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Abstract
This research article delves into the intricate dynamics of a COVID-19 model, uniquely characterized by the integration

of lock-down measures through a piecewise operator that encompasses both classical and Caputo operators. The article not
only examines the model’s behavior but also rigorously establishes the existence and uniqueness of solutions for this complex
piecewise system. To tackle the numerical approximation of solutions, the study employs Newton’s polynomial interpolation
scheme, shedding light on the model’s behavior under different conditions. Through meticulous graphical representations, the
article effectively communicates the results and numerical solutions across various classes of the model, each defined by distinct
fractional orders. This comprehensive approach provides valuable insights into the pandemic’s multifaceted dynamics, serving
as a basis for understanding its progression and evaluating potential control strategies.
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1. Introduction

Mathematical models play a pivotal role in the analysis and prediction of the spread of infectious dis-
eases. These models are integral to gaining insights into the efficient control of viruses and the implemen-
tation of preventive efforts [11, 24, 30]. Within the realm of infectious diseases, a variety of compartmental
models are employed, ranging from the fundamental SIR model to more intricate variations [8]. These
models provide researchers and policymakers with valuable tools to comprehend the dynamics of disease
transmission, assess the impact of interventions like lock-downs, and guide public health strategies.

Numerous diseases, such as Dengue fever, Hanta fever, and Leptospirosis [27], have a global preva-
lence. Infectious diseases are characterized by their ability to spread from person to person, in contrast
to noninfectious diseases, which stem from inherited or environmental factors. Across history, infectious
viral diseases have tragically claimed a significant number of human lives, underscoring their impact on
public health and society. Amidst a spectrum of viral diseases, the COVID-19 pandemic has unleashed a
global catastrophe, impacting over eight million individuals and displaying a mortality-to-recovery ratio
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that appears to be relatively balanced. Despite this, the absence or existence of the formerly infected
individual may be detected using Pcr Method, and the rate of recovery looks to be hopeful in the lack of
a curative vaccine. Each quarter, health care specialists, the World Health Organization, and the centers
for disease control and prevention grappled with the question about whether a COVID-19 patient may
re-infected after being clinically cured. The disease’s mild character has gotten the interest of various aca-
demics and medical experts, prompting them to embark on a large study effort to properly counterattack
and halt the disease’s progress.

Four of the seven humans coronaviruses that have been identified are prevalent human influenza
infections. MERS-CoV, SARS-CoV, and 2019-nCoV are all viruses that cause severe respiratory problems
[2]. Despite the substantial length of time that medical professionals and researchers have dedicated to
studying COVID-19, a significant portion of the population remains unaware of the intricacies of this
condition. Vaccinations and antiviral medications tailored specifically to prevent or treat COVID-19 are
regrettably still unavailable [13, 14, 22, 39]. Reflecting back on China’s previous major epidemic, the SARS-
CoV outbreak in 2003, one recalls a severe respiratory infection with a distressing mortality rate. However,
China managed to control the SARS outbreak by implementing a combination of restrictive measures and
effective prevention strategies. In stark contrast, the COVID-19 virus exhibits a considerable and lengthy
incubation period, setting it apart from the SARS outbreak. This unique feature has posed unprecedented
challenges for managing its spread and impact.

Because of the announced features of the COVID-19 outbreak, each nation’s authorities were forced to
implement some laws in order to stop the virus’s huge spread. Both developed, developing, and under-
developed countries agree to use lock-down measures to limit people’s movement. In certain nations, the
lock-down technique may achieve the intended effects, whereas in others, poor management and a poor
infrastructure, short term solutions, and incentive may exacerbate the disease’ spread. Extensive research
has been undertaken by numerous researchers in the realm of mathematical models for infectious dis-
eases, incorporating the utilization of fractional and fractal fractional operators [15, 17–19, 25, 28, 35, 38].
It has been observed that fractal fractional calculus provides better dynamics than classical derivatives
[21]. Factor-order dynamical models are useful in many scientific and technical domains because they are
superior to integer-order models in capturing intricate behaviors, memory effects, and nonlinear dynam-
ics [1, 20, 34, 36, 37].

In this section, we bolster the content by introducing an innovative and comprehensive model formu-
lation that delves into the intricate dynamics of infectious disease spread. Hence, we consider the model
[3] as bellow:

˙S(t) = Λ− (βI + λ1L + d)S + γ1I + γ2IL + θ1SL,

ṠL(t) = λ1SL − (d+ θ1)SL,
İ(t) = βSI − γ1I −α1I − dI − γ2IL + θ2IL,
˙IL(t) = γ2IL − dIL − θ2IL − γ2IL −α2IL,
L̇(t) = µI −φL.

(1.1)

In model (1.1) S and I represent susceptible and infected individuals, respectively, SL and IL are susceptible
and infected individuals, respectively on which lock down is imposed. The system state variable L shows
the cumulative density of lock down. The parameters’ description appeared in model (1.1) are given in
Table 1.

Atangana et al. have presented a new class of operators called as piecewise derivatives as well as
integrals [5]. These novel operators offer significant utility as they enable the examination of a mathe-
matical model using both classical and fractional operators within a single interval, further divided into
two distinct sub-intervals [6, 26, 29]. This approach not only allows for the application of traditional
methodologies but also incorporates more intricate fractional behaviors, enhancing the model’s versatility
and accuracy. These operators have proven to be particularly valuable to researchers, providing a novel
avenue for investigating cross-over behaviors within the context of mathematical modeling [4, 12, 23] and
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many other useful mathematical model on neural network along with other techniques [9, 10, 16, 32].
These cross-over behaviors often underlie complex phenomena in infectious disease dynamics, crucial
for understanding scenarios where disease transmission patterns abruptly change due to interventions,
population dynamics, or external factors. Motivated by these advantageous features, we embark on an
exploration of the proposed COVID-19 model. We delve into its dynamics through both the lens of clas-
sical operators and the utilization of the Caputo piecewise operator. By employing this dual approach,
our intention is to gain a comprehensive understanding of how the model responds to different mathe-
matical frameworks, thereby shedding light on the potential influence of cross-over behaviors in disease
transmission dynamics.

Table 1: Detail of the used parameters for model (1.1).
Variables Description

Λ Recruitment rate
β Contact rate of infection
λ1 Lock down imposition on susceptible individuals
λ2 Lock down imposition on infected individuals
d Natural death rate
γ1 Recovery rate in I
γ2 Recovery rate in IL
θ1 Transfer rate from SL to S
α1 Rate of death due to infections in I
θ2 Transfer rate from IL to I
α2 Rate of death due to infections in IL
µ Lock down implementation rate
φ Lock down depletion rate

The equation (1.1) can be written in piecewise fractional form

PCC
0 Dδ0 S(t) = Λ− (βI + λ1L + d)S + γ1I + γ2IL + θ1SL,
PCC
0 Dδ0 SL(t) = λ1SL − (d+ θ1)SL,
PCC
0 Dδ0 I(t) = βSI − γ1I −α1I − dI − γ2IL + θ2IL,
PCC
0 Dδ0 IL(t) = γ2IL − dIL − θ2IL − γ2IL −α2IL,
PCC
0 Dδ0 L(t) = µI −φL,

(1.2)

where PCC represents piecewise derivative with classical and Caputo operators with two subintervals in
[0, T ]. In more concise form we can express equation (1.2) as

PCC
0 Dδt(S(t)) =

{
C
0 Dt(S(t)) = d

dtG1(S, t),
C
0 Dδt(S(t)) = G1(S, t),

PCC
0 Dδt(SL(t)) =

{
C
0 Dt(SL(t)) = d

dtG2(SL, t),
C
0 Dδt(SL(t)) = G2(SL, t),

PCC
0 Dδt(I(t)) =

{
C
0 Dt(I(t)) = d

dtG3(I, t),
C
0 Dδt(I(t)) = G3(I, t),

PCC
0 Dδt(IL(t)) =

{
C
0 Dt(IL(t)) = d

dtG4(IL, t),
C
0 Dδt(IL(t)) = G4(IL, t),

PCC
0 Dδt(L(t)) =

{
C
0 Dt(L(t)) = d

dtG5(L, t),
C
0 Dδt(L(t)) = G5(L, t),

(1.3)

here 0 < t 6 t1, t1 < t 6 t2, C0 Dt, and C
0 Dδt represents classical and the Caputo derivative, respectively,

and Gi, where i = 1, 2, 3, 4, 5 are the left hand side of equation (1.2).
Motivated by the above kinds of literature the concerned paper considered a novel mathematical

model for differential equations in the sense of piecewise Caputo and classical operators, which represents
the crossover behaviors of the considered model. In the framework of piecewise Caputo and classical
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operators, the existence of a solution as well as its uniqueness is also developed. For each quantity, the
piecewise subinterval approximation solution is developed using the Newton polynomial interpolation
method. The available data on various periods and fractional orders convergent to integer orders are
compared to the numerical simulation.

The structure of the paper as is follows. In Section 2, basic definition are presented and Section 3 in-
vestigates the existence and uniqueness solution for the proposed model by using the fixed point theory.
In Section 4, the approximate solution of the model is studied with the aid of Newton interpolation for-
mula and the required solution is obtained. Simulations are presented along with figures and mentioned
the behavior of the obtained results in Section 5. Finally, we conclude our results in Section 6.

2. Basic results

In this part, we present some definitions.

Definition 2.1 ([25]). Let a function be F(t), with order n− 1 < δ < n, then the fractional order derivative
in the sense of Caputo can be written as

CDδF(t) =
1

Γ(n− δ)

∫t
0
(t− ℘)n−δ−1[F

′
(℘)]d℘

and the integration is

CIδ(F(t)) =
1
Γ(δ)

∫t
0
(t− ℘)δ−1d℘, δ > 0.

Definition 2.2 ([5]). Consider a differentiable function F(t) and an increasing mapping, then classical
piecewise derivative is

PFDF(t) =

{
F ′(t), 0 < t 6 t1,
F ′(t)
f ′(t) , t1 < t 6 t2 = T ,

and the integration is

PFI(F(t)) =

{ ∫t
0 F(τ)dτ, 0 < t 6 t1,∫t
t1

F(τ)f ′(τ)d(τ), t1 < t 6 t2,

here PFDF(t) and PFIF(t) are used for classical derivative and integration with 0 < t 6 t1, global deriva-
tive and integration for t1 < t 6 t2.

Definition 2.3 ([5]). Let F(t) be differentiable then classical and fractional piecewise derivative is defined
as

PFDδF(t) =

{
F ′(t), 0 < t 6 t1,
C
0D

δ
tF(t), t1 < t 6 t2,

while for integration

PFI(F(t)) =

{ ∫t
0 F(τ)dτ, 0 < t 6 t1,
1
Γδ

∫t
t1
(t− ℘)δ−1U(℘)d(℘), t1 < t 6 t2,

here PFDδF(t) and PF
0 ItF(t) represented the classical Caputo derivative and integration for 0 < t 6 t1,

fractional Caputo derivative and integration for t1 < t 6 t2.
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3. Existence and uniqueness results

We will study the existence of a solution as well as the uniqueness of the suggested piecewise model
in this section. For this, we express the system (1.2) as

PCCDδF(t) = G(t, F(t)), 0 < δ 6 1

is

F(t) =

{
F0 +

∫t
0 G(℘, F(℘))d℘, 0 < t 6 t1

F(t1) +
1
Γδ

∫t2
t1
(t− ℘)σ−1G(℘, F(℘))d(℘), t1 < t 6 t2,

(3.1)

where

F(t) =


S(t),
SL(t),
I(t),
IL(t),
L(t),

F0 =


S(0),
SL(0),
I(0),
IL(0),
L(0),

Ft1 =


St1 ,
SL(t1),
It1 ,
IL(t1),
Lt1 ,

G(t, F(t)) =



G1 =

{
d
dtG1(S, SL, I, IL, L, t),
CG1(S, SL, I, IL, L, t),

G2 =

{
d
dtG2(S, SL, I, IL, L, t),
CG2(S, SL, I, IL, L, t),

G3 =

{
d
dtG3(S, SL, I, IL, L, t),
CG3(S, SL, I, IL, L, t),

G4 =

{
d
dtG4(S, SL, I, IL, L, t),
CG4(S, SL, I, IL, L, t),

G5 =

{
d
dtG5(S, SL, I, IL, L, t),
CG5(S, SL, I, IL, L, t).

Let∞ > t2 > t > t1 > 0 having Banach space E1 = C[0, T ] having

‖F‖ = max
t∈[0,T ]

|F(t)|.

For obtaining the results, we consider growth condition, on non-linear operator in the form:

(C1) if there exist a constant LP > 0 such that for all F, F̄ ∈ E1, we have

|P(t, F) − P(t, F̄)| 6 LP|F − F̄|;

(C2) if there exist a constant CP > 0 & MP > 0,

|P(t, F(t))| 6 CP|F|+MP.

Theorem 3.1. Suppose P be continuous (piece-wise) on sub-interval 0 < t 6 t1 and t1 < t 6 t2 on [0, T ], also
satisfy (C2), then Eq. (1.3) has one or more solution the sub-intervals.

Proof. From Schauder theorem, consider the closed subset in the sub-intervals 0, T as B of E in the form

B = {F ∈ E : ‖F‖ 6 R1,2, R > 0}.

Now, suppose the operator V : B→ B and apply system (3.1) as

V(F) =

{
F0 +

∫t
0 P(℘, F(℘))d℘, 0 < t 6 t1,

F(t1) +
1
Γ(δ)

∫t2
t1
(t− ℘)σ−1P(℘, F(℘))d(℘), t1 < t 6 t2.

For F ∈ B, we have

|V(F)(t)| 6

{
|F0|+

∫t1
0 |P(℘, F(℘))|d℘,

|F(t1)|+
1
Γ(δ)

∫t2
t1
(t− ℘)δ−1|P(℘F(℘))|d(℘),
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6

{
|F0|+

∫t1
0 [CP|F|+MP]d℘,

|F(t1)|+
1
Γ(δ)

∫t2
t1
(t− ℘)δ−1[CP|F|+MP]d(℘),

6

{
|F0|+ t1[CP‖F‖+MP] =6 R1,2, 0 < t 6 t1,
|F(t1)|+

Tδ

Γ(δ+1) [CP‖F‖+MP] 6 R1,2, t1 < t 6 t2,

for t1 < t 6 T , using |(t1 − ℘)
δ − (T − ℘)δ| 6 Tδ, one has

R1,2 > max


|F0|+t1MP

1−t1CP
, 0 < t 6 t1,

|F(t1)
|Γ(δ+1)+TδMP

Γ(δ+1)−TδCP
, t1 < t 6 t2.

The previous equation shows that ‖V(F)‖ 6 R1,2 implies that V(B) ⊂ B. So we got that V is complete as
well as bounded. Now to show the complete continuity, we advance as consider tn > tm ∈ [0, t1] in first
interval, assume

|V(F)(tn) − V(F)(tm)| =

∣∣∣∣ ∫tn
0

P(℘, F(℘))d℘−

∫tm
0

P(℘, F(℘))d℘

∣∣∣∣
6
∫tn

0
|P(℘, F(℘))|d℘−

∫tm
0

|P(℘, F(℘))|d℘

6

[ ∫tn
0

(CP|F|+MP) −

∫tm
0

(CP|F|+MP) 6 (CPF +MP)[tn − tm].

(3.2)

Now from Eq. (3.2), when tm → tn, then

|V(F)(tn) − V(F)(tm)|→ 0 as tm → tn.

Hence V holds the condition of equi-continuity in [0, t1]. Further consider ti, tj ∈ [t1, T ] in the Caputo
sense as

|V(F)(tn) − V(F)(tm)|

=

∣∣∣∣ 1
Γ(δ)

∫tn
0

(tn − ℘)δ−1P(℘, F(℘))d℘−
1
Γ(δ)

∫tm
0

(tm − ℘)δ−1P(℘, F(℘))d℘

∣∣∣∣
6

1
Γ(δ)

∫tm
0

[(tm − ℘)δ−1 − (tn − ℘)δ−1]|P(℘, F(℘))|d℘+
1
Γ(δ)

∫tn
tm

(tn − ℘)δ−1|P(℘, F(℘))|d℘

6
1
Γ(δ)

[ ∫tm
0

[(tm − ℘)δ−1 − (tn − ℘)δ−1]d℘+

∫tn
tm

(tn − ℘)δ−1d℘

]
(CP‖F‖+MP)

6
(CPR1,2 +MP)

Γ(δ+ 1)
[tδn − tδm + 2(tn − tm)δ].

(3.3)

Next from (3.3), we have tm → tn, then

|V(F)(tn) − V(F)(tm)|→ 0 as tm → tn,

and V is also bounded, therefore

‖V(F)(tn) − V(F)(tm)‖ → 0 as tm → tn.

As a result, V is equicontinuous in the [tn, tm] interval. As a result, V is an equicontinuous mapping.
Using the Arzela’-Ascoli theorem, the operator V is continuous (completely), uniformly continuous, and
bounded. Therefore, the piece-wise derivable problem (1.3) has at minimum one solution upon every sub
interval, according to Schauder theorem.
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Theorem 3.2. If the following condition holds, the system under consideration has a unique solution if satisfy the
following equation

max
{

t1LP,
Tδ

Γ(δ+ 1)
LP = ∆ < 1

}
,

with the condition (C1).

Proof. Suppose V : A → A to be a piece-wise continuous mapping, let F and F̄ ∈ A on [0, t1] in the
classical form as

‖V(F) − V(F̄)‖ = max
t∈[0,t1]

∣∣∣∣ ∫t1

0
P(℘, F(℘))d℘−

∫t1

0
P(℘, F̄(℘))d℘

∣∣∣∣ 6 t1LP‖F − F̄‖. (3.4)

From the Eq. (3.4), we can write

‖V(F) − V(F̄)‖ 6 t1LP‖F − F̄‖. (3.5)

Hence, V is the contraction map. As a result of the Banach contraction principle, the considered model
has a single solution in the provided sub-interval. Furthermore, for sub-interval t ∈ [t1, t2], we consider
Caputo derivative as

‖V(F) − V(F̄)‖ = max
t∈[t1,t2]

∣∣∣∣ 1
Γ(δ)

∫t2

t1

(t− ℘)δ−1P(℘, F(℘))d℘−
1
Γ(δ)

∫t2

t1

(t− ℘)δ−1P(℘, F̄(℘))d℘

∣∣∣∣
6

Tδ

Γ(δ+ 1)
LP‖F − F̄‖.

(3.6)

From (3.6), we have

‖V(F) − V(F̄)‖ 6 Tδ

Γ(δ+ 1)
LG‖F − F̄‖. (3.7)

Let, max
{
TLP, Tδ

Γ(δ+1)LP
}
= ∆. So by (3.5) and (3.7) the model under consideration has only one solution

on each sub-intervals,

‖V(F) − V(F̄)‖ 6 ∆‖F − F̄‖.

Therefore, V is a contraction map. As a result, within the scope of the Banach contraction principle, the
suggested model has a only one solution in the second sub-interval.

4. Numerical method

Here, we present numerical scheme for the suggested piecewise model (1.3). The numerical scheme
for the two sub-interval of [0, T ], in classical and Caputo sense, respectively, is presented in this section.
Applying the piece-wise integral to equation (1.3) in classical and Caputo sense, we obtain

S(t) =

{
S0 +

∫t1
0 G1(℘, S)d℘, 0 < t 6 t1,

S(t1) +
1
Γ(δ)

∫t2
t1
(t− ℘)δ−1G1(℘, S)d℘, t1 < t 6 t2,

SL(t) =

{
SL(0) +

∫t1
0 G2(℘, SL)d℘, 0 < t 6 t1,

SL(t1) +
1
Γ(δ)

∫t2
t1
(t− ℘)δ−1G2(℘, SL)d℘, t1 < t 6 t2,

I(t) =

{
I0 +
∫t1

0 G3(℘, I)d℘, 0 < t 6 t1,
I(t1) +

1
Γ(δ)

∫t2
t1
(t− ℘)δ−1G3(℘, I)d℘, t1 < t 6 t2,

(4.1)
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IL(t)) =

{
IL(0) +

∫t1
0 G4(℘, IL)d℘, 0 < t 6 t1,

IL(t1) +
1
Γ(δ)

∫t2
t1
(t− ℘)δ−1G4(℘, IL)d℘, t1 < t 6 t2,

L(t)) =

{
L0 +

∫t1
0 G5(℘, L)d℘, 0 < t 6 t1,

L(t1) +
1
Γ(δ)

∫t2
t1
(t− ℘)δ−1G5(℘, L)d℘, t1 < t 6 t2.

Further, we prove the technique for the first state variable of model (4.1) and the same can be obtained
for the remaining state variables. At t = tn+1,

§(tn+1)) =

{
§0 +

∫t1
0 G1(S, SL, I, IL, L,℘)d℘, 0 < t 6 t1,

§(t1) +
1
Γ(δ)

∫tn+1
t1

(t− ℘)δ−1G1(S, SL, I, IL, L,℘)d℘, t1 < t 6 t2.
(4.2)

Applying the Newton interpolation formula as presented in [5] to equation (4.2), we obtain the following

S(tn+1) =



S0 +

{ ∑i
k=2

[
5

12G1(Sk−2, tk−2)∆t−
4
3G1(Sk−1, tk−1)∆t+G1(Sk, tk)

]
,

S(t1) +



(∆t)δ−1

Γ(δ+1)
∑n
k=i+3

[
G1(Sk−2, tk−2)

]
Π,

+
(∆t)δ−1

Γ(δ+2)
∑n
k=i+3

[
G1(Sk−1, tk−1) −G1(Sk−2, tk−2)

]∑
,

+
δ(∆t)δ−1

2Γ(δ+3)
∑n
k=i+3

[
G1(Sk, tk) − 2G1(Sk−1, tk−1) +G1(Sk−2, tk−2)

]
∆,


.

For the rest of the classes, we have

SL(tn+1) =



SL(0) +
{ ∑i

k=2

[
5

12G2(Sk−2
L , tk−2)∆t−

4
3G2(Sk−1

L , tk−1)∆t+G2(SkL, tk)
]

,

SL(t1) +



(∆t)δ−1

Γ(δ+1)
∑n
k=i+3

[
G2(Sk−2

L , tk−2)

]
Π,

+
(∆t)δ−1

Γ(δ+2)
∑n
k=i+3

[
G2(Sk−1

L , tk−1) −G2(Sk−2
L , tk−2)

]∑
,

+
δ(∆t)δ−1

2Γ(δ+3)
∑n
k=i+3

[
G2(SkL, tk) − 2G2(Sk−1

L , tk−1) +G2(Sk−2
L , tk−2)

]
∆,


,

I(tn+1) =



I0 +

{ ∑i
k=2

[
5

12G3(Ik−2, tk−2)∆t−
4
3G3(Ik−1, tk−1)∆t+G3(Ik, tk)

]
,

I(t1) +



(∆t)δ−1

Γ(δ+1)
∑n
k=i+3

[
G3(Ik−2, tk−2)

]
Π,

+
(∆t)δ−1

Γ(δ+2)
∑n
k=i+3

[
G3(Ik−1, tk−1) −G3(Ik−2, tk−2)

]∑
,

+
δ(∆t)δ−1

2Γ(δ+3)
∑n
k=i+3

[
G3(Ik, tk) − 2G3(Ik−1, tk−1) +G3(Ik−2, tk−2)

]
∆,


,

IL(tn+1) =



IL(0) +
{ ∑i

k=2

[
5

12G4(Ik−2
L , tk−2)∆t−

4
3G4(Ik−1

L , Lk−1, tk−1)∆t+G4(IkL, tk)
]

,

IL(t1) +



(∆t)δ−1

Γ(δ+1)
∑n
k=i+3

[
G4(Ik−2

L , tk−2)

]
Π,

+
(∆t)δ−1

Γ(δ+2)
∑n
k=i+3

[
G4(Ik−1

L , tk−1) −G4(Ik−2
L , tk−2)

]∑
,

+
δ(∆t)δ−1

2Γ(δ+3)
∑n
k=i+3

[
G4(IkL, tk) − 2G4(Ik−1

L , tk−1) +G4(Ik−2
L , tk−2)

]
∆,


,
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L(tn+1) =



L0 +

{ ∑i
k=2

[
5
12G4(Lk−2, tk−2)∆t−

4
3G5(Lk−1, tk−1)∆t+G5(Lk, tk)

]
,

L(t1) +



(∆t)δ−1

Γ(δ+1)
∑n
k=i+3

[
G5(Lk−2, tk−2)

]
Π,

+
(∆t)δ−1

Γ(δ+2)
∑n
k=i+3

[
G4(Lk−1, tk−1) −G5(Lk−2, tk−2)

]∑
,

+
δ(∆t)δ−1

2Γ(δ+3)
∑n
k=i+3

[
G4(Lk, tk) − 2G5(Lk−1, tk−1) +G5(Lk−2, tk−2)

]
∆,


.

5. Results and discussion

This part of the manuscript contains simulations of mathematical approximations performed utilizing
the piecewise notion, classical and the Caputo operator, and the Newton’s polynomial approach. For
this, we take two sub-intervals [0, t1] = [0, 20] and [t1, T ] = [20, 200], which makes the whole interval
[0, T ]. In the interval [0, 200], we have used the classical operator, while in the interval [20, 200] Caputo
derivative is used. For the simulations, the parameters used are given in Table 2 and initial conditions are
S = 200, SL = 300, I = 100, IL = 500, L = 200.

Table 2: Parameters’ values of the model (1.2).
Parameter Value Source Parameter Value Source

Λ 400 [33] β 0.000017 [31]
λ1 0.0002 [33] λ2 0.002 Estimated
d 0.0096 [7] γ1 0.16979 [2]
γ2 0.16979 [2] θ1 0.2 [33]
α1 0.03275 [2] θ2 0.02 Estimated
α2 0.03275 [2] µ 0.0005 [33]
φ 0.06 [33]
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Figure 1: Dynamics of S for the model (1.2) on different
fractional-order δ for both sub intervals with time 20-200.
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Figure 2: Dynamics of SL for the model (1.2) on different
fractional-order δ for both sub intervals with time 20-200.

In Figs. 1-5, the behavior of the system under consideration, is depicted using several colors and
fractional orders are as (blue, 1.00), (magenta, 0.99), (green, 0.98), (red, 0.97), (black, 0.96). Fig. 1 shows
the dynamics of the susceptible population, where it can be seen that the state variable S becomes stable
more fastly with small fractional order.
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Figure 3: Dynamics of I for the model (1.2) on different fractional-order δ for both sub intervals with time 20-200.
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Figure 4: Dynamics of IL for the model (1.2) on different
fractional-order δ for both sub intervals with time 20-200.
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Figure 5: Dynamics of L for the model (1.2) on different
fractional-order δ for both sub intervals with time 20-200.

Similarly, Fig. 2 demonstrates the population behavior of those susceptible individuals on which the
lock down is imposed. Here it is observed that the individuals in SL increases up-to 690 until t = 100,
then gradually decreases at the point 520 and becomes stable, now when we see at lower fractional orders
we observe that SL becomes stable at t = 70. Further Figs. 3 and 4 project the behavior of the infected
individuals I and those infected on which lock down is imposed IL. From Fig. 3, we see that the there is
very large amount of infections in the class I, where the lock down is not imposed. On the other hand
Fig. 4 shows that there is less amount of infections after the iposition of increasing and decreasing during
lock down. Finally Fig. 5 shows the cumulative density of the dynamics of lock down program.

6. Conclusion

In the considered study, we have analyzed the behavior of the COVID-19 model in which the lock
down is imposed in piece-wise derivative sense. The novel piece-wise operator used for the analysis of
the model is considered with classical-Caputo operator. By using the fixed point approach, existence as
well as uniqueness results of the solution are presented. Numerically the proposed model is approximated
using the Newton polynomial interpolation scheme. The numerical solution of the system is presented
graphically with different fractional orders. We observed that the individuals in SL increases up-to 690 till
t = 100, then slowly decreases and becomes stable, with fractional orders it is observed that SL becomes
stable at t = 70. Moreover, it is observed that there is very large amount of infections in the class I, where
the lock down is not imposed.
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