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Abstract
This research work is devoted to investigate a class of hybrid fractional differential equations with n+ 1 terms initial condi-

tions. The aforesaid problem is considered under the Atangana-Baleanue-Caputo fractional order derivative. Here it is remark-
able that hybrid differential equations with linear perturbations have significant applications in modeling various dynamical
problems. Sufficient conditions are established for the existence and uniqueness of solution to the problem under investigation
by using the Banach and Krasnoselsikii’s fixed point theorems. Since stability theory plays important role in establishing various
numerical and optimizations results, therefore, Hyers-Ulam type stability results are deduced for the considered problems using
the tools of nonlinear functional analysis. Additionally, a numerical method based on Euler procedure is established to study
some approbation results for the proposed problem. By a pertinent example, we demonstrate our results. Also some graphical
illustrations for different fractional orders are given.
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1. Introduction

Calculus with fractional order derivatives and integral has been given attention in the last few decades.
Because, the said area has been found highly applicable in modeling various real world problems. In fact
the differential and integral operators with real or complex orders are the natural extension of classical
integer order operators of integration and differentiation. In additions, in many situation fractional order
derivatives have been found more efficient to use as compared to ordinary derivatives. For instance
certain real-world phenomena may be more accurately modelled via fractional differential operators,
particularly when the dynamics are impacted by constrains of systems. Therefore, recently, researchers
have focused to use the mentioned area in study of various problems devoted to engineering, physical,
image processing, and biological science. For instance some novel work, we refer to [8, 18, 36–38]. Further,
for more applications and new results using new concepts of fractional calculus, we refer to [2, 3, 22, 28].
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It is important to mention that fractional differential and integrals operators have been defined var-
iously. There are numerous definitions given by researchers in literature. Based on the definitions, the
said operators may be divided in to two classes including singular and non-singular operators. But re-
member that both kinds of operators are global operators in nature. Those operators involving power
law type kernels like the Reimann-Liouville or Caputo derivatives are referred to be singular operators.
For relevant results on the said area we refer to [26]. On the other hand those operators introduced by
Caputo and Fabrizio and Atangana, Baleanue in Caputo sense abbreviated as ABC are known as non-
singular derivatives. We remark that both kinds of derivatives have been used very well in investigating
various real world problems. Here we refer to see details of said operators in [16]. The Caputo-Fabrizio
derivative has used in various real world applications (refer to [7]). In the same way, the ABC derivative
was proposed to address some limitations of the traditional Caputo fractional derivative and to provide
a more comprehensive mathematical tool for describing real world phenomena, particularly in the field
of fractional calculus [9]. The ABC-fractional derivative is based on the concept of non-locality, mean it
takes into account the entire history of the function not just at a single point. The non-local nature of the
new kernel allows for a comprehensive account of memory within structures and media of various scales,
a task beyond the capabilities of classical fractional derivatives or CF-type derivatives. Moreover, we have
the opinion that ABC-fractional derivatives will be able to play a significant impact on investigation of
the micro-structural tendencies of certain materials, especially those characterized by non-local interac-
tions [10]. As a result, ABC-fractional derivatives proves highly valuable in elucidating a diverse array of
scientific, engineering, and technological challenges.

Initial value problems (IVPs) play a very important role in different fields of natural and physical
sciences (we refer to [35]). Numerous applications of IVPs appear in applied fields such as chemical
engineering, blood flow problems, population dynamics, water flow, and general relativity (see [19]).
Therefore researchers have significantly worked on the mentioned area from different aspects including
qualitative theory [30], numerical analysis [13], stability theory [35]. Also the IVPs were increasingly
investigated under the concepts of fractional calculus. In this regards plenty of research work has been
published. We refer some novel results devoted to the existence, stability, and numerical analysis of
various problems as [1, 29, 32]. Both kinds of operators, singular and non-singular, were used to study
various IVPs and their applications, here we refer to [17, 24, 33]. An important class of differential
equations is devoted to hybrid differential equations (HDEs). Researchers have studied HDEs under the
concepts of fractional order derivatives of Riemann-Liouville and Caputo sense very well. For instance
HDEs with linear and quadratic perturbations were studied using the Caputo derivative of fractional
order in [11, 21]. Also some researchers studied HFDEs with ABC and Caputo-Fabrizio derivative [23].
Various biological models have studied using the concept of non-singular type fractional derivatives
recently. For instance we refer to [4, 5].

Since HDEs have significant applications in various real world problems, for instance, hybrid model
for learning space technology was studied in [34], further, authors [27] comprehensively reviewed build-
ing hybrid models of physical systems. Most of the biological models of diseases are formulated in the
form of systems of HDEs. But to the best of our information, HDEs with ABC fractional derivatives were
very rarely studied for theoretical and computational purposes. Also the importance of ABC derivative
mentioned in [9], it is needed to investigate a class of HFDEs under multi point initial conditions from the-
oretical and numerical perspectives. In particularly, implicit HDEs under ABC fractional order derivative
with n+ 1 terms initial conditions have not studied for the existence, stability, and numerical solutions.

Due to the importance applicability of ABC derivative and significant applications of HDEs, we con-
sider the following class of n+1 terms IVPs involving ABC derivative of fractional order with t ∈ [0, T ] = J

as 
ABCDα[µ(t) − f(t,µ(δt))] = g(t,µ(t),ABCDαµ(t)), α ∈ (0, 1],

µ(0) =
n∑
j=0
kjh(µ),

(1.1)
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where f : J× R→R, g : J× R2→R,h ∈ C(J) are continuous functions and f(0,µ(0)) = 0. Here, we state that
the term denoted by δ is called proportional type delay which lies in (0, 1). If δ > 1, then the problem
becomes ill posed. The mentioned delay type problems have many applications in electro-locomotive and
other physical systems (see [20]). By using Banach and Krasnoselsikii’s fixed point theorems [12] enough
prerequisites are established for a solution to be unique and exist. Also, we derive some results related
to H-U stability following [31]. The concerned stability has very well studied for numerous problems
recently, we refer to [6, 15, 25]. The mentioned stability can be found about the best approximate solution
of the suggested problem. The mentioned stability has been studied in various articles for different
kind of problems of fractional calculus. Since for the considered nonlinear problem, numerical results
are crucial requirement, therefore, following the generalized Taylor formula given by [14], we deduce a
numerical method of Euler type for the given problem. Several graphical illustrations are provided for
the test example, to demonstrate our theoretical results.

Our article is organized as follows. We give introduction in Section 1. Preliminaries are given in
Section 2. Theoretical results are given in Section 3. Computational results are written in Section 4.
Section 5 is devoted to conclusion.

2. Preliminaries

Definition 2.1 ([9]). Here C[0T ] is the space of continuous function, then the ABC derivative for fractional
order α ∈ (0, 1) of µ ∈ C[0, T ] is defined by

ABCDαµ(t) =
M(α)

1 −α

∫t
0
µ ′(s)Eα

[
−α(t− s)α

1 −α

]
ds, (2.1)

where the normalization function is defined by M(α) = 1 −α+ α
Γ(α) .

Definition 2.2 ([27]). Let µ ∈ L[0, T ], then for α ∈ (0, 1], the integral is described as

AB
0 Iαt µ(t) =

1 −α

M(α)
µ(t) +

α

Γ(α)M(α)

∫t
0
(t− s)α−1µ(s)ds,

provided that integral on right side exists.

Lemma 2.3 ([9]). Let h ∈ L[0, T ], such that h→ 0 at t→ 0, then

ABC
0 Dα

t µ(t) = h(t), 0 < α 6 1,

has a unique solution given by

µ(t) = µ(0) +
1 −α

M(α)
h(t) +

α

M(α)Γ(α)

∫t
0
(t− s)α−1µ(s)ds.

We use the space X = C[0, 1] with norm ‖µ‖ = supt∈J |µ(t)|, which is a Banach space.

Theorem 2.4 ([12]). Let S ⊆X and T1, T2 be two operators satisfying

i) T1 is a contraction map;
ii) T2 is completely continuous mapping,

then, the T1(µ) + T2(µ) = µ has at least one solution.
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3. Existence theory

Here, we move to present our main results.

Lemma 3.1. The solution of linear fractional order hybrid problem under ABC derivative where f1, f2 ∈ C[0, T ],
such that f1(0) = 0, given by 

ABCDα[µ(t) − f1(t)] = f2(t), α ∈ (0, 1],

µ(0) =
n∑
j=0
kjh(µ),

(3.1)

is deduced as

µ(t) =

n∑
j=0

kjh(µ) + f1(t) +
(1 −α)

M(α)
f2(t) +

α

M(α)Γ(α)

∫t
0
(t− s)α−1f2(s)ds.

Proof. Let a0 be the constant and applying ABIα on (3.1) and using Lemma 2.3, one has

µ(t) − f1(t) = a0 +
(1 −α)

M(α)
f2(t) +

α

M(α)Γ(α)

∫t
0
(t− s)α−1f2(s)ds. (3.2)

By using the initial condition, one has a0 = kjh(µ). Thus, equation (3.2) becomes

µ(t) =

n∑
j=0

kjh(µ) + f1(t) +
(1 −α)

M(α)
f2(t) +

α

M(α)Γ(α)

∫t
0
(t− s)α−1f2(s)ds.

In view of Lemma 3.1, we obtain the desired integral representation of (1.1) as follows.

Corollary 3.2. The equivalent integral equation of (1.1) is given by

µ(t) =

n∑
j=0

kjh(µ) + f(t,µ(δt)) +
(1 −α)

M(α)
g(t,µ(t),ABCDαµ(t)

+
α

M(α)Γ(α)

∫t
0
(t− s)α−1g(s,µ(s),ABCDαµ(s))ds.

Following assumptions hold.

(H1) There is a constant Ch > 0, such that for each µ, µ̄ ∈X , one has |h(µ) − h(µ̄)| 6 Ch|µ− ū|.
(H2) There exists constant Cf > 0, such that for every µ, µ̄,∈X , one has |f(t,µ) − f(t, ū)| 6 Cf|µ− ū|.
(H3) There is a constant Cg > 0, such that for every µ, v, µ̄, v̄ ∈X , we have

|g(t,µ, v) − g(t, µ̄, v̄)| 6 Cg [|µ− µ̄|+ |v − v̄|] .

(H4) Let there exist constants Kf,Kg,Kh,Mf,Mg,Mh > 0, then following assumptions hold:

|f(t,µ(t))| 6 Kf|µ|+Mf, |g(t,µ(t),ABCDαµ(t))| 6 Kg
[
|µ|+ |ABCDαµ|

]
+Mg, |h(µ)| 6 Kh|µ|+Mh.

Let us define two operators T1, T2 : X →X by

T1(µ) =

n∑
j=0

kjh(µ) + f(t,µ(δt)) +
(1 −α)

M(α)
g(t,µ(t),ABCDαµ(t)),

T2(µ) =
α

M(α)Γ(α)

∫t
0
(t− s)α−1g(s,µ(s),ABCDαµ(s))ds.
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Theorem 3.3. Under the hypothesis (H1)-(H4) and if

n∑
j=0

kjCh +Cf +
(1 −α)

M(α)

(
Cg

1 −Cg

)
< 1,

then the problem (1.1) has at least one solution.

Proof. We prove that T1 is a contraction. Let µ, µ̄ ∈X , consider

‖T1(µ) − T1(µ̄)‖ = max
t∈[0,T ]

∥∥∥∥ n∑
j=0

kjh(µ) + f(t,µ(δt)) +
(1 −α)

M(α)
g(t,µ(t),ABCDαµ(t))

−

n∑
j=0

kjh(µ̄) − f(t, µ̄(δt)) −
(1 −α)

M(α)
g(t, µ̄(t),ABCDαµ̄(t))

∥∥∥∥
6

n∑
j=0

kjCh‖mu− µ̄‖+ (1 −α)

M(α)

(
Cg

1 −Cg
‖µ− µ̄‖

6

 n∑
j=0

kjCh +Cf +
(1 −α)

M(α)

(
Cg

1 −Cg

) ‖µ− µ̄‖.

(3.3)

Thus (3.3) shows that T1 is a contraction mapping. Similarly, we now show that the operator T2 is com-
pletely continuous. Let D = {µ ∈X : ‖µ‖ 6 r} be closed and bounded subset of X , then

‖T2(µ)‖ = max
t∈[0,T ]

∣∣∣∣ α

M(α)Γ(α)

∫t
0
(t− s)α−1g(s,µ(s),ABCDαµ(s))ds

∣∣∣∣ 6 1
M(α)Γ(α)

(
Kg

1 −Kg
+Mg

)
r := K.

Hence, T2 is bounded. Also for t1 < t2 ∈ [0, T ], we have

|T2(µ(t2)) − T2(µ(t1))| = ||
α

M(α)Γ(α)

∫t2

0
(t2 − s)

α−1g(s,µ(s),ABCDαµ(s))ds

−
α

M(α)Γ(α)

∫t1

0
(t1 − s)

α−1g(s,µ(s),ABCDαµ(s))ds||

6 α
∫t1

0

(t1 − s)
α−1 − (t2 − s)

α−1

M(α)Γ(α)
‖g(s,µ(s),ABCDαµ(s))‖ds

+α

∫t2

t1

(t2 − s)
α−1

M(α)Γ(α)
‖g(s,µ(s),ABCDαµ(s))‖ds 6

tα2 − tα1
M(α)Γ(α)

[
Mf +

Kgr

1 −Kg

]
,

as right side tends to zero at t1 → t2, so

‖T2µ(t2) − T2µ(t1)‖ → 0 as t1 → t2

implies that T2 is equi-continuous. As T2 is bounded and equi-continuous, therefore by Arzelá-Ascoli
theorem, T2 is completely continuous. Hence by using Theorem 2.4, the problem (1.1) has at least one
solution.

Theorem 3.4. Using hypothesis (H1)-(H3) and if

n∑
j=0

kjCh +Cf +
(1 −α)

M(α)
Cg +

Tα

M(α)Γ(α)

Cg

1 −Cg
< 1,

then the problem (1.1) has a unique solution.
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Proof. First, we define the operator T3 : X →X by

T3µ(t) =

n∑
j=0

kjh(µ) + f(t,µ(δt)) +
(1 −α)

M(α)
g(t,µ(t),ABCDαµ(t))

+
α

M(α)Γ(α)

∫t
0
(t− s)α−1g(s,µ(s),ABCDαµ(s))ds.

(3.4)

Now, consider µ, µ̄ ∈X , then, using (H1)-(H3) we can easily show that

‖T3µ− T3µ̄‖ 6
[ n∑
j=0

kjCh +Cf +
(1 −α)

M(α)
Cg +

Tα

M(α)Γ(α)

Cg

1 −Cg

]
‖µ− µ̄‖ .

Thus, by Banach contraction theorem, problem (1.1) has a unique solution.

4. Stability analysis

In this section, we study the H-U and generalized H-U stability of the problem (1.1). We recall the
definition from [31].

Definition 4.1. Let
µ(t) = Pµ(t) (4.1)

be the operator equation, then for any ε > 0 such that the inequality given by

|µ(t) − Pµ(t)| 6 ε, t ∈ [0, T ],

holds, then (4.1) is said to be H-U stable if there exists a constant CP > 0 and a unique fixed point µ̄ ∈X ,
such that |µ(t) − µ̄(t)| 6 CPε. In addition, for any ε > 0, such that the inequality given by

|µ(t) − Pµ(t)| 6 ϑ(ε), t ∈ [0, T ],

holds, then (4.1) is generalized H-U stable if there exists a constant CP > 0 and a unique fixed point
µ̄ ∈X , such that |µ(t) − µ̄(t)| 6 CPϑ(ε).

Remark 4.2. We define a function ψ : [0, T ]→ R independent of µ that statistics

(i) |ψ(t)| 6 ε, t ∈ [0, T ];
(ii) ψ(0) = 0.

Consider the problem
ABCDα[µ(t) − f(t,µ(δt))] = g(t,µ(t),ABCDαµ(t)) +ψ(t),

µ(0) =
n∑
j=0
kjh(µ),

which is equivalent to integral equation described by

µ(t) =

n∑
j=0

kjh(µ) + f(t,µ(δt)) +
(1 −α)

M(α)
g(t,µ(t),ABCDαµ(t))

+
α

M(α)Γ(α)

∫t
0
(t− s)α−1g(s,µ(s),ABCDαµ(s))ds+

α

M(α)Γ(α)

∫t
0
(t− s)α−1ψ(s)ds,
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which can be written in view of (3.4) as

µ(t) = T3µ(t) +
(1 −α)

M(α)
ψ(t) +

α

M(α)Γ(α)

∫t
0
(t− s)α−1ψ(s)ds. (4.2)

From (4.2), one has

|µ(t) − T3µ(t)| 6
(1 −α)

M(α)
|ψ(t)|+

α

M(α)Γ(α)

∫t
0
(t− s)α−1|ψ(s)|ds 6 Λα,Tε, (4.3)

where Λα,T =
(1−α)
M(α) +

Tα

M(α)Γ(α) . Thus, from (4.3), one has

|µ(t) − T3µ(t)| 6 Λα,Tε.

Theorem 4.3. The solution of problem (1.1) is H-U stable and consequently generalized H-U stable if

n∑
j=0

kjCh +Cf +
(1 −α)

M(α)
Cg +

Tα

M(α)Γ(α)

Cg

1 −Cg
= ∆ < 1.

Proof. We deduce the proof by using hypothesis (H1)-(H3) and Remark 4.2. Let µ ∈X be any solution of
(1.1) and µ̄ ∈X is the unique solution of (1.1), take

‖µ− µ̄‖ = max
t∈[0,T ]

|µ(t) − T3µ̄(t)|

6 max
t∈[0,T ]

[
|µ(t) − T3µ(t)|+ |T3µ(t) − T3µ̄(t)|

]
6 Λα,Tε+ max

t∈[0,T ]
|T3µ(t) − T3µ̄(t)|

6 Λα,Tε+

n∑
j=0

kjCh +Cf +

[ n∑
j=0

kjCh +Cf +
(1 −α)

M(α)
Cg +

Tα

M(α)Γ(α)

Cg

1 −Cg

]
‖µ− µ̄‖ ,

then we have
‖µ− µ̄‖ 6 Λα,Tε+∆‖µ− µ̄‖,

which implies

‖µ− µ̄‖ 6 Λα,T

1 −∆
ε.

Hence, solution of problem (1.1) is H-U Stable.

Moreover, if we have a non-decreasing function ϑ : (0, T) → R, such that ϑ(ε) = ε, then inview of
Definition 4.1, we have

‖µ− µ̄‖ 6 Λα,T

1 −∆
ϑ(ε).

Clearly, ϑ(0) = 0. So solution of problem (1.1) is generalized H-U stable.

5. Numerical method

Here we extend the numerical method presented in [14] called fractional Euler’s method for ABC
derivative. In this regards recall the general Taylor formula for a function φ about a as

φ(t) =

n∑
m=0

[(ABC
Dα

)n+1 n+1∑
l=0

tαlΓ(n+ 2)αl(1 −α)n−l+1

Γ(l+ 1)Γ(n− l+ 2)Γ(lα+ 1)(M(α))n+1
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+

(ABC
Dα

)m m∑
l=0

tαlΓ(m+ 1)αl(1 −α)m−l

Γ(l+ 1)Γ(m− l+ 1)Γ(lα+ 1)(M(α))m
(t− a)φ(a).

Now consider a general problem given by

ABCDαφ(t) = ψ(t,φ(t)), φ(0) = φ0. (5.1)

Let h = a
l , and tj = tj + jh be the nodes with j = 0, 1, 2, . . . , l by dividing the interval [0,a) ⊂ [0, T ] in to

l-subintervals, then expansion of φ(t) about t = t0, and obtain the following numerical Euler formula for
(5.1) by ignoring terms containing highest power of h as

φ(t1) = φ(t0) +ψ(t0,φ(t0))
α(h− a)α

M(α)Γ(α+ 1)
. (5.2)

In general, we can write (5.2) as

φ(tn+1) = φ(tn) +ψ(tn,φ(tn))
α(h− a)α

M(α)Γ(α+ 1)
, n = 0, 1, 2, . . . . (5.3)

Using (5.3), we can write the numerical scheme for the proposed problem as

µ(tn+1) =

n∑
j=0

kjh(µ) + f(tn,µ(δtn)) + g(tn,µ(tn), κ(tn))
α(h− a)α

M(α)Γ(α+ 1)
, n = 0, 1, 2, . . . , (5.4)

where ABC0 Dαµ(t) = κ(t), which we can further write on replacing n by n− 1 in (5.4) as

µ(tn) = µ(tn−1) + κ(tn−1)
α(h− a)α

M(α)Γ(α+ 1)
, n = 1, 2, . . . ,

which yields that

κ(tn) = [µ(tn) − µ(tn−1)]M(α)Γ(α)(h− a)−α. (5.5)

Using (5.5) in (5.4), we get the final formula as

µ(tn+1) =

n∑
j=0

kjh(µ) + f(tn,µ(δtn)) + g
(
tn,µ(tn), [µ(tn) − µ(tn−1)]M(α)Γ(α)(h− a)−α

)
α(h− a)α

M(α)Γ(α+ 1)
,

where n = 0, 1, 2, . . . .

6. Test problem

Here, we provide a test problem as illustration of our existence, uniqueness, and stability results.

Example 6.1. Consider
ABCDα[µ(t) − exp(−t) − 1

98 |µ(0.5t)|] = |µ(t)|+sin |µ(t)|+ABCDαµ(t)
t2+30 ,

u(0) =
2∑
j=0
kj

√
|µ|

25 ,

where k0 =
√

2, k1 = exp(−11), k2 =
√
π, δ = 0.5. Then f(t,µ(δt)) = exp(−t) + 1

98 |µ(0.5t)|,

g(t,µ(t),ABCDαµ(t)) =
|µ(t)|+ sin |µ(t)|+ABC Dαµ(t)

t2 + 30
and h(µ) =

√
|µ|

25
.
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On calculation, Ch = 1
25 , Cf = 1

98 , Cg = 1
31 , Kf = 2, Kg = 1, Kh = 1

25 , Mf = 2, Mg = 1, Mh = 1. Using
M( 1

2) = 1, T = 1, we compute that

n∑
j=0

kjCh +Cf +
(1 −α)

M(α)

(
Cg

1 −Cg

)
= 0.304338114 < 1.

Also, for instance at α = 1
2 , one has

n∑
j=0

kjCh +Cf +
(1 −α)

M(α)
Cg +

Tα

M(α)Γ(α)

Cg

1 −Cg
= 0.162402162 < 1.

Hence, all the Hypothesis holds. Thus, Theorem 3.3 follows that Example 6.1 has at least one solution
and Theorem 3.4 follows that Example 6.1 has a unique solution also. In addition, Theorem 4.3 follows
that the solution of Example 6.1 is H-U stable. In Figures 1, 2, and 3, we present the numerical solutions
against different fractional orders graphically of Example 6.1.
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Figure 1: Numerical results for Example 6.1 with various fractional orders.
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Figure 2: Numerical results for Example 6.1 with various fractional orders.
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Figure 3: Numerical results for Example 6.1 with various fractional orders.

7. Conclusion

This work was devoted to the existence and uniqueness theory of a fractional differential equation
with initial conditions on n + 1 terms. Moreover, we used the ABC fractional differential operator to
study the afore mentioned problem. The conditions for the existence and uniqueness of the solution were
established by applying the Banach and the Krasnoselskii’s fixed point theorems. Additionally, some
results related to H-U and generalized H-U stabilities were derived using the functional analysis tools.
Using the Euler concept, a numerical scheme has been developed for the computation of the numerical
solution to the given problem. All the derived results have been demonstrated by a suitable example
with graphical presentations using different fractional orders. The analysis we established here for a class
of HDEs under the ABC fractional order derivative with multi conditions can be extended to boundary
value problems of HDEs in the future. Further, more various classes of coupled HDEs by using fractals
fractional concepts can be investigated in this future in the same way.
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