t, I) + α

Γ(β)N(α)w(t)

t∫
0
g2(z, I)w(z)(t− z)β−1dz,

R (t) − R (0) = 1−α
N(α)g3 (t,R) + α

Γ(β)N(α)w(t)

t∫
0
g3(z,R)w(z)(t− z)β−1dz,

U (t) −U (0) = 1−α
N(α)g4 (t,U) + α

Γ(β)N(α)w(t)

t∫
0
g4(z,U)w(z)(t− z)β−1dz,

H (t) −H (0) = 1−α
N(α)g5 (t,H) + α

Γ(β)N(α)w(t)

t∫
0
g5(z,H)w(z)(t− z)β−1dz.

Theorem 2.6. For each i ∈ {1, . . . , 5}, the kernels gi (i = 1, . . . , 5) are Li-Lipschitz continuous. Furthermore, if
Li < 1, ∀i ∈ {1, . . . , 5}, then the kernels define a contraction in C(0, T).

Proof. Let S, I,R,U,H, τ ∈ C[0, T ], and consider:

‖S‖ 6 a, ‖I‖ 6 b, ‖R‖ 6 c, ‖U‖ 6 d, ‖H‖ 6 e, ‖τ‖ 6 f.

Let S and S∗ be given, then it holds that

‖g1(t,S) − g1(t,S∗)‖ = ‖Λ− τ(t)S(t)[I(t) +U(t)] − µS(t) − (Λ− τ(t)S∗(t)[I(t) +U(t)] − µS∗(t))‖
= ‖ (τ(t)(I(t) +U(t)) + µ) (S∗(t) − S(t)) ‖
6 ‖τ(t)(I(t) +U(t)) + µ‖‖S∗(t) − S(t)‖
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6 [‖τ(t)‖ (‖I(t)‖+ ‖U(t)‖) + µ] ‖S∗(t) − S(t)‖
6 [f (b+ d) + µ] ‖S∗(t) − S(t)‖.

Consequently,

‖g1(t,S) − g1(t,S∗)‖ 6 L1‖S(t) − S∗(t)‖,

where L1 = f (b+ d) + µ. Obviously, the Lipschitz condition is verified for g1. Moreover, if 0 6 L1 < 1,
then g1 defined a contraction. Likewise, we can show that g2,g3,g4, and g5 satisfy the contraction and
Lipschitz properties. Therefore,


‖g2(t, I) − g2(t, I∗)‖ 6 L2‖I(t) − I∗(t)‖,
‖g3(t,R) − g3(t,R∗)‖ 6 L3‖R(t) − R∗(t)‖,
‖g4(t,U) − g4(t,U∗)‖ 6 L4‖U(t) −U∗(t)‖,
‖g5(t,H) − g5(t,H∗)‖ 6 L5‖H(t) −H∗(t)‖,

where

L2 = fa+ ν+ µ, L3 = L4 = η+ µ, L5 = µ.

Theorem 2.7. If [
1 −α

N(α)
+
αw(T)Tβ

βΓ(β)N(α)
‖ 1
w
‖
]
Li < 1, i ∈ {1, 2, . . . , 5},

the fractional model has unique solution.

Proof. Given the initial data

S(0) = S0(t), I(0) = I0(t), U0(t) = U(0), R(0) = R0(t), H0(t) = H(0),

we analyze the iterative sequence:



Sn (t) = S0 (t) +
1−α
N(α)g1 (t,Sn−1) +

α
Γ(β)N(α)w(t)

t∫
0
g1(z,Sn−1)w(z)(t− z)

β−1dz,

In (t) = I0 (t) +
1−α
N(α)g2 (t, In−1) +

α
Γ(β)N(α)w(t)

t∫
0
g2(z, In−1)w(z)(t− z)

β−1dz,

Rn (t) = R0 (t) +
1−α
N(α)g3 (t,Rn−1) +

α
Γ(β)N(α)w(t)

t∫
0
g3(z,Rn−1)w(z)(t− z)

β−1dz,

Un (t) = U0 (t) +
1−α
N(α)g4 (t,Un−1) +

α
Γ(β)N(α)w(t)

t∫
0
g4(z,Un−1)w(z)(t− z)

β−1dz,

Hn (t) = H0 (t) +
1−α
N(α)g5 (t,Hn−1) +

α
Γ(β)N(α)w(t)

t∫
0
g5(z,Hn−1)w(z)(t− z)

β−1dz.
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The successive difference between the terms leads to:

Φ1n(t) = Sn (t) − Sn−1 (t) =
1−α
N(α) [g1 (t,Sn−1) − g1 (t,Sn−2)]

+ α
N(α)Γ(β)

1
w(t)

t∫
0
[g1 (z,Sn−1) − g1 (z,Sn−2)]w(z)(t− z)

β−1dz,

Φ2n(t) = In (t) − In−1 (t) =
1−α
N(α) [g2 (t, In−1) − g2 (t, In−2)]

+ α
N(α)Γ(β)

1
w(t)

t∫
0
[g2 (z, In−1) − g2 (z, In−2)]w(z)(t− z)

β−1dz,

Φ3n(t) = Rn (t) − Rn−1 (t) =
1−α
N(α) [g3 (t,Rn−1) − g3 (t,Rn−2)]

+ α
N(α)Γ(β)

1
w(t)

t∫
0
[g3 (z,Rn−1) − g3 (z,Rn−2)]w(z)(t− z)

β−1dz,

Φ4n(t) = Un (t) −Un−1 (t) =
1−α
N(α) [g4 (t,Un−1) − g4 (t,Un−2)]

+ α
N(α)Γ(β)

1
w(t)

t∫
0
[g4(z,Un−1) − g4(z,Un−2)]w(z)(t− z)

β−1dz,

Φ5n(t) = Hn (t) −H(n−1) (t) =
1−α
N(α)

[
g5
(
t,H(n−1)

)
− g5

(
t,H(n−2)

)]
+ α
N(α)Γ(β)

1
w(t)

t∫
0

[
g5
(
z,H(n−1)

)
− g5

(
z,H(n−2)

)]
w(z)(t− z)β−1dz.

Clearly, we have

Sn(t) − S0(t) =

n∑
l=1

Φ1l(t) =

n∑
l=1

(Sl(t) − Sl−1), In(t) − I0(t) =

n∑
l=1

Φ2l(t), Rn(t) − R0(t) =

n∑
l=1

Φ3l(t),

Un(t) −U0(t) =

n∑
l=1

Φ4l(t), Hn(t) −H0(t) =

n∑
l=1

Φ5l(t).

By taking the norm of equations, we obtain

‖Φ1n(t)‖ 6 1−α
N(α)L1‖Φ1(n−1)(t)‖+ α

N(α)Γ(β)‖
1
w‖L1

t∫
0
‖Φ1(n−1)(z)‖w(z)(t− z)β−1dz,

‖Φ2n(t)‖ 6 1−α
N(α)L2‖Φ2(n−1)(t)‖+ α

N(α)Γ(β)‖
1
w‖L2

t∫
0
‖Φ2(n−1)(z)‖w(z)(t− z)β−1dz,

‖Φ3n(t)‖ 6 1−α
N(α)L3‖Φ3(n−1)(t)‖+ α

N(α)Γ(β)‖
1
w‖L3

t∫
0
‖Φ3(n−1)(z)‖w(z)(t− z)β−1dz,

‖Φ4n(t)‖ 6 1−α
N(α)L4‖Φ4(n−1)(t)‖+ α

N(α)Γ(β)‖
1
w‖L4

t∫
0
‖Φ4(n−1)(z)‖w(z)(t− z)β−1dz,

‖Φ5n(t)‖ 6 1−α
N(α)L5‖Φ5(n−1)(t)‖+ α

N(α)Γ(β)‖
1
w‖L5

t∫
0
‖Φ5(n−1)(z)‖w(z)(t− z)β−1dz.

Since w ∈ C1[0, T ], w > 0, w′ > 0, then w(t) 6 w(T), ∀t ∈ [0, T ]. Consequently,

‖Φ1n(t)‖ 6 ‖Φ1(n−1)(t)‖
[

1 −α

N (α)
L1 +

αw(T)Tβ

βN(α)Γ(β)
‖ 1
w‖L1

]
,

‖Φ2n(t)‖ 6 ‖Φ2(n−1)(t)‖
[

1 −α

N (α)
L2 +

αw(T)Tβ

βN(α)Γ(β)
‖ 1
w‖L2

]
,

‖Φ3n(t)‖ 6 ‖Φ3(n−1)(t)‖
[

1 −α

N (α)
L3 +

αw(T)Tβ

βN(α)Γ(β)
‖ 1
w‖L3

]
,

‖Φ4n(t)‖ 6 ‖Φ4(n−1)(t)‖
[

1 −α

N (α)
L4 +

αw(T)Tβ

βN(α)Γ(β)
‖ 1
w‖L4

]
,

‖Φ5n(t)‖ 6 ‖Φ5(n−1)(t)‖
[

1 −α

N (α)
L5 +

αw(T)Tβ

βN(α)Γ(β)
‖ 1
w‖L5

]
.
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Thereby, 

‖Φ1n(t)‖ 6 ‖S1(t) − S0(t)‖
[

1 −α

N (α)
L1 +

αw(T)Tβ

βN(α)Γ(β)
‖ 1
w‖L1

]n−1

,

‖Φ2n(t)‖ 6 ‖I1(t) − I0(t)‖
[

1 −α

N (α)
L2 +

αw(T)Tβ

βN(α)Γ(β)
‖ 1
w‖L2

]n−1

,

‖Φ3n(t)‖ 6 ‖R1(t) − R0(t)‖
[

1 −α

N (α)
L3 +

αw(T)Tβ

βN(α)Γ(β)
‖ 1
w‖L3

]n−1

,

‖Φ4n(t)‖ 6 ‖U1(t) −U0(t)‖
[

1 −α

N (α)
L4 +

αw(T)Tβ

βN(α)Γ(β)
‖ 1
w‖L4

]n−1

,

‖Φ5n(t)‖ 6 ‖H1(t) −H0(t)‖
[

1 −α

N (α)
L5 +

αw(T)Tβ

βN(α)Γ(β)
‖ 1
w‖L5

]n−1

.

Thus, the existence and continuity of the aforementioned solutions have been established. Now, our goal
is to show that the above functions are solutions of (2.3). Assuming that:

S (t) − S (0) = Sn (t) −Kn (t) , I (t) − I (0) = In (t) − ln (t) , R (t) − R (0) = Rn (t) − Vn (t) ,
U (t) −U (0) = Un (t) −On (t) , H (t) −H (0) = Hn (t) − Pn (t) .

Next, we have

‖Kn (t)‖ =

∥∥∥∥∥∥ 1 −α

N (α)
[g1 (t,S) − g1 (t,Sn−1)] +

α

Γ (β)N (α)w(t)

t∫
0

(t− z)β−1 [g1 (z,S) − g1 (z,Sn−1)w(z)]dz

∥∥∥∥∥∥
6

1 −α

N (α)
‖g1 (t,S) − g1 (t,Sn−1)‖+

α

Γ (β)N (α)
‖ 1
w
‖
t∫
0

(t− z)β−1w(z) ‖g1 (z,S) − g1 (z,Sn−1)dz‖

6
1 −α

N (α)
L1 ‖S− Sn−1‖+

αw(T)Tβ

βN (α) Γ (β)
‖ 1
w
‖L1 ‖S− Sn−1‖ .

By continuing this method recursively, we obtain at time T :

‖Kn (t)‖ 6
(

1 −α

N (α)
+

αw(T)Tβ

βN (α) Γ (β)
‖ 1
w
‖
)n+1

Ln+1
1 a.

As n approaches infinity, we find that ‖Kn (t)‖ → 0. Similarly, it can be observed that, ‖ln (t)‖, ‖Vn (t)‖,
‖On (t)‖, and ‖Pn (t)‖ also tend towards zero. It is another crucial subject to demonstrate the uniqueness
of the solutions of (2.3). Let S1 (t), I1 (t), R1 (t), U1 (t), and H1 (t) be another solutions of the model (2.3),
we find:

S (t) − S1 (t) =
1 −α

N (β)
[g1 (t,S) − g1 (t,S1)] +

α

Γ (β)N (α)w(t)

t∫
0

(t− z)β−1w(z) [g1 (z,S) − g1 (z,S1)]dz.

Taking the norm, and considering that the kernel satisfies the Lipschitz condition, we obtain:

‖S (t) − S1 (t)‖ 6
1 −α

N (α)
L1 ‖S (t) − S1 (t)‖+

αw(T)Tβ

βΓ (α)N (α)
‖ 1
w
‖L1 ‖S (t) − S1 (t)‖ .

This leads to the following inequality:

‖S (t) − S1 (t)‖
(

1 −
1 −α

N (α)
L1 −

αw(T)Tβ

βN (α) Γ (β)
‖ 1
w
‖L1

)
6 0.
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If the following inequality is satisfied:(
1 −

1 −α

N (α)
L1 −

αw(T)Tβ

βΓ (β)N (α)
‖ 1
w
‖L1

)
> 0,

then, ‖S (t) − S1 (t)‖ = 0. Therefore, we have S (t) = S1 (t) . With the same method, we can get the unique
solution for I,R,U, and H. Consequently, the solution is unique. This completes the proof.

2.4. Stability results
In this section, we examine the stability of the model (2.3). First, we calculate the endemic equilibrium

and the basic reproduction number R0. Then, we present the stability results.

2.4.1. Basic reproduction number R0

The disease-free equilibrium state is achieved by making I = 0:

X0 = (
Λ

µ
, 0, 0, 0).

The infectious part of the system is expressed as:
dI(t)

dt
= τ(t)S(t)[I(t) +U(t)] − (ν+ µ)I(t),

dU(t)

dt
= ν2I(t) − (η+ µ)U(t).

The corresponding matrix is:

A =

(
τ0S

0 − (ν+ µ) τ0S
0

ν2 −(η+ µ)

)
= V − S,

where

V =

(
τ0S

0 τ0S
0

ν2 0

)
, S =

(
ν+ µ 0

0 η+ µ

)
, and S0 =

Λ

µ
.

The next-generation matrix (NGM) [6] is:

VS−1 =

 τ0S
0

ν+ µ

τ0S
0

η+ µ
ν2

ν+ µ
0

 .

Therefore,

R0 =
ν2τ0S

0

(ν+ µ)(η+ µ)
.

2.4.2. Endemic equilibrium state
The system (2.3) admits a unique endemic equilibrium determined by setting the right-hand side to

zero, X∗ = (S∗, I∗,R∗,U∗,H∗) such that

S∗ =
(η+ µ)(ν+ µ)

τ0[η+ µ+ ν2]
, I∗ =

Λ

ν+ µ
−

µ(η+ µ)

τ0[η+ µ+ ν2]
, R∗ =

ν1

η+ µ
I∗, U∗ =

ν2

η+ µ
I∗, H∗ =

ην

µ(η+ µ)
I∗.

Theorem 2.8.

• If R0 <
ν2

ν2 + η+ µ
(R0 < 1), then the disease-free equilibrium point X0 is locally asymptotically stable.
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• On the other hand, if R0 >
ν2

ν2 + η+ µ
(R0 > 1), then the endemic equilibrium point X∗ is locally asymptot-

ically stable.

Proof.

Local stability of X0: By linearizing the system (2.3) at X0, the Jacobian matrix is given by:

J(X0) =


−µ −τ0S

0 0 −τ0S
0 0

0 τ0S
0 − (ν+ µ) 0 τ0S

0 0
0 ν1 −(η+ µ) 0 0
0 ν2 0 −(η+ µ) 0
0 0 η η −µ

 .

The characteristic equation associated is:

P(X) = (X+ µ)2(X+ η+ µ)
(
X2 + (ν+ η+ 2µ− τ0S

0)X− (τ0S
0 − (ν+ µ))(η+ µ) − ν2τ0S

0).
The equation has real roots, which are given by:

X1 = −µ < 0,
X2 = −(η+ µ) < 0,

X3X4 = −(τ0S
0 − (ν+ µ))(η+ µ) − ν2τ0S

0 =
1
ν2

(ν2 + η+ µ)(ν+ µ)(η+ µ)
( ν2

ν2 + η+ µ
−R0

)
> 0,

X3 +X4 = τ0S
0 − (ν+ η+ 2µ)

=
ν2

(ν+ µ)(η+ µ)

(
R0 − ν2(

1
ν+ µ

+
1

ν+ µ
)
)
< 0

( ν2

ν2 + η+ µ
< ν2(

1
ν+ µ

+
1

ν+ µ
)
)
.

Thus |arg (Xi) | = π >
απ

2
for i = 1, 2, 3, 4. Then, by applying the Routh-Hurwitz criterion, we have the

local stability of X0.

Local stability of X∗: The Jacobian matrix by linearizing the system (2.3) at X∗ is:

J(X∗) =


−τ(I∗ +U∗) − µ −τS∗ 0 −τS∗ 0
τ(I∗ +U∗) τS∗ − (µ+ ν) 0 τS∗ 0

0 ν1 −(η+ µ) 0 0
0 ν2 0 −(η+ µ) 0
0 0 η η −µ

 .

The characteristic equation is as

P(X) = (X+ µ)(η+ µ+X)
(
X3 + a1X

2 + a2X+ a3
)
,

where

a1 = τ(I∗ +U∗) + ν+ η+ 3µ+ τS∗,
a2 = τ(I∗ +U∗)(η+ ν+ 2µ) + (η+ 2µ)(ν+ µ) + (η+ µ)µ− (ν2 + η+ 2µ)τS∗

= τ(I∗ +U∗)(η+ ν+ 2µ) + µ(ν+ µ) + (η+ µ)µ
η− ν1

η+ ν2 + µ
,

a3 = τ(I∗ +U∗)(η+ µ)(µ+ ν) + (η+ µ)(µ+ ν)µ− (ν2µ+ (µ+ η)µ)τS∗ = τ(I∗ +U∗)(η+ µ)(ν+ µ).

Let

a1a2 − a3 =
[
ν+ η+ 3µ+ τS∗

]
a2 + τ(I

∗ +U∗)
[
τ(I∗ +U∗)(η+ ν+ 2µ)

+ µ(ν+ µ) + (η+ µ)µ− (ν2 + η+ 2µ)τS∗
]

=
[
ν+ η+ 3µ+ τS∗

]
a2 + τ(I

∗ +U∗)
[
τ(I∗ +U∗)(η+ ν+ 2µ) + µ(ν+ µ) + (η+ µ)µ

η− ν1

η+ ν2 + µ
.

One can see that a1, a2, a3, and a1a2 − a3 are all positive. As a consequence of [4] and by applying
Hurwitz’s criterion, we have the local asymptotic stability of X∗.
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3. Numerical approach and discussion

3.1. Lagrange interpolation polynomial method

The numerical simulations are acquired by introducing an iterative method. To attain this, we used the
Lagrange interpolation polynomial method to approximate fractional derivatives due to its high accuracy
in approximating functions, smoothness, and adaptability in handling non-integer orders by adjusting
the degree of the polynomial. This method makes an efficient approach for approximating fractional
derivatives, ensuring smooth transitions and compatibility with PINNs, making it an effective choice for
handling fractional derivatives in simulations. In a similar way to the modified fractional approach used in
the paper [32], the fractional integral is approximated by employing the two-point Lagrange interpolation
polynomial. So, for t = tn+1 , n = 0, 1, . . . we obtain:

S(tn+1) = S(t0) +
1 −α

N(α)
g1(tn,S(tn)) +

α

Γ(β+ 2)N(α)w(t)

×
n∑
p=0

[
hαg1(tn,S(tp))w(tn)

(
(n− p+ 1)β(n− p+β+ 2) − (n− p)β(n− p+ 2β+ 2)

)
−hβg1(tp−1,S(tp))w(tp−1)

(
(n− p+ 1)β+1 − (n− p)β(n+ 1 − p+β)

)]
,

I(tn+1) = I(t0) +
1 −α

N(α)
g2(tn, I(tn)) +

α

Γ(β+ 2)N(α)w(t)

×
n∑
p=0

[
hαg2(tn, I(tp))w(tn)

(
(n− p+ 1)β(n− p+β+ 2) − (n− p)β(n− p+ 2β+ 2)

)
−hβg2(tp−1, I(tp))w(tp−1)

(
(n− p+ 1)β+1 − (n− p)β(n+ 1 − p+β)

)]
,

R(tn+1) = R(t0) +
1 −α

N(α)
g3(tn,R(tn)) +

α

Γ(β+ 2)N(α)w(t)

×
n∑
p=0

[
hαg3(tn,R(tp))w(tn)

(
(n− p+ 1)β(n− p+β+ 2) − (n− p)β(n− p+ 2β+ 2)

)
−hβg3(tp−1,R(tp))w(tp−1)

(
(n− p+ 1)β+1 − (n− p)β(n+ 1 − p+β)

)]
,

U(tn+1) = U(t0) +
1 −α

N(α)
g4(tn,U(tn)) +

α

Γ(β+ 2)N(α)w(t)

×
n∑
p=0

[
hαg4(tn,U(tp))w(tn)

(
(n− p+ 1)β(n− p+β+ 2) − (n− p)β(n− p+ 2β+ 2)

)
−hβg4(tp−1,U(tp))w(tp−1)

(
(n− p+ 1)β+1 − (n− p)β(n+ 1 − p+β)

)]
,

H(tn+1) = H(t0) +
1 −α

N(α)
g5(tn,H(tn)) +

α

Γ(β+ 2)N(α)w(t)

×
n∑
p=0

[
hαg5(tn,H(tp))w(tn)

(
(n− p+ 1)β(n− p+β+ 2) − (n− p)β(n− p+ 2β+ 2)

)
−hβg1(tp−1,S(tp))w(tp−1)

(
(n− p+ 1)β+1 − (n− p)β(n+ 1 − p+β)

)]
.

We consider the initial data: S0 = S(0) = 51.47× 106, I0 = I(0) = 343, R0 = R(0) = 379, U0 = U(0) = 45,
H(0) = H0 = 5, τ(t) = τ0, and w(t) = 1 for the weighted Atangana-Baleanu. We conduct a numerical
investigation into the influence of the generalized fractional derivative, involving the Caputo-Fabrizio
(CF), the Atangana-Baleanu (AB), and Weighted Atangana-Baleanu (WAB) operators. Figure 2 illustrates
the results obtained for different operators. For all parameter values, please refer to the Table 1. The
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considered model contains five compartments, reflecting the current global situation. These types of
models are valuable for examining the nature and predicting the exponential growth of the diseases. We
deduce from the curves that each compartment’s behavior is significantly influenced by the time and the
considered fractional derivative. Furthermore, we observe behavior that corresponds to the parameters
α, β, and γ. We note that the projected system simulates the behavior using the parameters listed in
Table 1 and the fractional order. The observed behavior demonstrates the efficiency and performance of
the considered solutions. From the figures, the proposed model strongly depends on the fractional order
and provides a higher degree of adaptability. Moreover, the considered fractional operator presents more
interesting results for examining and predicting the model in the future. This epidemic model depends
into account hereditary properties, which aid in understanding and comprehending this mortal virus.

Table 1: Numerical values of the model parameters.

Parameter Description Value Source
S0 Initial susceptible population 51.47× 106 Fitted
I0 Initial infected population 343 Fitted
R0 Initial reported population 379 Fitted
U0 Initial unreported population 45 Fitted
H0 Initial recovred population 5 Fitted
τ0 Transmission rate 7.51× 10−9 [18]
µ Natural death rate 0.001 Fitted
µ1 Intensity of the public interventions fixed [16]
Λ Flux of population 1000 Fitted
ν1 Transmission rate from I to R 0.072 [18]
ν2 Transmission rate from I to U 0.337 [18]
η Transmission rate from the R or U to H 1

7 [18]
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Figure 2: Solutions corresponding to different fractional derivatives: Caputo-Fabrizio (CF), Atangana-
Baleanu (AB), and Weighted Atangana-Baleanu (WAB). The term "Exact" refers to the solution obtained
using the odeint function from the scipy.integrate module in the Python scientific computing library,
SciPy.
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3.2. Sensitivity analysis

Sensitivity analysis plays a pivotal role in the fields of dynamic models study, particularly in areas
like epidemiology and ecology [5, 19]. One fundamental element of this study involves examining the
sensitivity of parameters, which entails calculating precise sensitivity measures for each parameter to
understand their impact to disease dynamics. This section focuses on the sensitivity analysis of different
parameters regarding R0.

To conduct a sensitivity study, we compute the normalized forward sensitivity index for a parameter
using the given formula:

SIσ =
σ

R0

∂R0

∂σ
, (3.1)

This expression gives the sensitivity index of R0 pertaining to the parameter σ. In the realm of forward
sensitivity examination, we investigate how changes in these parameters affect the value of R0. This
investigative strategy enables us to evaluate the sensitivity of R0 to enhancements in each parameter,
providing profound understanding into their respective influences on the dynamic systems.

Using formula (3.1) to all parameters of the system (2.3), we observe the following outcomes.

(i) Parameters with positive sensitivity indices include Λ, τ0, and ν2, with:

SIΛ = 1, SIτ0 = 1, SIν2 =
ν1 + µ

ν1 + µ
.

This means that any modification in the values of these parameters directly impacts R0, conducting
to either a decrease or an increase in its value.

(ii) Parameters displaying a negative sensitivity measures, indicating that an increase in their values
heads to a decrease in R0, include µ,ν1, and η, as detailed below:

SIµ = −
2µ (η + ν) + ην+ 3µ2

(η+ µ) (ν+ µ)
, SIν1 = −

ν1

ν+ µ
, SIη = −

η

η+ µ
.

Using the values provided in Table 1, the sensitivity measures for different model parameters, deter-
mined with formula (3.1), are showed in Figure 3 and recapitulated in Table 2. Analysis of the Table 2
reveals that a 10% decrease (or increase ) in the values of Λ, τ0, and ν2 results in a corresponding 10%, 10%,
and 1.780% decrease (or increase ) in R0, respectively. On the other hand, a 10% increase in the values of
µ, ν1, and η leads to a reduction in R0 by 10.094%, 1.756%, and 9.930%,, respectively. We have graphically
represented the influence of selected vital parameters on R0 in Figure 4.

It is important to mention that the relation between the rate at which asymptomatic infectious cases
progress to the unreported symptomatic category ν2 and R0 is positive. This means that as the rate of
progression increases, R0 typically rises, indicating an increased risk of an epidemic. This underscores the
importance of reporting symptomatic infectious individuals.

Table 2: Sensitivity index of R0.

Parameter Sensitivity index Parameter Sensitivity index
Λ 1 ν1 −0.17561
τ0 1 ν2 0.17805
µ −1.00939 η −0.99301
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Figure 3: Forward sensitivity analysis to evaluate the impact of the parameters (2.3) on R0.
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Figure 4: Impact of of various parameters for model (2.3) on behavior of R0.
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4. Machine learning approaches for predicting the disease transmission

Machine learning approaches have been increasingly used to predict disease transmission. Although
a wide range of general machine learning techniques exists, our aim is not to provide an exhaustive
overview of all of them. Instead, we begin with the fundamentals of machine learning and then concen-
trate on physics-informed-neural-networks. The fields of statistical inference and machine learning are
interconnected, with methods from one area often applied in the other and vice versa. The essential tasks
of machine learning include supervised learning, unsupervised learning, reinforcement learning, and
deep learning. The core principal is on training mathematical models to classify data, predict outcomes,
estimate relationships, summarize data, control complex processes, and more. Any activity in this field
can be viewed as a connection between models, data, algorithms, and the real world. Models are mathe-
matical objects saved and implemented on a computer, with parameters characterizing these objects. Data
refers to the collected information generated as the output of models or algorithms. Algorithms mention
the process of creating models and strategies for generating output datasets. Finally, the real world, they
relate to scenarios that allow the data generation, identification, and application for decision-making and
control. Machine learning merges elements from both fields, combining data and algorithms. The pre-
sented Flowchart 5 outlines each step in the machine learning process. This section, aims to offer insights,
analyses, and predictions using data to help guide future decisions. We begin with a brief introduction
to the basics of physics-informed-neural-networks (PINNs), emphasizing the importance for our model.
Next, we explore fundamental techniques and results.

Start

Collect Data

Pre-processing Data

Structured Data Learning algorithm Train Model

Evaluate Model

Good Model?

Stop

NoYes

Figure 5: Diagram representing the machine learning workflow [33].

4.1. Introduction to physics-informed-neural-networks (PINNs)

The PINNs are a machine learning technique that merges neural networks with principles from
physics to solve complex physical problems. Recently, PINNs have demonstrated exceptional results
by incorporating neural networks with differential equations, while accurately fitting data. In essence,
they apply neural networks to simulate nonlinear models while minimizing the essential data and lim-
iting the model’s search space applying previous knowledge and expertise. Initially, PINNs proposed
by Raissi et al. [25], integrating physical information into the neural network by creating a suitable loss
function, considered as an example of an inverse problem. Physics-informed neural nets for control PINC
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[3] is designed for control problems. It can simulate longer-range time horizons that are not predeter-
mined during training. This variable simulation time is achieved by incorporating inputs into the PINC
network, conveying the initial condition and the control signal for a particular time interval. Simulating
variable long-range intervals involves running the PINC network across a sequence of shorter intervals.
The network predictions are linked in a self-feedback mode, where the initial state of the next interval is
set to the last predicted state of the previous interval. To apply the PINNs method for fractional order
estimation, we define the neural network as follows using a nonlinear activation function σ [12]:

N(X) =Wnσ(Wn−1σ(· · · (W2σ(W1X+ b1) + b2) + · · · ) + bn−1) + bn.

PINNs integrate PDEs and their initial and boundary conditions into the loss function of the neural
network through automatic differentiation (AD) [35], this process minimizes the sum of the mean-squared
PDEs-residuals and the mean-squared error (MES) in the initial or boundary conditions with respect to
the neural network parameters. Typically, AD is used to optimize the weights Wi and biases bi of the
network. Consider the form of nonlinear PDEs parameterized by λ [25, 26]:

ut +N(u; λ) = 0.

The function N(.; λ) is a nonlinear operator, and u(x, t) is the solution. When using PINNs to solve
PDEs, the purpose is to find the optimal parameters λ that minimize a suitably defined loss function. To
integrate the general fractional derivative defined in (2.1), we consider the general form of the equations,
abbreviated as follows:

CD
α,β,γ
a,t,wu+N(u; λ) = 0. (4.1)

Controlled by the initial condition provided:

u(0) = u0.

To obtain a numerical estimation of the residual, each equation is tested at selected collocation points.
First, the domain t ∈ [a,b] is discretized into n parts as t1 = a, t2, . . . , tn = b. Using the output of the
neural network N(·), the loss function is then constructed as follows [30]:

Loss = LossEQ + LossIC,

where

LossEQ =

n∑
i=1

[
[CDα,β,γ

a,t,wN]t=ti +N(N(ti); λ)
]

, LossIC = (u(0) − u0)
2.

The mean squared error, which is chosen as the loss function for the neural network, is optimized using
optimizers such as L-BFGS or Adam. For a more detailed explanation, refer to [23, 37]. Equation (4.1) can
be transformed into the following form:

F(u; λ) = 0,

where F is a differential fractional operator involving a general fractional derivative as defined in defini-
tion (2.1). In this study, we define λ = [α,β,γ]T and u0 = [S0, I0,R0,U0,H0]

T for estimating the fractional
orders. In the next section, we apply the main steps showed in Diagram 5 to implement the PINNs ap-
proach for estimating fractional order derivatives. First step, we define the immediate problem. Next, we
construct a PINNs architecture adapted to tackle the defined problem. Once the architecture is created,
we train the PINNs employing appropriate data and mathematical techniques. Finally, we evaluate the
performance of the trained PINNs to assess their effectiveness.
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Figure 6: Illustration of the application of PINNs for solving time-fractional diffusion equations.

4.2. Predicting a fractional derivative using the PINNs method
Several efforts have been tried to use the PINNs for analyzing, modeling, and predicting the transmis-

sion of COVID-19 (see for example [9, 10, 21]). To use PINNs to the system (2.3), we define the residual
term as follows:

F(t) =


cD
α,β,γ
a,t,wS(t) −Λ+ τ(t)S(t)[I(t) +U(t)] + µS(t)

cD
α,β,γ
a,t,w I(t) − τ(t)S(t)[I(t) +U(t)] + (ν+ µ)I(t)

cD
α,β,γ
a,t,wR(t) − ν1I(t) + (η+ µ)R(t)

cD
α,β,γ
a,t,wU(t) − ν2I(t) + (η+ µ)U(t)

cD
α,β,γ
a,t,wH(t) − η(R(t) +U(t)) + µH(t)

 .

We evaluate F at a certain number of points. The mean residual squared error of F is given by:

MSEresidual =MSESresidual +MSEIresidual +MSERresidual +MSEUresidual +MSEHresidual ,

where

MSESresidual =
1
N

N∑
i=1

∣∣∣cDα,β,γ
a,ti,wS(ti) −Λ+ τS(ti)[I(ti) +U(ti)] + µS(ti)

∣∣∣2 ,

MSEIresidual =
1
N

N∑
i=1

∣∣∣cDα,β,γ
a,ti,wI(ti) − τS(ti)[I(ti) +U(ti)] + (ν+ µ)I(ti)

∣∣∣2 ,

MSERresidual =
1
N

N∑
i=1

∣∣∣cDα,β,γ
a,ti,wR(ti) − ν1I(ti) + (η+ µ)R(ti)

∣∣∣2 ,

MSEUresidual =
1
N

N∑
i=1

∣∣∣cDα,β,γ
a,ti,wU(ti) − ν2I(ti) + (η+ µ)U(ti)

∣∣∣2 ,

MSEHresidual =
1
N

N∑
i=1

∣∣∣cDα,β,γ
a,ti,wH(ti) − η(R(ti) +U(ti)) + µH(ti)

∣∣∣2 .
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The training data set typically consists of a collection of points with known values, located within the
domain. The mean squared error of the data is:

MSEdata =MSESdata +MSEIdata +MSERdata +MSEUdata +MSEHdata ,

where

MSESdata =
1
N

N∑
i=1

∣∣S(ti) − S0
i

∣∣2 , MSEIdata =
1
N

N∑
i=1

∣∣I(ti) − I0i∣∣2 , MSERdata =
1
N

N∑
i=1

∣∣R(ti) − R0
i

∣∣2 ,

MSEUdata =
1
N

N∑
i=1

∣∣U(ti) −U0
i

∣∣2 , MSEHdata =
1
N

N∑
i=1

∣∣H(ti) −H0
i

∣∣2 .

Note that S0
i, I

0
i,R

0
i,U

0
i,H

0
i are the observed data at time ti. The total loss is defined as:

MSE =MSEresidual +MSEdata.

The solution provides the optimal values of α and β that minimize the MSE for the fractional operator.
Table 3 shows this optimal values of α and β after training the neural networks for 50000 epochs. The use
of the PINNs method allowed for efficient estimation and fine-tuning of the fractional order parameters,
resulting in α = 0.6173 and β = 0.9569. These predicted fractional order not only offer insights into the
underlying dynamics of the system but also facilitate an accurate representation of the complex behavior
of the model. Using these values, one can then visualize the transmission of the model predictions
compared to the solution of the system (2.2) which is plotted in Figure 8. The visualization shows how
accuratly the model predictions align with the actual system’s behavior, validating the effectiveness of the
PINNs approach in capturing and modeling the disease transmission dynamics. This precise correlation
between model predictions and real-world observations demonstrates the capacity of PINNs to improve
the understanding of epidemiological systems and enhance predictive capabilities.

Table 3: Estimation of α and β.

Epoch 32000 33000 34000 35000 36000 37000 38000 39000 40000
α 0.6171 0.6172 0.6172 0.6172 0.6172 0.6173 0.6173 0.6172 0.6172
β 0.9568 0.9568 0.9568 0.9568 0.9569 0.9569 0.9569 0.9569 0.9569

0 10000 20000 30000 40000 50000
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Figure 7: The loss represents the difference between the predicted and exact values.
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Figure 8: The compartments with predicted values of α = 0.6173 and β = 0.9569.

5. Conclusion

In conclusion, this study supported the applicability and influence of a general fractional operator
on real-world problems, specifically the COVID-19 epidemic. It emphasized the essential role of machine
learning tools in estimating the parameters. The study began by presenting the existence, uniqueness, and
stability analysis theorems, along with numerical simulation of the solutions of the model. It showcased
the existence and boundedness of non-negative solutions and established the local stability of the equilib-
rium states. This paper proposed an advanced artificial intelligence technique based on PINNs to predict
the fractional derivative parameters α and β derived from selected data for the compartmental model.
The PINNs approach captured the complicated dynamics of the disease (COVID-19) by including a mod-
ified susceptible, asymptomatic infectious, unreported symptomatic infectious, reported symptomatic
infectious, and healed (SIURH) compartmental model with artificial intelligence. We treated specifically
the system (2.3) as another network to address unknown fractional derivative order. The study presents
several opportunities for future research and further development. First, it suggests exploring the appli-
cation of PINNs and other advanced AI methods to diseases beyond COVID-19. Second, investigating
the performance of PINNs across various regional datasets and scenarios could offer insights into the
adaptability and scalability of these methods. Finally, optimizing fractional PINNs and their training
procedures could lead to more efficient and precise parameter estimation, providing more robust tools
for decision-makers in public health and epidemiology.
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