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Abstract
The approximate numerical approach for the system of coupled nonlinear ordinary differential equations (ODEs) of a

biochemical reaction model is very important for biochemists and scientist working in the field of biochemistry and related
issues. Within this article, two computational algorithms for numerically solving a biochemical reaction model with time-
fractional derivatives are examined and compared. The first technique depends on the collocation method along with the
shifted Jacobi operational matrix for fractional derivative defined in the Caputo sense, and using this technique, we created a
system of algebraic equations from the given fractional model. Another approach is centered on the basic theorem of fractional
calculus and the characteristics of Newton’s polynomial interpolation (NPI). We use these two methods to compute solution
for the fractional biochemical reaction model. The model’s computational outcomes are compared by using the recommended
techniques in this work. Graphical and tabular forms are used to confirm the reliability and effectiveness of both techniques and
an excellent match is discovered.
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1. Introduction

Numerous studies and scientists have concentrated on the subject of fractional differential equations
over the last few decades. Consequently, a wide range of issues can be simulated and modeled by
using fractional differential equations. As an example, in the fields of electrical, electronic, mechanical,
biological, and other practical applications. See the work [7, 28] for additional information. Unluckily, it
is challenging to attain an accurate solution for these models. The mathematical and estimate techniques
have thus captured the attention of a lot of researchers. We have numerous such techniques, including
He’s variational iteration technique [15, 32], homotopy analysis [25, 33, 34], Fourier spectral techniques
[6], Adomian’s decomposition technique [38], [43], collocation techniques [8, 19, 20, 44], finite difference
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schemes [47], and spectral techniques [17], [18]. Numerous additional techniques have been used with
numerous applied models; for instance, see [2, 26, 48, 49]. Many scholars have shifted their attention
towards the topic of fractional calculus in recent years [16, 23, 24, 37, 45, 46].

In biochemical reactions, the outer layer of the enzyme cell automatically has a fractional order elec-
trical conductance [9]. A fractional-order biochemical reaction model has therefore been utilized in this
article. This paper uses Caputo version of fractional derivatives because it expertly handles problems
with initial values. The usefulness of the collection technique and the Newton polynomial interpolation
method to obtain an estimated resolution to well-known Michelson-Menten biochemical reaction model
is examined in this article. A straightforward model of the enzymatic process was developed by Michaelis
and Menten [27] in 1913, and the basic enzymatic reaction structures have been given by mechanism [35]

Λ3 +Λ4
r1


r−1
Λ2

r2−→ Λ3 +Λ1,

where the letters Λ3, Λ4, Λ2, and Λ1 stand for the respective enzyme, substrate, intermediate complex,
and product. For each reaction, the variables r1, r−1, and r2, respectively, show the positive rate constants.
The mass action principle states that, concentrations of the reactants directly affect reaction rates then it
is possible to calculate the above scheme’s time evolution from the four nonlinear ODE system’s solution
[36],

dΛ4

dt
= −r1Λ3Λ4 + r−1Λ2,

dΛ3

dt
= −r1Λ3Λ4 + (r−1 + r2)Λ2,

dΛ2

dt
= r1Λ3Λ4 − (r−1 + r2)Λ2,

dΛ1

dt
= r2Λ2,

depending on the initial circumstances: Λ4(0) = Λ4
0, Λ3(0) = Λ3

0, Λ2(0) = 0, Λ1(0) = 0. There are only
two equations that can be used in place of the differential equations mentioned above for the substrate Λ4
and the intermediate enzyme-substrate complex Λ2 [12]. With derivatives of fractional order ε, the new
set of DE is given by

dελ1

dtε
= −λ1 + (ζ− η)λ2 + λ1λ2, 0 < ε 6 1,

dελ2

dtε
=

1
γ
(λ1 − ζλ2 − λ1λ2), 0 < ε 6 1, (1.1)

depending on the initial situations: λ1(0) = 1, λ2(0) = 0, where λ1 and λ2 represent the substrate and
enzyme-substrate intermediate complex concentrations, respectively, in dimensionless form. To get more
general results we change standard order differential equations into fractional differential equations.

2. Preliminaries

2.1. An introduction to fractional calculus
The definitions used for the concept and the characteristics that are going to be utilized during this

study are presented here [21, 29].

Definition 2.1. For ε > 0 and λ(t) ∈ H1(c,d), where H1(c,d) is the space of all integrable functions on (c,
d), Riemann-Liouville fractional integral of order ε, indicated by Iε0 , is provided by

Iε0 λ(t) =
1
Γ(ε)

∫t
0
(t−φ)ε−1λ(φ)dφ.

Definition 2.2. The Caputo fractional derivative of order ε, for ε > 0, indicated by Dε, is described by

Dελ(t) =
1

Γ(m− ε)

∫t
0
(t−φ)m−ε−1Dmλ(φ)dφ (m− 1 < ε < m;m ∈N = {1, 2, 3, . . .}).
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If derivatives signs dε

dtε are replaced in (1.1) by Dε and 0 < ε 6 1, we attain the fractional biochemical
reaction model in sense of Caputo derivative as

0D
ε
tλ1(t) = −λ1 + (ζ− η)λ2 + λ1λ2, (2.1)

0D
ε
tλ2(t) =

1
γ
(λ1 − ζλ2 − λ1λ2). (2.2)

2.2. Function approximation
A function ρ ∈ L2

f[0, 1], with |ρ”(y)| 6 A, can be extended as

ρ(y) = lim
k→∞

k∑
r=0

oru
(p,q)
r (y), (2.3)

ρ(y) =< or,u
(p,q)
r (y) > and sign < ., . > represents standard inner product. Regarding estimation of

finite dimension this is the composition of equation (2.3),

ρ ∼=

m∑
r=0

oru
(p,q)
r (y) = OTUm(y).

Matrices Um(y) and O are of order (m+ 1)× 1, given as

O = [o0,o1, . . . ,om]T and Um(y) = [u
(p,q)
0 ,u(p,q)

1 , . . . ,u(p,q)
m ]T .

2.3. Jacobi polynomials
This article uses Jacobi polynomials as a foundation for estimating unknown functions. The definition

of the shifted Jacobi polynomial is [1, 5, 11]:

u
(g,h)
r (y) =

r∑
e=0

(−1)r−e
Γ(r+ h+ 1)Γ(r+ e+ g+ h+ 1)

Γ(e+ h+ 1)Γ(r+ g+ h+ 1)(r− e)!e!
ye,

where the parameters of the Jacobi polynomial, described in Doha et al. [11], are p and q. Orthogonal
property of Jacobi polynomials are∫ 1

0
u
(g,h)
i (y)u

(g,h)
s (y)ω(g,h)(y)dy = ψg,h

i δis,

δis and ω(g,h)(y) denote Kronecker delta function and weight function, respectively, displayed as

ω(g,h)(y) = (1 − y)gyh and ψ
g,h
i =

Γ(i+ g+ 1)Γ(i+ h+ 1)
(2i+ g+ h+ 1)k!Γ(i+ g+ h+ 1)

.

2.4. Fractional derivative Jacobi operational matrix
Theorem 2.3. Assuming that Uk(y) = [u

(p,q)
0 ,u(p,q)

1 , . . . ,u(p,q)
k ]T is the shifted Jacobi vector and ε > 0, then

Dεu
(g,h)
r (y) = D(ε)Uk(y).

Here D(ε) = (M(r, j)) denotes operational matrix of order (k+ 1)× (k+ 1), and ε represent order of fractional
derivative, which entries are provided as

M(r, j,g,h) =
r∑

a=[ε]

(−1)r−a
Γ(r+ g+ 1)Γ(r+ a+ g+ h+ 1)

(r− a)!Γ(a+ h+ 1)Γ(r+ g+ h+ 1)Γ(a− ε+ 1)

×
j∑
s=0

(−1)j−s
Γ(g+ 1)Γ(j+ s+ g+ h+ 1)Γ(a+ s− ε+ h+ 1)(2j+ g+ h+ 1)j!

(j− s)!(s)!Γ(j+ g+ 1)Γ(s+ h+ 1)Γ(a+ s− ε+ g+ h+ 2)
.

Proof. Research papers [1, 5, 11] are available to view as evidence.
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3. An overview of the methodology

In this section, we will look at the procedure that makes use of collocation technique and operational
matrix to produce fractional DE solution [39–41]. First of all, we adopt following estimation:

λ(t) =

k∑
r=0

oru
(p,q)
r (t) = OTUk(t). (3.1)

Taking order one derivative of (3.1), we obtain

D ′λ(t) = OTD ′Uk(t) ∼= OTD(1)Uk(t), (3.2)

D(1) is operational differentiation matrix of order 1. Now, taking order ε derivative of (3.1),

Dελ(t) = OTDεUk(t) ∼= OTD(ε)Uk(t), (3.3)

D(ε) is operational differentiation matrix of order ε. From (3.1) and (3.2), we can write

λ(0) = OTUk(0), λ′(0) = OTD(1)Uk(0). (3.4)

3.1. Numerical simulation of the fractional order biochemical reaction mode
In equations (2.1) and (2.2), using (3.1) and (3.3) we attain following equations:

OT1D
(ε)Uk(t) +O

T
1Uk(t) − (ζ− η)OT2Uk(t) −O

T
1Uk(t)O

T
2Uk(t) = 0, (3.5)

OT2D
(ε)Uk(t) −

1
γ

(
OT1Uk(t) − ζO

T
2Uk(t) −O

T
1Uk(t)O

T
2Uk(t)

)
= 0. (3.6)

The residuals for Equations (3.5) and (3.6) are given as:

R1k(t) = O
T
1D

(ε)Uk(t) +O
T
1Uk(t) − (ζ− η)OT2Uk(t) −O

T
1Uk(t)O

T
2Uk(t), (3.7)

R2k(t) = O
T
2D

(ε)Uk(t) −
1
γ

(
OT1Uk(t) − ζO

T
2Uk(t) −O

T
1Uk(t)O

T
2Uk(t)

)
. (3.8)

Now, when Equations (3.7) and (3.8) are collocated at k points presented as tr = r
k , r = 0, 1, 2, . . . ,k− 1,

we get

R1k(tr) = O
T
1D

(ε)Uk(tr) +O
T
1Uk(tr) − (ζ− η)OT2Uk(tr) −O

T
1Uk(tr)O

T
2Uk(tr), (3.9)

R2k(tr) = O
T
2D

(ε)Uk(tr) −
1
γ

(
OT1Uk(tr) − ζO

T
2Uk(tr) −O

T
1Uk(tr)O

T
2Uk(tr)

)
. (3.10)

Using equation (3.4), the initial conditions become as follows:

OT1Uk(0) − λ1(0) = 0, OT2Uk(0) − λ2(0) = 0, (3.11)

A non-linear set of 2(k+ 1) equations is produced by equations (3.9) and (3.10) and the initial conditions
(3.11). We obtain OT1 and OT2 values from the system’s solution. We can easily find an approximated
solution of the fractional differential equations (2.1)-(2.2) after getting the unknown values.
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4. Error analysis

Theorem 4.1. Let λ : [0, 1] −→ R be a function, λ ∈ C(k+1)[0, 1], and λk(y)be the kth approximate discovered
using Jacobi polynomials. Then

Efλ,k = ||λ− λk||L2
f[0,1],

as k −→∞ and error vector Efλ,k −→ 0.

Proof. Refer to the books of Rivlin [30] and Kreyszig [22], as well as the research study by Behroozifar and
Sazmand [4].

Theorem 4.2. Eε,f
D,k is the error vector for the ε order operational matrix differentiation, which takes place using

(k+ 1) Jacobi polynomials. Then
Eε,f
D,k = D(ε)Uk(t) −D

εUk(t), (4.1)

the error vector of Equation (4.1) tends towards zero as k −→∞.

Proof. The studies of Ezz-Eladien et al. [14] and Singh and Srivastava [42] are available for viewing it.

Theorem 4.3. Consider the functional G, then

lim
k→∞αk(t) = α(t) = inf

t∈[0,1]
G(t).

Proof. See [13].

For equation (2.1), the functional G is given as

G(t) = 0D
ε
tλ1(t) + λ1(t) − (ζ− η)λ2(t) − λ1(t)λ2(t) = 0. (4.2)

Using equations (3.1) and (3.3), we obtain

G(E)(t) = OT1D
(ε)Uk(t) + E

ε,f
D,k +O

T
1Uk(t) + E

f
λ,k − (ζ− η)

(
OT2Uk(t) + E

f
λ,k
)

−
(
OT1Uk(t) + E

f
λ,k
)(
OT2Uk(t) + E

f
λ,k
)
,

(4.3)

where
Efλ,k = OTU(t) −OTUk(t), Eε,f

D,k = D(ε)Uk(t) −D
εUk(t).

Residual for equation (4.3) is

R
(E)
k (t) = OT1D

(ε)Uk(t) + E
ε,f
D,k +O

T
1Uk(t) + E

f
λ,k − (ζ− η)

(
OT2Uk(t) + E

f
λ,k
)

−
(
OT1Uk(t) + E

f
λ,k
)(
OT2Uk(t) + E

f
λ,k
)
,

when equation (4.3) is collocated at k points presented by tr = r
k , r = 0, 1, 2, . . . ,k− 1, we obtain

R
(E)
k (tr) = O

T
1D

(ε)Uk(tr) + E
ε,f
D,k +O

T
1Uk(tr) + E

f
λ,k

− (ζ− η)
(
OT2Uk(tr) + E

f
λ,k
)
−
(
OT1Uk(tr) + E

f
λ,k
)(
OT2Uk(tr) + E

f
λ,k
)
.

(4.4)

Equations (4.4) and (3.11) together yield a set of non-linear algebraic equations in the final step. To obtain
value of the unknowns we solve the attain system, and after that, we solve Equation (4.2). Let α∗k(t)
represent the achieved solution. Now, utilizing Theorems 4.1 and 4.2 and applying the limit k −→∞,

α∗k(t) −→ αk(t). (4.5)

From (4.5) and Theorem 4.3, limk→∞ αk(t) = α(t). For the fractional differential equation (2.2), the iden-
tical proof can be created.
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5. Newton polynomial interpolation

In order to explore the arithmetical solutions of the suggested fractional biochemical reaction model,
this part will develop iterative formulas and use them to get numerical solution ([3, 31]). For equations
(2.1) and (2.2), the fundamental theorem of fractional calculus yields iterative formulas

λ1(t) − λ1(0) =
1
Γ(ε)

∫t
0
(−λ1(φ) + (ζ− η)λ2(φ) + λ1(φ)λ2(φ)) (t−φ)

ε−1dφ, (5.1)

λ2(t) − λ2(0) =
1
Γ(ε)

∫t
0

(
1
γ
(λ1(φ) − ζλ2(φ) − λ1(φ)λ2(φ))

)
(t−φ)ε−1dφ. (5.2)

These equations (5.1) and (5.2) can be rewritten as

λ1 (tn+1) − λ1(0) =
1
Γ(ε)

∞∑
m=2

∫tm+1

tm

(−λ1(φ) + (ζ− η)λ2(φ) + λ1(φ)λ2(φ)) (tm+1 −φ)
ε−1dφ,

λ2 (tn+1) − λ2(0) =
1
Γ(ε)

∞∑
m=2

∫tm+1

tm

(
1
γ
(λ1(φ) − ζλ2(φ) − λ1(φ)λ2(φ))

)
(tm+1 −φ)

ε−1dφ.

We use Newton polynomial interpolation to derive the results (same as in [3])

λ1(tn+1) = λ1(0) +
1
Γ(ε)

n∑
m=2

(−λ1(tm−2) + (ζ− η)λ2(tm−2) + λ1(tm−2)λ2(tm−2))

×
∫tm+1

tm

1
(tn+1 −φ)1−εdφ+

1
hΓ(ε)

n∑
m=2

(
(−λ1(tm−1) + (ζ− η)λ2(tm−1) + λ1(tm−1)λ2(tm−1))

−
(
−λ1(tm−2) + (ζ− η)λ2(tm−2) + λ1(tm−2)λ2(tm−2)

))
×
∫tm+1

tm

(φ− tm−2)

(tn+1 −φ)1−εdφ+
1

2h2Γ(ε)

n∑
m=2

(
(−λ1(tm)(ζ− η)λ2(tm) + λ1(tm)λ2(tm))

− 2 (−λ1(tm−1) + (ζ− η)λ2(tm−1) + λ1(tm−1)λ2(tm−1)) +
(
−λ1(tm−2) + (ζ− η)λ2(tm−2)

+ λ1(tm−2)λ2(tm−2)
)) ∫tm+1

tm

(φ− tm−2)(φ− tm−1)

(tn+1 −φ)1−ε dφ,

λ2(tn+1) = λ2(0) +
1
Γ(ε)

n∑
m=2

(
1
ε

(
λ1(tm−2) − ζλ2(tm−2) − λ1(tm−2)λ2(tm−2)

)) ∫tm+1

tm

1
(tn+1 −φ)1−εdφ

+
1

hΓ(ε)

n∑
m=2

((
1
ε

(
λ1(tm−1) − ζλ2(tm−1) − λ1(tm−1)λ2(tm−1)

))
−
(1
ε

(
λ1(tm−2) − ζλ2(tm−2)

− λ1(tm−2)λ2(tm−2)
))) ∫tm+1

tm

(φ− tm−2)

(tn+1 −φ)1−εdφ+
1

2h2Γ(ε)

n∑
m=2

((
1
ε

(
λ1(tm) − ζλ2(tm)

−λ1(tm)λ2(tm)
))

− 2
(

1
ε

(
λ1(tm−1) − ζλ2(tm−1) − λ1(tm−1)λ2(tm−1)

))
+

(
1
ε

(
λ1(tm−2) − ζλ2(tm−2) − λ1(tm−2)λ2(tm−2)

))) ∫tm+1

tm

(φ− tm−2)(φ− tm−1)

(tn+1 −φ)1−ε dφ.

This Newton interpolation formula evaluates the integrals directly. The computational solutions to equa-
tions (2.1) and (2.2) are then given using the Caputo derivative,

λ1(tn+1) = λ1(0) +
hε

Γ(1 + ε)

n∑
m=2

(−λ1(tm−2) + (ζ− η)λ2(tm−2) + λ1(tm−2)λ2(tm−2))Ω1 +
hε

Γ(2 + ε)
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×
n∑
m=2

(
(−λ1(tm−1) + (ζ− η)λ2(tm−1) + λ1(tm−1)λ2(tm−1)) −

(
−λ1(tm−2) + (ζ− η)λ2(tm−2)

+ λ1(tm−2)λ2(tm−2)
))
Ω2 +

hε

2Γ(3 + ε)

n∑
m=2

(
(−λ1(tm) + (ζ− η)λ2(tm) + λ1(tm)λ2(tm))

− 2 (−λ1(tm−1) + (ζ− η)λ2(tm−1) + λ1(tm−1)λ2(tm−1)) +
(
−λ1(tm−2) + (ζ− η)λ2(tm−2)

+ λ1(tm−2)λ2(tm−2)
))
Ω3,

λ2(tn+1) = λ2(0) +
hε

Γ(1 + ε)

n∑
m=2

(
1
ε

(
λ1(tm−2) − ζλ2(tm−2) − λ1(tm−2)λ2(tm−2)

))
Ω1 +

hε

Γ(2 + ε)

×
n∑
m=2

((
1
ε

(
λ1(tm−1) − ζλ2(tm−1) − λ1(tm−1)λ2(tm−1)

))
−
(1
ε

(
λ1(tm−2) − ζλ2(tm−2)

− λ1(tm−2)λ2(tm−2)
)))

Ω2 +
hε

2Γ(3 + ε)

n∑
m=2

((
1
ε

(
λ1(tm) − ζλ2(tm) − λ1(tm)λ2(tm)

))
− 2

(
1
ε

(
λ1(tm−1) − ζλ2(tm−1) − λ1(tm−1)λ2(tm−1)

))
+

(
1
ε

(
λ1(tm−2) − ζλ2(tm−2) − λ1(tm−2)λ2(tm−2)

)))
Ω3,

where
Ω1 = (n−m+ 1)ε − (n−m)ε,
Ω2 = (n−m+ 1)ε(n−m+ 3 + 2ε) − (n−m)ε(n−m+ 3 + 3ε),

Ω3 = (n−m+ 1)ε
(
2(n−m)2 + (3ε+ 10)(n−m) + 2ε2 + 9ε+ 12

)
− (n−m)ε

(
2(n−m)2 + (5ε+ 10)(n−m) + 6ε2 + 18ε+ 12

)
.

6. Numerical results and discussion

This part of the article specifically examines the effect of fractional order ε on the concentration of
the substrate and an intermediate enzyme-substrate complex. Distinct values of the fractional order ε for
the dimensionless reaction parameters ζ = 1, η = 0.375, and γ = 0.1 are taken into consideration in the
numerical solution of the fractional order biochemical reaction model utilizing the collection technique
and NPI method. For multiple values of fractional order, ε = 0.90, 0.80, 0.70, as well as for the classical
derivative order, ε = 1, the estimated outcomes of λ1(t) and λ2(t) are calculated. The graphical outcomes
by collocation technique are shown in Figures 1 and 2. The analysis concludes that fractional order
continuously influences the mathematical solutions that were acquired. Additionally, it is visible that as ε
approaches 1, computational solutions of the fractional biochemical reaction model approach the accurate
solutions. With an increasing value of t and decreasing value of ε, Figure 1 shows that concentration of
substrate, i.e., λ1(t), reduces and then further tends to zero. Figure 2 shows that as t is increased and ε
is decreased, concentration of the intermediate enzyme-substrate complex, denoted by the symbol λ2(t),
rises and reaches its maximum value. The behavior of λ1(t) and λ2(t) concerning time are also shown in
Figure 3 and 4 and these figures are obtained by Newton’s polynomial interpolation technique (ε = 1,
L = 0.1, h = 0.0002, ζ = 1, η = 0.375, γ = 0.1,n = 500). Figures 5 and 6 demonstrate the comparison of
the computational solutions of fractional biochemical reaction model using two proposed methodology.
Additionally, we see in these graphs that the numerical results for the two approaches are very similar
and display the same behavior. The outcome is well-aligned with the results of the fractional homotopy
analysis transform technique and multistage new iterative technique utilized, respectively, by Damarla et
al. [10] and Dubey et al. [12] for the fractional biochemical reaction model.
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Table 1: A comparison of the λ1(t) numerical value calculated by Jacobi collocation method (JCM) and Newton polynomial
interpolation (NPI) method for ε = 1.

t λ1(JCM) λ1(NPI)

0.00 1 1
0.02 0.982703 0.983288
0.04 0.969802 0.970765
0.06 0.960045 0.961251
0.08 0.952484 0.953722
0.10 0.946413 0.947514

Table 2: A comparison of the λ2(t) numerical value calculated by Jacobi collocation method (JCM) and Newton polynomial
interpolation (NPI) method for ε = 1.

t λ2(JCM) λ2(NPI)

0.00 0 0
0.02 0.166948 0.160807
0.04 0.280173 0.269614
0.06 0.354985 0.341654
0.08 0.402998 0.389399
0.10 0.432846 0.421011
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Figure 1: Plot of λ1(t) vs t for various fractional order ob-
tained by collocation technique at g = 1 h = 1, k = 8, ζ = 1,
η = 0.375, γ = 0.1.
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Figure 2: Plot of λ2(t) vs t for various fractional order ob-
tained by collocation technique at g = 1 h = 1, k = 8, ζ = 1,
η = 0.375, γ = 0.1.
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Figure 3: Plot λ1(t) vs t for fractional order ε = 1 obtained
by NPI technique at L = 0.1, h = 0.0002, n = 500, ζ = 1,η =
0.375, γ = 0.1.

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.1

0.2

0.3

0.4

t

λ
2
(t
)

Figure 4: Plot λ2(t) vs t for fractional order ε = 1 obtained
by NPI technique at L = 0.1, h = 0.0002, n = 500, ζ = 1,η =
0.375, γ = 0.1.
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Figure 5: Graph of λ1(t) vs t for ε = 1 obtained by colloca-
tion technique (line) and NPI technique (dash line).
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Figure 6: Graph of λ2(t) vs t for ε = 1 obtained by colloca-
tion technique (line) and NPI technique (dash line).

7. Conlusions

In this article, two computational methodologies are discussed to evaluate the computational solu-
tions of the fractional biochemical reaction model. The first approach depends on the Jacobi polynomials’
operational matrix and collocation technique. The basic concept of fractional calculus and Newton’s
polynomial interpolation are used for constructing the second technique. To find mathematical solu-
tions to the fractional biochemical reaction model, these two techniques are used. The graphs produced
by the two recommended approaches were combined to compare the numerical solutions and a good
compatibility was discovered. The fractional biochemical reaction model’s mathematical solution utiliz-
ing collocation method and NPI technique demonstrate how effectively these methods can be applied to
explain chemistry-related issues in chemistry science.
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[8] Y. Çenesiz, Y. Keskin, A. Kurnaz, The solution of the Bagley-Torvik equation with the generalized Taylor collocation
method, J. Franklin Inst., 347 (2010), 452–466. 1

[9] K. S. Cole, Electric conductance of biological systems, Cold Spring Harbor Symp. Quant. Biol., 1 (1933), 107–116. 1
[10] S. K. Damarla, M. Kundu, Approximate solution of nonlinear fractional order biochemical reaction model by multistage

new iterative method, J. Fract. Calc. Appl., 5 (2014), 107–120. 6
[11] E. H. Doha, A. H. Bhrawy, D. Baleanu, S. S. Ezz-Eldien. The operational matrix formulation of the Jacobi tau approxi-

mation for space fractional diffusion equation, Adv. Difference Equ., 2014 (2014), 14 pages. 2.3, 2.4

https://doi.org/10.1186/1687-1847-2013-104
https://doi.org/10.1186/1687-1847-2013-104
https://doi.org/10.1007/s11766-020-3830-5
https://doi.org/10.1007/s11766-020-3830-5
https://books.google.com/books?hl=en&lr=&id=pR39DwAAQBAJ&oi=fnd&pg=PP1&dq=New+numerical+scheme+with+Newton+polynomial:+theory,+methods,+and+applications&ots=pA5nUW6N7g&sig=ICJseHM03WF_61fOx7V2X1qZiTM
https://books.google.com/books?hl=en&lr=&id=pR39DwAAQBAJ&oi=fnd&pg=PP1&dq=New+numerical+scheme+with+Newton+polynomial:+theory,+methods,+and+applications&ots=pA5nUW6N7g&sig=ICJseHM03WF_61fOx7V2X1qZiTM
https://doi.org/10.1016/j.amc.2016.09.028
https://doi.org/10.1016/j.amc.2016.09.028
http://math.usm.my/bulletin/pdf/acceptedpapers/2012-05-057-R1.pdf
http://math.usm.my/bulletin/pdf/acceptedpapers/2012-05-057-R1.pdf
https://doi.org/10.1007/s10543-014-0484-2
https://doi.org/10.1007/s10543-014-0484-2
https://books.google.com/books?hl=en&lr=&id=TCtR44cPVx8C&oi=fnd&pg=PR5&dq=Fractional+order+systems:+modeling+and+control+applications&ots=-RfDaCfzrr&sig=w8OUTGEIRwUvf9VtsCBjPgumVRA
https://books.google.com/books?hl=en&lr=&id=TCtR44cPVx8C&oi=fnd&pg=PR5&dq=Fractional+order+systems:+modeling+and+control+applications&ots=-RfDaCfzrr&sig=w8OUTGEIRwUvf9VtsCBjPgumVRA
https://doi.org/10.1016/j.jfranklin.2009.10.007
https://doi.org/10.1016/j.jfranklin.2009.10.007
https://symposium.cshlp.org/content/1/107.short
https://doi.org/10.1504/ijcsm.2014.064064
https://doi.org/10.1504/ijcsm.2014.064064
https://doi.org/10.1186/1687-1847-2014-231
https://doi.org/10.1186/1687-1847-2014-231


D. Kumar, H. Nama, D. Baleanu, J. Math. Computer Sci., 36 (2025), 218–228 227

[12] V. P. Dubey, R. Kumar, D. Kumar, Approximate analytical solution of fractional order biochemical reaction model and its
stability analysis, Int. J. Biomath., 12 (2019), 21 pages. 1, 6

[13] S. S. Ezz-Eldien, New quadrature approach based on operational matrix for solving a class of fractional variational problems
J. Comput. Phys., 317 (2016), 362–381. 4

[14] S. S. Ezz-Eldien, A. A. El-Kalaawy, Numerical simulation and convergence analysis of fractional optimization problems
with right-sided Caputo fractional derivative, . Comput. Nonlinear Dynam., 13 (2018), 8 pages. 4

[15] J.-H. He, Variational iteration method–a kind of non-linear analytical technique: some examples, Int. J. Non-linear Mech.,
(1999), 699-708. 1

[16] H. Jafari, H. Tajadodi, S. R. M. Khatir, V. T. Nguyen, Fractional variational problem involving indefinite integrals and
nonsingular kernels, Fractals, 31 (2023), 12 pages. 1

[17] S. Kazem, S. Abbasbandy, S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equa-
tions, Appl. Math. Model., 37 (2013), 5498–5510. 1

[18] M. M. Khader, K. M. Saad, On the numerical evaluation for studying the fractional KdV, KdV-Burgers and Burgers
equations, Eur. Phys. J. Plus, 133 (2018) 1–13. 1

[19] M. M. Khader, K. M. Saad, D. Baleanu, S. Kumar, A spectral collocation method for fractional chemical clock reactions,
Comput. Appl. Math., 39 (2020), 12 pages. 1

[20] M. M. Khader, K. M. Saad, Z. Hammouch, D. Baleanu, A spectral collocation method for solving fractional KdV and
KdV-Burgers equations with non-singular kernel derivatives, Appl. Numer. Math., 161 (2021), 137–146. 1

[21] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science
B.V., Amsterdam, (2006). 2.1

[22] E. Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, New York, (1989). 4
[23] D. Kumar, H. Nama, D. Baleanu, Numerical and computational analysis of fractional order mathematical models for

chemical kinetics and carbon dioxide absorbed into phenyl glycidyl ether, Results Phys., 53 (2023), 1–7. 1
[24] D. Kumar, H. Nama, D. Baleanu, Computational analysis of fractional Michaelis-Menten enzymatic reaction model,

AIMS Math., 9 (2024), 625–641. 1
[25] S. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004), 499–513. 1
[26] K. Maleknejad, M. S. Dehkordi, Numerical solutions of two-dimensional nonlinear integral equations via Laguerre wavelet

method with convergence analysis, Appl. Math. J. Chinese Univ. Ser. B, 36 (2021), 83–98. 1
[27] L. Michaelis, M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z, 49 (1913), 333–369. 1
[28] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu-Batlle, Fractional-order systems and controls: fundamentals

and applications, Springer, London, (2010). 1
[29] I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA, (1999). 2.1
[30] T. J. Rivlin, An introduction to the approximation of functions, Dover Publications, New York, (1981). 4
[31] K. M. Saad, A different approach for the fractional chemical model, Rev. Mexicana Fı́s., 68 (2022), 13 pages. 5
[32] K. M. Saad, E. H. F. Al-Sharif, Analytical study for time and time-space fractional Burgers’ equation, Adv. Difference

Equ., 2017 (2017), 15 pages. 1
[33] K. M. Saad, E. H. F. AL-Shareef, A. K. Alomari, D. Baleanu, J. F. Gómez-Aguilar, On exact solutions for time-fractional
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