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Abstract
We discuss a discrete-time logistic model with harvesting and feedback control. The discrete model is obtained by applying

Euler’s method to its continuous model. We first determine the equilibrium points, including their existence conditions and
their local stability properties. We then apply the central manifold theorem and bifurcation theory to establish conditions
for the existence of both period-doubling bifurcation and Neimark-Sacker bifurcation around the positive equilibrium point.
Finally, we provide some numerical simulations to verify the feasibility of the theoretical results and demonstrate the complex
dynamic behavior. Moreover, the presence of chaos in the system is justified numerically by the computed maximum Lyapunov
exponent.
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1. Introduction

One of the well-known models of single-species population is the logistic model

dx(t)

dt
= x(t)

(
1 − x(t)

)
, (1.1)

where x(t) denotes the size of population at time t. Here the intrinsic growth rate and carrying capacity
are normalized to 1. Equation (1.1) has an unstable extinction equilibrium point x0 = 0 and a unique
positive equilibrium point x∗ = 1 which is globally asymptotically stable [21]. It is also known that the
environment can be subjected to a feedback control. Feedback control is a process in which a change in
a particular component of an ecosystem necessarily generates a corresponding set of changes in other
components, which in turn affects the component that was changed in the first place [29]. Species can be
affected by negative feedbacks in their habitats, such as accumulation of toxic residues and anthropogenic
control adaptations. Over the past decade, logistic model with feedback control has become one of the
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most important topics in population dynamics research. In this regard, Fan dan Wang [5] has discussed
the global stability of a logistic model with feedback control. The influence of various types of Allee
effects on the dynamics of a logistic model with feedback control has been studied in [14, 17, 33]. The
generalization of feedback control on a logistic model has been introduced by Hoang [9], namely by
introducing a control parameter such that the feedback can be positive or negative. Recently, logistic
models with feedback control have also been considered at fractional orders [10, 11] where the authors
have applied the Grünwald-Letnikov method in combination with a nonstandard finite difference scheme
to solve fractional logic models.

In addition to feedback control, many scientists also studied the effects of harvesting. For instance,
the impact of species harvesting on predator-prey interactions was studied in[2, 3, 18, 23, 25]. The effects
of species harvesting have also been studied in single population models, please refer to [13, 15, 31, 32].
Very recently, the authors have introduced a harvested logistic model with feedback control and studied
its dynamics [27]. In the normalized variable, the model is given by

dx(t)

dt
= x(t)

(
1 − x(t) − ay(t)

)
− bx(t), x(0) > 0,

dy(t)

dt
= −ey(t) + cx(t), y(0) > 0, (1.2)

where a, c, and e are positive constant and b is the harvesting coefficient. It was shown in [27] that the
model (1.2) has the following properties.

1. The model (1.2) always has an extinction point E0(x0,y0) = (0, 0), which is asymptotically stable if
b > 1.

2. If b < 1, then besides the extinction point E0, the model (1.2) has also a unique positive equilibrium
E∗(x∗,y∗), where

x∗ =
e(1 − b)

e+ ac
, y∗ =

c(1 − b)

e+ ac
. (1.3)

The positive equilibrium point is asymptotically stable only if b < 1.

We notice that the model (1.2) takes the form of a system of ordinary differential equations. This is
typically used in populations with overlapping generations, i.e., where the reproductive process occurs
continuously. However, in many species, generations do not overlap or are born during the normal
breeding season. In this case, the dynamical populations can be described using difference equations or
discrete time maps [16, 22]. Discrete models are well-known to exhibit richer dynamics than continuous
models, see e.g. [1, 19, 20, 24, 30], and can also provide efficient computational models of continuous
models for numerical simulations [8, 12, 28].

Motivated by the above discussion, this article considers the discrete-time version of (1.2). The discrete-
time model is obtained by the forward Euler scheme, namely

xn+1 = xn + h(1 − xn − ayn − b)xn, x0 > 0, yn+1 = yn + h(−eyn + cxn), y0 > 0, (1.4)

where h > 0 is the step-size of integration. Since the scheme (1.4) is derived using the forward Euler
method, the convergence of this scheme is of first-order. Detailed proof of the convergence of error
estimates can be seen in [6]. In this article, we aim to study the dynamics behavior of the discrete-time
model (1.4), including the existence and stability properties of equilibrium points, as well as the period-
doubling bifurcation and Neimark-Sacker bifurcation.

The organization of this article is as follows. In Section 2 we discuss the existence and stability
of equilibrium points. We next show in Section 3 that under suitable parameters values, the model
(1.4) undergoes period-doubling bifurcation and Neimark-Sacker bifurcation. To illustrate the analytical
results, we present some numerical simulations in Section 4. A brief conclusion will be given in Section 5.
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2. The existence and stability of equilibrium points

The equilibrium points of discrete-time model (1.4) can be determined by solving the following equa-
tion

x = x+ h(1 − x− ay− b)x, y = y+ h(−ey+ cx).

It is easy to show that model (1.4) has always an extinction equilibrium point E0(x0,y0) = (0, 0). More-
over, if b < 1, then the discrete-time model (1.4) has, additionally, a unique positive equilibrium point
E∗(x∗,y∗), where x∗ and y∗ satisfy (1.3). Thus, the discrete-time model (1.4) has exactly the same equilib-
rium points as those of continuous model (1.2).

Based on the stability theory, the local stability of an equilibrium point (x̂, ŷ) is determined by the
eigenvalues of the Jacobian matrix. The Jacobian matrix of (1.2) at the equilibrium point (x̂, ŷ) is

J(x̂, ŷ) =
[

1 + h (1 − 2x̂− aŷ− b) −ahx̂
ch 1 − eh

]
.

We know that if µ1 and µ2 are eigenvalues of J(x̂, ŷ), then (x̂, ŷ) is asymptotically stable if max{|µ1|, |µ2|} <

1. The equilibrium point (x̂, ŷ) is unstable when max{|µ1|, |µ2|} > 1. Moreover, the equilibrium point (x̂, ŷ)
is non-hyperbolic if either |µ1| = 1 or |µ2| = 1. The local stability analysis for each equilibrium point is
shown below.

If the Jacobian matrix is evaluated at the extinction point E0(x0,y0), then we have

J(x0,y0) =

[
1 + (1 − b)h 0

ch 1 − eh

]
.

The eigenvalues of J(x0,y0) are µ1 = 1 + (1 − b)h and µ2 = 1 − eh. Then, the stability properties of E0 can
be summarized as in the following theorem.

Theorem 2.1. The extinction point E0(x0,y0) is

1. non-hyperbolic if b = 1 or h = 2
e ;

2. asymptotically stable if b > 1 and h < min{ 2
b−1 , 2

e };
3. unstable if either

(a) b < 1 or h > 2
e ; or

(b) b > 1 and h > 2
b−1 .

The Jacobian matrix evaluated at the positive equilibrium point E∗(x∗,y∗) is given by

J(x∗,y∗) =

[
1 − hx∗ −ahx∗

ch 1 − eh

]
. (2.1)

The characteristic equation of (2.1) can be written as

F(µ) = µ2 − tr(J((x∗,y∗)))µ+ det(J(x∗,y∗)) = 0, (2.2)

where

tr(J((x∗,y∗))) = 2 − (e+ x∗)h,

det(J(x∗,y∗)) = (1 − eh)(1 − hx∗) + ach2x∗ = (ac+ e)x∗h2 − (e+ x∗)h+ 1 = e(1 − b)h2 − (e+ x∗)h+ 1.

It can be shown that F(1) = (e+ ac)x∗h2 > 0. Hence, to analyze the eigenvalues of matrix (2.1), we apply
the following lemma.
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Lemma 2.2 ([4]). Consider the characteristic equation (2.2), F(µ) = 0, where F(1) > 0. Let µ1 and µ2 be two roots
of F(µ) = 0. Then

1. |µ1| < 1 and |µ2| < 1 if and only if F(0) < 1 and F(−1) > 0;
2. |µ1| < 1 and |µ2| > 1 (or |µ1| > 1 and |µ2| < 1 ) if and only if F(−1) < 0;
3. |µ1| > 1 and |µ2| > 1 if and only if F(0) > 1 and F(−1) > 0;
4. µ1 = −1 and |µ2| 6= 1 if and only if F(−1) = 0 and − tr(J((x∗,y∗))) 6= 0, 2;
5. µ1 and µ2 are complex and |µ1| = |µ2| = 1 if and only if tr(J((x∗,y∗)))2 − 4 det(J((x∗,y∗))) < 0 and
F(0) = 1.

Based on Lemma 2.2, it is seen that the properties of roots of (2.2) depend on F(0) and F(−1). It can
be verified that F(0) = J(x∗,y∗), where

1. F(0) = 1 if h = e+x∗

e(1−b) ;

2. F(0) > 1 if h > e+x∗

e(1−b) ;

3. F(0) < 1 if h < e+x∗

e(1−b) .

The value of F(µ) evaluated at µ = −1 can be written as F(−1) = (ac + e)x∗h2 − 2(e + x∗)h + 4. Let
∆ = (e− x∗)2 − 4acx∗, ĥ = e+x∗

e(1−b) , h1 =
(e+x∗)−

√
∆

e(1−b) , and h2 =
(e+x∗)+

√
∆

e(1−b) , then we have

1. if ∆ = 0, then
(a) F(−1) = 0 if h = ĥ;
(b) F(−1) > 0 if h 6= ĥ;

2. if ∆ < 0, then F(−1) > 0;
3. if ∆ > 0, then

(a) F(−1) < 0 if h1 < h < h2;
(b) F(−1) > 0 if h < h1 or h > h2;
(c) F(−1) = 0 if h = h1 or h = h2.

Using Lemma 2.2 and the results of discussion above, the stability of positive equilibrium point E∗ can
be stated as in the following theorem.

Theorem 2.3. The stability properties of the positive equilibrium point E∗(x∗,y∗) is as follows.

1. If ∆ > 0, then
(a) E∗ is asymptotically stable (sink) if 0 < h < h1;
(b) E∗ is a source point (unstable) if h > h2;
(c) E∗ is a saddle (unstable) if h1 < h < h2;
(d) E∗ is a non-hyperbolic if h = h1 or h = h2.

2. If ∆ 6 0, then
(a) E∗ is asymptotically stable (sink) if 0 < h < ĥ;
(b) E∗ is a source point (unstable) if h > ĥ;
(c) E∗ is a non-hyperbolic if h = h1 or h = ĥ.

Remark 2.4. In Section 1 we mentioned that the extinction point E0 (the positive equilibrium E∗) of the
continuous-time model (1.2) is asymptotically stable if b > 1 (b < 1). The stability of the extinction point
E0 (the positive equilibrium E∗) of the discrete-time model (1.4) also requires that b > 1 (b < 1). Note
that if b > 1, then ĥ < 0 and h1 < 0, which means that E∗ will not be stable. But the dependence
on parameter b is not the only condition for both equilibrium points to be stable. This is because the
stability of the two equilibrium points also requires a relatively small value of h. Moreover, as shown in
the following Section, the use of relatively large h may lead to a period-doubling bifurcation or Neimark-
Sacker bifurcation. This shows that the discrete-time model (1.4) has richer dynamics than its continuous
version (1.2).
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3. Bifurcation analysis

3.1. Period-doubling bifurcation

Let Ωj =
{
(a,b, c, e,h) | ∆ > 0,h = hj,a > 0,b > 0, c > 0, e > 0

}
, j = 1, 2. Based on the previous

analysis, it is found that for all parameters in Ωj, one of eigenvalues of the Jacobian matrix at the positive
equilibrium E∗ is µ1 = −1, and the other eigenvalue (µ2) is neither µ2 = 1 nor µ2 = −1. Then, the
positive equilibrium E∗ may undergo period-doubling bifurcation. Hence, we discuss the period-doubling
bifurcation of discrete-time model (1.4) at E∗ when parameter changes in the small neighborhood of Ω1.
For values of parameters in Ω2, it can be investigated analogously.

By taking any parameters (a,b, c, e,h) ∈ Ω1, we have h = h1. By choosing h as the bifurcation
parameter, we introduce a small perturbation h̄ into h such that h = h1 + h̄, where |h̄| � 1. Next we
transform the positive equilibrium point E∗(x∗,y∗) into the origin by taking un = xn − x∗ and vn =
yn − y∗. The model (1.4) can be now turned into

un+1 = un + (h1 + h̄)(1 − (un + x∗) − a(vn + y∗) − b)(un + x∗)

= α11un +α12vn +α13unvn +α14u
2
n +β1unh̄+β2vnh̄+β3unvnh̄+β4u

2
nh̄,

vn+1 = vn + (h1 + h̄)(−e(vn + y∗) + c(un + x∗)) = f2(un, vn, h̄) = α21un +α22 + c1unh̄+ c2vnh̄,

(3.1)

where α11 = (1 − h1x
∗), α12 = −ah1x

∗, α13 = −ah1, α14 = −h1, β1 = −x∗, β2 = −ax∗, β3 = −a, β4 = −1,
α21 = ch1, α22 = (1 − eh1), c1 = c, and c2 = e. System (3.1) can be written as[

un+1

vn+1

]
= A

[
un

vn

]
+

[
f1(un, vn, h̄)

f2(un, vn, h̄)

]
, (3.2)

where f1(un, vn, h̄) = α13unvn + α14u
2
n + β1unh̄+ β2vnh̄+ β3unvnh̄+ β4u

2
nh̄, f2(un, vn, h̄) = c1unh̄+

c2vnh̄, and

A =

[
α11 α12

α21 α22

]
.

The eigenvalues of A are µ1 = −1 and µ2 = 3 − h1(e+ x
∗) 6= 0 with the corresponding eigenvectors are,

respectively, ~v1 =

[
α12

−1 −α11

]
and ~v2 =

[
α12

µ2 −α11

]
. Hence, by applying the translation

[
un

vn

]
= P

[
Un

Vn

]
, with P =

[
α12 α12

−1 −α11 µ2 −α11

]
,

system (3.2) can be transformed into[
Un+1

Vn+1

]
=

[
−1 0

0 µ2

][
Un

Vn

]
+

[
f̃1(un, vn, h̄)

f̃2(un, vn, h̄)

]
, (3.3)

where un = α12(Un + Vn), vn = −(1 +α11)Un + (µ2 −α11)Vn, and

f̃1(un, vn, h̄) =
µ2 −α11

α12(1 + µ2)
f1(un, vn, h̄) −

1
(1 + µ2)

f2(un, vn, h̄),

f̃2(un, vn, h̄) =
1 +α11

α12(1 + µ2)
f1(un, vn, h̄) +

1
(1 + µ2)

f2(un, vn, h̄).

Then, there exists a center manifold Wc(0, 0) of system (3.3) at the equilibrium point (0, 0) in a small
neighborhood of h̄ = 0. The center manifold Wc(0, 0) can be represented as

Wc(0, 0) =
{
(Un,Vn, h̄) ∈ R3 | Vn = ϕ(Un, h̄) = α1U

2
n +α2Unh̄+α3h̄

2 +O((|Un|+ |Vn|)
3)

}
,
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where

α1 =
(1 +α11)(α12α14 −α13(1 +α11))

1 − µ2
2

, α2 =
−β1(1 +α11) − c1α12 + c2(1 +α11)

(1 + µ2)2 +
β2(1 +α11)

α12(1 + µ2)2 , α3 = 0.

The center maniford must satisfy

ϕ(−Un + f̃1(Un,ϕ(Un, h̄), h̄), h̄) − µ2ϕ(Un, h̄) − f̃2(Un,ϕ(Un, h̄), h̄) = 0.

Now, system (3.3) restricted to the center manifold Wc(0, 0) can be written as

ψ(Un, h̄) = −Un +ψ1U
2
n +ψ2Unh̄+ψ3U

2
nh̄+ψ4Unh̄

2 +ψ5U
3
n +O((|Un|+ |h̄|)4), (3.4)

where

ψ1 =
µ2 −α11

1 + µ2

(
α12α14 −α13(1 +α11)

)
,

ψ2 =
µ2 −α11

α12(1 + µ2)

(
β1α12 −β2(1 +α11)

)
−
α12c1 − c2(1 +α11)

1 + µ2
,

ψ3 =
µ2 −α11

α12(1 + µ2)

(
α13α12α2(µ2 − 1 − 2α11) + 2α14α

2
12α2 +β1α1α12

+β2(µ2 −α11)α1 −β3α12(1 +α11) +β4α
2
12

)
−

α1

1 + µ2
(c1α12 + c2(µ2 −α11)),

ψ4 =
µ2 −α11

α12(1 + µ2)

(
α2β2(µ2 −α11) +α12α2β1 − c1α2α12

)
−
α2α12c2

1 + µ2
,

ψ5 =
µ2 −α11

1 + µ2

(
α1α13(µ2 −α11) − (α1α13(1 +α11) + 2α1α12α14)

)
.

System (3.4) undergoes a period-doubling bifurcation if the two discriminatory quantities χ1 and χ2 are
not zero, where

χ1 =

(
∂2ψ

∂Un∂h̄
+

1
2
∂ψ

∂h̄

∂2ψ

∂U2
n

)∣∣
(0,0) = ψ2, χ2 =

(
1
6
∂3ψ

∂U3
n

+

(
1
2
∂2ψ

∂U2
n

)2)∣∣
(0,0) = ψ

2
1 +ψ5.

By direct calculation we obtain that

χ1 =
1

h1(1 + µ2)

(
(ac− e)h1x

∗ − 4
)
6= 0.

Based on the above results and using the theorem in [7, 26], we get the following theorem.

Theorem 3.1. If χ2 6= 0, then system (1.4) undergoes a period-doubling bifurcation at the equilibrium point
E∗ = (x∗,y∗), when the parameter h̄ varies in a small neighborhood of the origin. Furthermore, if χ2 > 0
(respectively, χ2 < 0), the period-2 points are stable (respectively, unstable).

3.2. Neimark-Sacker bifurcation
From the previous section, we know that for all parameters in Ω, where

Ω =

{
(a,b, c, e,h) | ∆ < 0,h = ĥ,a > 0,b > 0, c > 0, e > 0

}
,

the Jacobian matrix at the positive equilibrium E∗ = (x∗,y∗) has two complex conjugate roots with mod-
ulus one. Thus, the system (1.4) will undergoes a Neimark-Sacker bifurcation if parameters vary in the
small neighborhood of Ω. To investigate the Neimark-Sacker bifurcation with the bifurcation parameter



A. Suryanto, I. Darti, Trisilowati, J. Math. Computer Sci., 36 (2025), 251–262 257

h, we introduce a small perturbation h∗ � 1 into the parameter h around h = ĥ such that system (1.4)
leads to

xn+1 = xn + (ĥ+ h∗)(1 − xn − ayn − b)xn, yn+1 = yn + (ĥ+ h∗)(−eyn + cxn). (3.5)

By assuming un = xn − x∗ and vn = yn − y∗, the positive equilibrium point E∗ is translated to the origin
(0, 0), and system (3.5) can be written as

un+1 = un + (ĥ+ h∗)(1 − (un + x∗) − a(vn + y∗) − b)(un + x∗),

vn+1 = vn + (ĥ+ h∗)(−e(vn + y∗) + c(un + x∗)).
(3.6)

It can be easily demonstrated that the linearized system of (3.6) at (un, vn) = (0, 0) has a characteristic
equation

µ2 + p(h∗)µ+ q(h∗) = 0,

where

p(h∗) = (e+ x∗)(ĥ+ h∗) − 2, q(h∗) = (1 − x∗(ĥ+ h∗))(1 − e(ĥ+ h∗)) + acx∗(ĥ+ h∗)2.

The corresponding characteristic roots are

µ1,2 =
1
2
(−p(h∗)±

√
p(h∗)2 − 4q(h∗)).

After some algebraic manipulation, we can show that

|µ1,2| = q(h
∗)

1
2 ,

d|µ1,2|

dh∗

∣∣
h∗=0 =

e+ x∗

2
> 0.

Moreover, we also require that when h∗ = 0, µm1,2 6= 1,m = 1, 2, 3, 4, which is equivalent to p(0) 6= −2, 0, 1, 2.
We notice that for (a,b, c, e,h) ∈ Ω, we have p(0)2 − 4q(0) < 0 or p(0)2 < 4q(0) = 4. It is now seen that
p(0) 6= ±2. Hence, we only need that p(0) 6= 0, 1. It is satisfied by condition

(e+ x∗)2

e(1 − b)
6= 2, 3. (3.7)

We next consider the normal form of (3.6) when h∗ = 0. Let σ = Re(µ1,2
∣∣
h∗=0) and γ = Im(µ1,2

∣∣
h∗=0),

namely

σ = −
p(0)

2
, γ =

√
4q(0) − p(0)2

2
.

By applying the translation [
un

vn

]
= Q

[
Un

Vn

]
,

where Q is an invertible matrix defined by

Q =

[
0 1

γ σ

]
,

system (3.5) can be transformed into[
Un+1
Vn+1

]
=

[
σ −γ
γ σ

] [
Un
Vn

]
+

[
g̃1(Un,Vn)
g̃2(Un,Vn)

]
,
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where

g̃1(Un,Vn) =
σĥ

γ
(aγUnVn + (aσ+ 1)V2

n), g̃1(Un,Vn) = −ĥ(aγUnVn + (aσ+ 1)V2
n). (3.8)

From (3.8), we have that

g̃1UnUn = 0, g̃1UnVn = aσĥ, g̃1VnVn =
2σ(aσ+ 1)ĥ

γ
, g̃1UnUnUn = g̃1VnVnVn = g̃1UnUnVn = g̃1UnVnVn = 0,

g̃2UnUn = 0, g̃2UnVn = −aγĥ, g̃2VnVn = −2(aσ+ 1)ĥ, g̃2UnUnUn = g̃2VnVnVn = g̃2UnUnVn = g̃2UnVnVn = 0.

System (1.4) undergoes a Neimark-Sacker bifurcation if the discriminatory quantity χ∗ is not zero

χ∗ = −Re
(
(1 − 2µ̄)µ̄2

1 − µ
ζ11ζ20

)
−

1
2
|ζ11|

2 − |ζ02|
2 + Re(µ̄ζ21),

where µ = σ+ iγ, µ̄ = σ− iγ, and

ζ11 =
1
4

[
g̃1UnUn + g̃1VnVn + i(g̃2UnUn + g̃2VnVn)

]
,

ζ20 =
1
8

[
g̃1UnUn − g̃1VnVn + 2g̃2UnVn + i(g̃2UnUn − g̃2VnVn − 2g̃1UnVn)

]
,

ζ02 =
1
8

[
g̃1UnUn − g̃1VnVn + 2g̃2UnVn + i(g̃2UnUn − g̃2VnVn + 2g̃1UnVn)

]
,

ζ21 =
1

16

[
g̃1UnUnUn + g̃1UnVnVn + g̃2UnUnVn + g̃2VnVnVn

+ i(g̃2UnUnUn + g̃2UnVnVn − g̃1UnUnVn − g̃1VnVnVn)

]
.

By direct calculation, we can show that

ζ11 =
1
4

(
2ĥσ(aσ+ 1)

γ
+ 2ĥ(aσ+ 1)i

)
, ζ21 = 0,

ζ20 =
1
8

(
−

2ĥ
γ
(σ(aσ+ 1) + aγ2) + 2ĥi

)
, ζ02 =

1
8

(
−

2ĥ
γ
(σ(aσ+ 1) + aγ2) + 2ĥ(1 + 2aσ)i

)
,

|ζ11|
2 =

1
4γ2 ĥ

2(σ2 + γ2)(aσ+ 1)2, |ζ02|
2 =

1ĥ2

16

(
(σ(aσ+ 1) + aγ2)2

γ2 + (1 + 2aσ)2
)

,

ζ11ζ20 = −
ĥ2(aσ+ 1)

8

(
σ

γ2 (σ(aσ+ 1) + aγ) + 1 + a(σ2 + γ2)i

)
,

and

(1 − 2µ̄)µ̄2

1 − µ
=

2(1 − σ2)(1 + σ− 4σ2) + (1 − σ)(−8σ3 + 2σ2 + 6σ− 1)
2(1 − σ)

+
γ(−16σ3 + 12σ2 + 6σ− 3)

2(1 − σ)
i.

Using the results of above discussion and theorem in [7, 26], we get the following theorem.

Theorem 3.2. If the condition (3.7) is satisfied and χ∗ 6= 0, then the discrete-time system (1.4) undergoes Neimark-
Sacker bifurcation at the equilibrium point E∗ = (x∗,y∗), when the parameter h∗ changes in the small neighborhood
of the origin. Furthermore, if χ∗ < 0 (respectively χ∗ > 0), then an attracting (respectively, repelling) closed
invariant curve bifurcates from E∗ for h∗ > 0 (respectively, h∗ < 0).
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4. Numerical simulations

We perform numerical simulations to illustrate and confirm the previous analytical results. For the
first simulation, we take values of parameters a = 0.4,b = 0.01, c = 0.01, e = 0.1, and vary the value
of time-step in the range 2 6 h 6 3. Under these parameters values, the discrete-time system (1.4)
has a positive equilibrium point E∗(0.9519, 0.0952). Our calculations lead to h1 = 2.11097,∆ = 0.7105 >
0,χ1 = −0.0408 6= 0, and χ2 = 3.0823. Hence, our parameters (a,b, c, e,h1) ∈ Ω1. Based on Theorem
2.3, the point E∗(0.9519, 0.0952) is asymptotically stable for h < h1 and loses its stability at h = h1. Since
χ2 > 0, Theorem 3.1 states that system (1.4) undergoes a period-doubling at E∗(0.9519, 0.0952) driven by
parameter h. Furthermore, the bifurcation point is at h = h1 and the period-2 points are stable. This
behavior is clearly seen from the bifurcation diagram with respect to parameter h in Figure 1 (a) and the
associated maximum Lyapunov exponent in Figure 1 (b). Figure 1 shows the existence of period-doubling
bifurcation in system (1.4). Here we observe that E∗(0.9519, 0.0952) is stable if h < h1, the period-2-points
are stable, and there is a cascade of period-doubling. Moreover, we also observe that there is a range of
parameter h in which the system (1.4) exhibits chaotic behavior. The appearance of chaotic dynamics is
confirmed by the existence of positive maximum Lyapunov exponents in some range of h, see Figure 1
(b). Notice that this simulation is taken using initial values x(0) = 0.5,y(0) = 0.2. To see more detail,
in Figure 2 we plot the phase portraits of (1.4) which correspond to Figure 1. Using h = 2, 2.4, 2.65, 2.68,
the solutions of system (1.4) are convergent to the positive equilibrium point E∗(0.9519, 0.0952), period-2
points, period-4 points, and period-8 points, respectively. If we take a larger value of h, we may have a
solution with chaotic behavior; the plot is not shown in this article.
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Figure 1: Bifurcation diagram and the associated maximum Lyapunov exponent of the system (1.4) with a = 0.4, b = 0.01,
c = 0.01, e = 0.1, and h in the range 2 6 h 6 3.
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Figure 2: The phase portraits of system (1.4) with a = 0.4, b = 0.01, c = 0.01, e = 0.1, and (a) h = 2; (b) h = 2.4; (c) h = 2.65; and
(d) h = 2.68.
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In the second simulation, we apply parameters values a = 0.8,b = 0.25, c = 0.5, e = 0.5, and h in the
range 2.3 6 h 6 2.7. In this case, system (1.4) has a unique positive equilibrium point E∗(0.4167, 0.4167).
The equilibrium point E∗(0.4167, 0.4167) is asymptotically stable for h < ĥ = 2.4444. We also have
∆ = −0.6597, and therefore our parameters (a,b, c, e, ĥ) ∈ Ω. The eigenvalue of the linearized system
(1.4) is complex and given by µ = −0.1204 + 0.9927i, where |µ| = 1. We can show that

(e+ x∗)2

e(1 − b)
= 2.2407 6= 2, 3,

and thus the condition (3.7) is satisfied. Because χ∗ = −0.1126, Theorem 3.2 states that the system (1.4)
undergoes Neimark-Sacker bifurcation around the equilibrium point E∗ = (0.4167, 0.4167) at h = ĥ =
2.4444. This behavior is confirmed by the bifurcation diagram depicted in Figure 3. For more details, we
also plot in Figure 4 the phase portraits of system (1.4) associated with Figure 3 using four different values
of h. It is seen from Figures 3 and 4 that when h < ĥ, then the solution is attracting to the equilibrium
point E∗ = (0.4167, 0.4167), while if h > ĥ, then the solution is convergent to a closed invariant orbit.

Figure 3: Bifurcation diagram of system (1.4) with a = 0.8,b = 0.25, c = 0.5, e = 0.5, and h in the range 2.3 6 h 6 2.7.
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Figure 4: The phase portraits of system (1.4) with a = 0.8, b = 0.25, c = 0.5, e = 0.5, and (a) h = 2.4; (b) h = 2.45; (c) h = 2.53;
and (d) h = 2.64.

5. Conclusions

A discrete-time harvested logistic model with feedback control has been constructed using the Euler
method. It is proven that the proposed discrete-time model has only an extinction equilibrium point
when the harvesting constant (b) is larger than or equal to one. However, if b < 1, then our discrete-time
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model also has a positive equilibrium point. The local stability of all equilibrium points is completely
studied and is shown to depend not only on the model parameters but also on the time-step of numerical
integration (h). We also prove analytically that the proposed discrete-time model may exhibit a period-
doubling bifurcation as well as a Neimark-Sacker bifurcation. This dynamical behavior is confirmed
by our numerical simulations. Furthermore, our numerical simulations also show that our discrete-time
model may undergo to chaotic dynamic for suitable parameters values. Hence, the proposed discrete-time
model certainly has richer dynamics than its continuous counterpart.

We have shown that harvesting has a significant effect on the dynamics of logistic model with feedback
control. The proposed model can be used as a basis for developing models to describe various real-
world situations, for purposes such as disease spread control and ecological and economic stability and
sustainability. Additionally, we are able to describe the chaotic behavior that might occur in the proposed
discrete-time system, suggesting its potential application in image encryption/decryption. These open
problems will be the focus of our future works.
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