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Abstract
Nonlinear least-squares (NLS) problems find extensive applications across various fields within the applied sciences. Con-

ventional methods for solving NLS problems often face challenges related to computational efficiency and memory requirements,
especially when dealing with large-scale systems. In this paper, the solution to the minimization of nonlinear least squares prob-
lems has been obtained using a proposed structured accelerated three-term conjugate gradient method, in which from Taylor
series approximations of the objective function’s Hessian, the structured vector approximation involving a vector’s action on a
matrix is obtained. This ensures the satisfaction of a quasi-Newton condition. The technique then employs the structured vector
approximation to incorporate additional information from the Hessian of the goal function into the standardized search direc-
tion. The proposed method’s search direction fulfills the necessary descent criterion. Additionally, numerical tests performed
on various test problems show that the suggested approach is remarkably efficient, surpassing some existing competitors.
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1. Introduction

Numerous real-world scientific and engineering problems can be represented as nonlinear least squares
(NLS) problems. NLS is highly relevant in many different domains and applications, including motion
control [25, 26, 32], parameter estimation [12], image reconstruction, [27] and data fitting [34]. Consider
an unconstrained nonlinear least-squares problem of the form:

min
x∈Rn

f(x), where f(x) =
m∑
i=1

(ri(x))
2 =

1
2
‖r(x)‖2, x ∈ Rn. (1.1)
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Conventional conjugate gradient (CG) techniques provide an iterative point sequence xk, which is up-
dated by the following form:

xk+1 = xk + sk, sk = αkdk, k > 0, (1.2)

where dk represents the calculated search direction and αk is the step size. An exact or inexact line search
strategy is required to determine the step size. Typically, the search direction is determined using

d0 = −g0, dk = −gk +βkdk−1, k > 1.

In this case, the scalar CG coefficient βk distinguishes the various conjugate gradient techniques [14].
Meanwhile, distinct CG parameters represent several conjugate gradient algorithms, each of which may
exhibit notable variations in theoretical characteristics and numerical efficacy [35]. The Hestenes-Stiefel
(HS) approach [11], the Polak-Ribière-Polyak (PRP) method [23, 24], and the Liu-Storey (LS) method
[18] all share similarities in their numerators, which leads to certain shared characteristics in terms of
computational advantage [10]. Moreover, their conjugate parameters are given by:

βHSk =
gTkyk−1

dTk−1yk−1
, βPRPk =

gTk−1yk−1

‖gk−1‖2 , βLSk = −
gTkyk−1

gTk−1dk−1
,

where gk = ∇f(xk) and yk−1 = gk − gk−1. Furthermore, additional details regarding additional CG
techniques are available in [3, 8].

Due to the computational expense of determining the entire Hessian matrix, some methods were
developed that exclusively employ information from the first derivative to solve (1.1) such as the Gauss-
Newton (GN) and Levenberg-Marquardt (LM) techniques. However, when dealing with problems involv-
ing non-zero residuals, both approaches typically perform less than optimum [1]. As a result of this flaw,
Brown and Dennis [7] developed the Structured Quasi-Newton method (SQN), this exploits the structure
of the objective function’s Hessian (1.1) by utilizing GN’s and quasi-Newton’s step. Meanwhile, in terms
of numerical performance, the SQN algorithm outperforms the GN and LM algorithms [31]. However,
the fact that the direction produced by the SQN method might not be a descent direction of f presents a
significant challenge to the globalization of these approaches and this hinders their ability to solve large-
scale problems. As a result of these drawbacks, structured matrix-free techniques are the better choice
for solving (1.1). For example, [15] presented a structured matrix-free approach for solving large-scale
NLS problems using conjugate gradient direction. An approximating technique based on the diagonal
of the first and second terms of the Hessian matrix was proposed by [20]. To ensure the satisfaction of
the sufficient descent criterion, their search direction necessitated a safeguarding technique. Recently,
[6] suggested a scaled version of the structured gradient relation (CG) approach. Under some standard
assumptions, they demonstrated the algorithm’s global convergence. In another attempt, [36] proposed a
two-term structured spectral CG method based on the HS formula with an outstanding numerical perfor-
mance. However, their algorithms require the implementation of several safety strategies, especially when
the spectral parameter is non-positive at certain iteration points. Additionally, [33] suggested a different
spectral-based structured adaptive technique for nonlinear least squares issues, which are grounded on
Barzilai and Borwein (BB) parameters [4]. It was observed that, conjugate gradient methods based on
secant conditions may not theoretically guarantee a descent search direction, but they are highly effective
in practice for solving large-scale unconstrained optimization problems [28]. Therefore, it is crucial to
develop a conjugate gradient method that utilizes second-order information of the objective function to
ensure a descent search direction.

In recent years, the three-term CG methods have garnered significant attention, and substantial efforts
have been dedicated to developing these approaches. Sugiki et al. [28] applied the approach of Dai and
Liao [5] to the three-term conjugate gradient method developed by Narushima et al. [22], and proposed
a three-term conjugate gradient method based on secant conditions to solve NLS problems. Based on the
least-squares approach, Tang et al. [30] developed novel three-term CG techniques for general nonlinear
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function. In another development, two novel algorithms for three-term conjugate gradient (TTCG) coef-
ficients have been devised in [37] to address nonlinear least-squares (NLS) problems by employing the
structured secant equation; formulated via the enhanced conjugacy and sufficient descent conditions.

Motivated by the findings mentioned earlier, we formulated a more advanced structured approxima-
tion for the Hessian of the NLS problem. In this approach, we approximate the second term of the Hessian
up to the second-order Taylor’s series, thereby leveraging a significant amount of information from the
Hessian. This matrix-vector approximation of the Hessian is incorporated into a novel three-term method.
Furthermore, the method is straightforward to implement and does not rely on matrix operations, leading
to low computational expenses per iteration.

This study presents a structured accelerated Three-term based method on LS and the modified LS
method (mLS+), that incorporates second-order information and guarantees a descent search direction.
The following summarizes the main contributions of this study.

1. Using a modified structured secant equation, we proposed a new accelerated three-term CG algo-
rithm.

2. The search direction that has been suggested meets the requirements of sufficient descent property.
3. Under certain assumptions, it has been demonstrated that the proposed method attains global con-

vergence with the help of a non-monotone line search.
4. Numerical experiments were performed to evaluate the efficacy of the proposed method in compar-

ison to other methods reported in the literature.

The following sections of this article are arranged as follows. The suggested approach and related al-
gorithm are described in Section 2. We examine the global convergence properties of the suggested
algorithms in Section 3. Section 4 employs numerical tests to assess how well the suggested algorithms
perform in comparison to alternative methods that have been documented in the literature.

2. Formulation of the new method and its algorithm

This section outlines the concept of the suggested approach along with its corresponding algorithm.

2.1. Derivation of modified structured secant

Specifically, the NLS problem described in equation (1.1) has a unique structure for its gradient and
Hessian matrix, which can be expressed as

g(x) :=

m∑
i=1

ri(x)∇ri(x) = J(x)T r(x),

H(x) :=

m∑
i=1

∇ri(x)∇ri(x)T︸ ︷︷ ︸
1st Term

+

m∑
i=1

ri(x)∇2ri(x)︸ ︷︷ ︸
2nd Term

= J(x)T J(x) +U(x), (2.1)

where the matrix U(x) corresponds to the second term shown in equation (2.1), and J(x) = R ′(x) denotes
the Jacobian matrix of the residual function ri(x) for i = 1, 2, . . . ,m. At the beginning, we estimate
the product of the matrix U(x) and the vector θ, which can be interpreted as approximating the effect
of ∇2ri(x) on a vector, such as θ ∈ Rn. This allows for the extraction of significant information from
U(x). As a result, we can achieve the necessary approximation by performing a post-multiplication of
U(x) =

∑m
i=1 ri(x)∇2ri(x) in (2.1) by sk−1, that is

U(xk)sk−1 =

m∑
i=1

ri(x)∇2ri(x)sk−1, (2.2)
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Therefore, to simplify the notations, we define Uk = U(xk), rk,i = ri(xk), ∇2rk,i = ∇2ri(xk) = Gk,i,
and gradients of components-wise rk,i by gk,i for i = 1, 2, . . . ,m. Our current objective is to estimate
∇2rk,isk−1. We can accomplish this by integrating Taylor’s series expansion of rk,i and gk,i. This can be
acquired in the manner described below:

rk−1,i ≈ rk,i + g
T
k,isk−1 +

1
2!
sTk−1Gk,isk−1 (2.3)

and in a similar manner, we obtain
gk−1,i ≈ gk,i −Gk,isk−1. (2.4)

To attain the intended outcome, we pre-multiply (2.4) by sk−1 first,

sTk−1gk−1,i ≈ sTk−1gk,i − s
T
k−1Gk,isk−1. (2.5)

We may rewrite (2.3) and (2.4) in terms of the term sTk−1Gk,isk−1 since both (2.3) and (2.5) include it in
their expression. We can then equal and simplify the result to have as follows:

sTk−1Gk,isk−1 ≈ 2(rk−1,i − rk,i) + (gk, i+ gk−1,i)
T sk−1 + s

T
k−1(gk,i − gk−1,i).

Assuming we use a basic diagonal approximation for Gk,i, then

sTk−1Gk,isk−1 ≈ ζI‖sk−1‖2 ≈ 2(rk−1,i − rk,i) + (gk, i+ gk−1,i)
T sk−1 + s

T
k−1(gk,i − gk−1,i).

As a result, the estimate of Gk,isk−1 is

Gk,isk−1 ≈
[2(rk−1,i − rk,i) + (gk, i+ gk−1,i)

T sk−1 + s
T
k−1(gk,i − gk−1,i)]

‖sk−1‖2 sk−1. (2.6)

Therefore, by putting (2.6) in (2.2) and adding up all of i gives

Uksk−1 ≈
[2(rk−1 − rk) + (Jk + Jk−1)

T sk−1 + s
T
k−1(Jk − Jk−1)]

‖sk−1‖2 sk−1 = zk−1,

by letting
ϑk−1 = rTk

[
2(rk−1 − rk) + (Jk + Jk−1)

T sk−1 + s
T
k−1(Jk − Jk−1)

]
.

Let us now assume that the Hessian in (2.1) is estimated in a way that makes it satisfy a structured secant
condition, which is Bksk−1 ≈ zk−1. Consequently, we obtain

zk−1 = JTkJksk−1 +
ϑk−1

‖sk−1‖2 sk−1.

2.2. The proposed formula
For the three-term parameters, we proposed a new search direction that is expressed as follows:

dk = −gk +β
(LS)
k dk−1 −β

(mLS+)
k zk−1, ∀k > 0, (2.7)

where sk−1 = xk − xk−1, and where βLSk is calculated as

βLSk =
gTkzk−1

−gTk−1dk−1
. (2.8)

We propose a modified version of the LS method (mLS+) and make adjustments to the LS conjugate
parameter in the following manner:

βmLS+k =
gTkdk−1

−gTk−1dk−1
. (2.9)
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We adopt the acceleration scheme presented in [2] to modify the step in a multiplicative way, improving
the numerical performances. Therefore, the standard iteration (1.2) becomes

xk+1 =

{
xk +ωkαkdk, if γk < 0,
xk +αkdk, otherwise,

(2.10)

where ωk, the parameter, is defined by ωk = ϕk
γk

, and ϕk = αkg
T
kdk and γk = αk [gz − gk]

T dk. Fur-
thermore, to get the step length αk, we use non-monotone line-search technique ([38]) in this study. If dk
exhibits a notable decrease, the step length αk is determined by applying the non-monotone line-search
requirements of the Armijo type, which are described as

f(xk +αkdk) 6 Ak + δαkg
T
kdk,

where 
A0 = f(x0),
Ak+1 =

ηkBkAk+f(xk+1)
Bk+1

,

B0 = 1,
Bk+1 = ηkBk + 1.

(2.11)

Algorithm 1 Structured accelerated 3-term CG (SA-3TCG)
Step 1. Initialization: x0 ∈ Rn, termination tolerance ε > 0.
Step 2. Evaluate gk. If ‖gk‖ = 0, terminate the iteration process.
Step 3. If k = 0, set d0 := −g0, otherwise,

dk = −gk +β
(LS)
k dk−1 −β

(mLS+)
k zk−1, ∀ k > 1, (2.12)

where βLSk and βmLS+k follow from (2.8) and (2.9), respectively.
Step 4. Determine αk using non-monotone line search.
Step 5. Calculate the new point via (2.10).
Step 6. Go back to Step 2 with k := k+ 1.

3. Convergence analysis

The theoretical results of the suggested SA-3TCG approach are covered in this section. To attain
these outcomes, we require the following significant presumptions, which are critical in determining the
convergence outcomes of the majority of CG algorithms.

Assumptions

1. The level set χ = {x ∈ Rn|f(x) 6 f(x0)} of f(x) is bounded; that is, a positive constant b exists such
that ‖x‖ 6 b, ∀x ∈ χ.

2. In an open neighborhood N of χ, the residual, r(x), and its derivative, the Jacobian matrix, J(x), are
Lipschitz continuous and bounded, that is, ‖J(x) − J(y)‖ 6 m1‖x− y‖, ‖r(x) − r(y)‖ 6 m2‖x− y‖,
‖J(x)‖ < m3, ‖r(x)‖ < m4, for all x,y ∈ χ, where m1,m2,m3,m4 symbolize constants that are
positive.

From Assumption 2, it can be inferred that there exist positive constantsm5 andm6 such that the following
inequalities are satisfied:

‖g(x) − g(y)‖ 6 m5‖x− y‖.

This implies that ‖g(x)‖ 6 m6, ∀x,y ∈ χ.
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Lemma 3.1. If Assumption 2 is satisfied, then there exists a constant κ > 0, such that

‖zk−1‖ 6 κ‖sk−1‖, ∀k.

The proof of the lemma is similar to that in [33] with slight differences.

Lemma 3.2. Let {dk} be the sequence of direction generated by Algorithm 1, then, for every k > 0, there is a
constant κ1 such that gTkdk 6 −κ1‖gk‖2.

Proof. If k = 0, by the setting d0 = −g0, it holds that gT0 d0 = −‖g0‖2. For k > 1, by (2.7), we obtain

gTkdk = −‖gk‖2 +βLSk g
T
kdk−1 −β

mLS+
k gTkzk−1

= −‖gk‖2 +
gTkzk−1

−gTk−1dk−1
gTkdk−1 −

gTkdk−1

−gTk−1dk−1
gTkzk−1

= −‖gk‖2 −
gTkzk−1

gTk−1dk−1
gTkdk−1 +

gTkdk−1

gTk−1dk−1
gTkzk−1 = −‖gk‖2.

Therefore, for all k1 > 0, it holds that gTkdk = −‖gk‖2 with κ1 = 1.

Lemma 3.3. If Assumptions 1 and 2 are satisfied, then for all κ2 > 0, the search direction dk produced by Algorithm
1 remains bounded.

Proof. Following (2.7)’s definition of the search direction, we have

‖dk‖ = ‖− gk +βLSk dk−1 −β
mLS+
k zk−1‖

6 ‖gk‖+ |βLSk |‖dk−1‖+ |βmLS+k |‖zk−1‖

6 ‖gk‖+
‖gk‖‖zk−1‖
‖gk−1‖dk−1‖

‖dk−1‖+
‖gk‖‖dk−1‖
‖gk−1‖dk−1‖

‖zk−1‖

6

(
1 +
‖zk−1‖
‖gk−1‖

+
‖zk−1‖
‖gk−1‖

)
‖gk‖ 6

(
1 + 2

‖zk−1‖
‖gk−1‖

)
‖gk‖ =

(
1 +

2κb
m6

)
‖gk‖.

Therefore, if we let κ2 :=
(

1 + 2κb
m6

)
, then we have ‖dk‖ 6 κ2. Hence, the search direction is bounded.

The proof of Theorem 3.7 requires the following lemmas. However, [38] contains their proofs.

Lemma 3.4. Given that Assumption 1 is satisfied, it can be shown that fk 6 Ak for each value of k if Algorithm 1
generates the iterative sequence {xk}.

Lemma 3.5. Given that Assumption 2 is satisfied and the iterative sequence {xk} is produced by Algorithm 1, it
consequently implies that

αk >

(
2(1 − δ)

m5ζ

)
|gTkdk|

‖dk‖2 .

Remark 3.6. Suppose that Aj 6 ψj for all 0 6 j < k, given the initial condition B0 = 1, and considering
that ηk ∈ [0, 1], then we have

Bj+1 = 1 +

m∑
i=0

i∏
m=0

ηj−m 6 j+ 2. (3.1)

Theorem 3.7. Suppose that the function f(x) is defined by equation (1.1) and that Assumptions 1 and 2 hold. The
level set ` contains the sequence {xk} that is generated by Algorithm 1,

lim
k→∞ inf ‖gk‖ = 0. (3.2)

Moreover, if ηmax < 1, then
lim
k→∞ ‖gk‖ = 0. (3.3)
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Proof. To start, we present the fact that

fk+1 6 Ak −β‖gk‖2, (3.4)

considering the line search in equation (2.9), we have

fk+1 6 Ak + δαkg
T
kdk,

and by the inequality in equation (3.1), we obtain

fk+1 6 Ak −

(
2δ(1 − δ)

m5ζ

)(
|gTkdk|

‖dk‖2

)
.

Drawing from the necessary descent and bound properties from Lemmas 3.3 and 3.4, we obtain

fk+1 6 Ak −

(
2δ(1 − δ)κ2

1

m5ζκ
2
2

)
‖gk‖2,

where

β =
2δ(1 − δ)κ2

1

m5ζκ
2
2

.

Combining the cost update in equations (2.11) and (3.4), we can obtain

Ak =
ηkBkAk + fk+1

Bk+1
6
ηkBkAk +Ak −β‖gk‖2

Bk+1

=
Ak(ηkBk+1 + 1) −β‖gk‖2

Bk+1
=
AkBk+1 −β‖gk‖2

Bk+1
= Ak −

β‖gk‖2

Bk+1
.

(3.5)

As f is bounded from below, and for all k, fk 6 Ak, we can deduce that Ak is also bounded from below.
Therefore, it follows from (3.5) that ∞∑

k=1

‖gk‖2

Bk+1
<∞

If ‖gk‖ were bounded away from 0, the equation (3.5) would not hold since Bk+1 6 k+ 2 by (3.1). Hence,
if ηmax < 1, then by (3.1),

Bk+1 = 1 +

k∑
j=0

j∏
i=0

ηk−i 6 1 +

k∑
j=0

ηj+1
max 6

k∑
j=0

ηjmax =
1

1 − ηmax
.

Hence, we can deduce that equation (3.2) leads directly to equation (3.3). Thus, the proof is complete.

4. Numerical experiments

This section presents numerical tests on several nonlinear least-squares benchmark functions to sub-
stantiate the outstanding theoretical properties of the proposed method. We examine 25 benchmark test
functions that span five dimensions 3000, 6000, 9000, 12000, and 15,000. These benchmark test functions
are detailed in Table 1.
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Table 1: List of test functions, starting points, and their sources.
No. Function name Starting point Reference
F1 Penalty function 1 (3, 3, . . . , 3)T [16]
F2 Variably dimensioned (1 − 1

n , 1 − 2
n , . . . , 0)T [16]

F3 Trigonometric function ( 1
n , 1
n , . . .)T [21]

F4 Discrete boundary-value ( 1
n+1 , 1

n+1 − 1, . . . , 1
n+1 − 1)T [21]

F5 Linear full rank (1, 1, . . . , 1)T [21]
F6 Problem 202 (2, 2, . . . , 2)T [19]
F7 Problem 206 (2, 2, . . . , 2)T [19]
F8 Problem 212 (0.5, 0.5, . . . , 0.5)T [19]
F9 Raydan 1 ( 1

n , 2
n , . . . , 1)T [16]

F10 Raydan 2 ( 1
10n , 2

10n , . . . , 1
10n )

T [16]
F11 Sine function 2 (1, 1, . . . , 1)T [17]
F12 Exponential function 1 ( n

n−1 , n
n−1 , . . . , n

n−1 )
T [16]

F13 Exponential function 2 ( 1
n2 , 1

n2 , . . . , 1
n2 )

T [16]
F14 Singular function 2 (1, 1, . . . , 1)T [16]
F15 Ext. Freudenstein & Roth function (6, 3, 6, 3, . . . , 6, 3)T [16]
F16 Ext. Powell singular function (1.5E− 4, . . . , 1.5E− 4)T [16]
F17 Function 21 (1, 1, . . . , 1)T [16]
F18 Broyden tridiagonal function (−1,−1, . . . ,−1)T [21]
F19 Extended Himmelblau function (1, 1

n , 1, 1
n , . . . , 1, 1

n )
T [13]

F20 Function 27 (100, 1
n2 , . . . , 1

n2 )
T [16]

F21 Triglog function (1, 1, . . . , 1)T [13]
F22 Zerojacobian function if i = 1, 100(n−100)

n , if i > 2, (n−1000)(n−500)
(60n)2 [16]

F23 Exponential function (0.5, 0.5, . . . , 0.5)T [16]
F24 Function 18 (0, 0, . . . , 0)T [16]
F25 Brown almost linear function (0.5, 0.5, . . . , 0.5)T [21]

The efficiency of the new formula is established by comparing it with the results of other existing
algorithms with similar characteristics, for the comparison, in the numerical experiments we consider the
following methods.

• A structured spectral (SSHS) CG approach by [36] with the following direction and spectral param-

eter dk = −λkgk + βkdk−1, where βk = max
{

0, gTkω̄k−1

dTk−1ω̄k−1

}
, and spectral parameter λk =

sTk−1sk−1

sTk−1ω̄k−1
,

and the structured vector defined by ω̄k−1 = JT Jsk−1 + (J− Jk−1)
T rk.

• A three-term conjugate gradient method (TTRMIL+) by [29] whose direction defines by

dk = −gk +β
RMIL+
k dk−1 + θkyk−1

with βRMIL+
k =

{
gTkyk−1
‖dk−1‖2 , if 0 6 gTkgk−1 6 ‖gk‖2,

0, otherwise,
and θk = τ+

yTk−1yk−1

‖dk−1‖2 .

• The classical Liu-Storey (LS) conjugate gradient method by [18].

This experiment’s algorithms were all developed in MATLAB R2022a, and the computation was car-
ried out on an Intel (R) CORE(TM) i7-3537U processor running at 2.00 GHz and having 8 GB of RAM. For
the stopping condition, we command the program to terminate if ‖gk‖ 6 10−5 or should the following
situation arise:

• if there are more than 1000 iterations;
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• if the number of function evaluations exceeds 5000.

In assessing the efficacy of the suggested algorithm, we employ the subsequent comparative metrics.
(i) (ITER), the number of iterations; (ii) (FEVAL), the number of function evaluations; (iii) (NGRAD),
the number of gradient evaluations; (iv) CPU time (CPU-Time); and (vi) residual value (VALUE F). The
following link will take you to Table 2 with the presentation of the numerical experiment results https://
acrobat.adobe.com/id/urn:aaid:sc:EU:342dbf9a-4017-48ea-aee0-c0fb4c93eeb0. Subsequently, we
employ a method developed by [9] to analyze the numerical efficiency based on the data provided in
Table 2. The authors in [9] introduced a methodology to evaluate and compare the efficacy of a solver (s)
across a set of problems (p). This method calculates the computational expense (q) associated with each
combination of solver s and problem p, considering ns solvers and np problems, as qp,s = the cost of
solving problem p by solvers s.

Drawing from the computational cost qp,s, [9] additionally devised a metric to facilitate the compari-
son of efficiency among all solvers. The performance ratio, which is the benchmark, is assessed using

rp,s =
qp,s

min{qp,s : s ∈ S}

and the distribution function is described as ρs(τ) = 1
np

size{p ∈ P : log2(rp,s) 6 τ}. Using the provided
data, the described method generates performance profile graphs for each solver s ∈ S. These graphs,
known as performance profiles, analyze the proportion ρs(τ) of the considered problems for each solution,
where τ > 0. For a specific τ value, an algorithm is deemed more efficient if it yields a higher ρs(τ) value.
Therefore, the algorithm with the highest efficiency is the one whose curve is at the top.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

s
(

)

TTRMIL+

SSHS

LS

SA-3TCG

Figure 1: Performance assessment based on the number of
iterations.
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Figure 2: Performance assessment based on functions evalu-
ation.
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Figure 3: Performance assessment based on the number of
gradient evaluations.
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Figure 4: Performance assessment based on CPU time.
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Figure 5: Performance based on the least zero residual error.

In this study, the performance profile plots for (ITER), (FEVAL), (NGrad), (CPU-time), and (VALUE F)
are generated from numerical experiments and are presented in Figures 1, 2, 3, 4, and 5, respectively.

The comparisons were made as shown in Figures 1-5. Upon analyzing Figure 1, for instance, when
τ > 1, SA-3TCG solves about 93% of the test problems with fewer iterations, while TTRMIL+, SSHS, and
LS solve nearly 85%, 68%, and 61% of the problems, respectively. In Figure 2, at τ > 2, SA-3TCG ad-
dresses nearly 95% of the test problems with the minimum number of function evaluations, compared to
approximately 92%, 73%, and 68% handled by TTRMIL+, SSHS, and LS, respectively. Figure 3 shows that
SA-3TCG successfully handles nearly 95% of the test problems with the minimal number of gradient eval-
uations, while TTRMIL+, SSHS, and LS manage 90%, 75%, and 67% of the problems in terms of gradient
evaluations, respectively. Additionally, in terms of CPU-time, Figure 4, particularly at τ > 2, SA-3TCG
demonstrates effectiveness by solving approximately 98% of the test problems in the shortest amount
of time, compared to almost 94%, 72%, and 64% addressed by TTRMIL+, SSHS, and LS, respectively.
Moreover, SA-3TCG algorithms outperform TTRMIL+, SSHS, and LS algorithms, as indicated in Figure
5, showing that SA-3TCG methods’ convergence offers a notably accurate approximation of the solution
with significantly fewer errors, where τ∗ represents instances of zero residual problems. One noteworthy
observation from these figures is that, while all algorithms competed in first, the new technique outscored
the others on all metrics as τ increased. This demonstrates how strong and competitive the new formula
is for the problems under consideration.

5. Conclusion

In this article, based on the three-term conjugate gradient parameter, we presented a structured ac-
celerated conjugate gradient method for this study. The method that is being provided satisfies the
decent criterion regardless of the line search that is employed. We examined its performance on a set of
benchmark problems from the literature and established its global convergence under the non-monotone
line search conditions. The results show the method’s competitiveness versus numerous alternative ap-
proaches with similar structures found in the literature. Further study is needed to devise more advanced
conjugate gradient algorithms that can be applied to high-dimensional problems arising in science and
engineering.
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