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Abstract

In finite dimensional inner product (IP) spaces, any self-adjoint operator is normal and any normal operator is orthogonally
diagonalizable. However, in semi-inner product (SIP) spaces, there exists an A-self-adjoint operator which is not A-normal.
Therefore, it is interesting to study conditions for an A-self-adjoint operator on an SIP space to be A-orthogonally diagonalizable.
An SIP is a mapping induced by a positive semi-definite operator on an IP space. In this paper, we study necessary, sufficient,
and necessary and sufficient conditions for an A-self-adjoint operator to be A-orthogonally diagonalizable.
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1. Introduction

In any finite dimensional inner product space (IP space), a self-adjoint linear operator is orthogonally
diagonalizable. This article studies whether similar property applies in semi-inner product spaces (SIP
spaces). An SIP space U is a vector space over the complex number field C equipped with a semi-inner
product (SIP) denoted by [x,y],∀x,y ∈ U. an SIP is a form of expansion of an inner product (IP), which
modifies the positive definite property of IP into positive semi-definite. Hence, in an SIP space, there
could be many elements acting like the zero in an IP space.

Using a positive semi-definite operator, we can establish a connection between IP space and SIP space.
Let U be a finite dimensional IP space equipped with an IP 〈x,y〉,∀x,y ∈ U . If A is a positive semi-definite
operator on U, then the mapping [x,y]A = 〈Ax,y〉, ∀x,y ∈ U is an SIP ([3]). On the other hand, if U is a
finite dimensional SIP space, then there is an IP on U, say 〈x,y〉, ∀x,y ∈ U, and a positive semi-definite
operator A on U such that the SIP is [x,y] = 〈Ax,y〉,∀x,y ∈ U ([7]). Further, an IP space is an SIP space
with the positive semi-definite operator is the identity map.

The concept of an SIP space is pioneered by the study of Krein ([9]), and then developed by Zaanen
([20]), Lumer ([10]), and Giles ([7]). A number of recent studies on SIP spaces investigated the equivalence
of operator properties in IP spaces for SIP spaces, such as A-normal ([5, 12]), hiponormal ([2]), and
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paranormal ([11]) operators, closed operators ([4]), matrix representation of operators ([6]), and isometry
([3, 17]); and also geometrical aspects of SIP spaces, such as orthogonality ([18, 21]), projection metric
([4]), and numerical radius ([10, 18]).

Another difference between the class of IP spaces and the class of SIP spaces is that every self-adjoint
operator in an IP space is normal. In contrast, this property does not hold when the underlying space
being SIP. Moreover, an operator T in a finite dimensional SIP space U will have adjoint(s) if and only if T
is bounded. Thus, the necessary and sufficient conditions for spectral decomposition of linear operators
on an IP space cannot be applied to linear operators on an SIP space. Tam and Zhang ([19]) obtained
sufficient conditions for spectral decomposition of an A-self-adjoint operator on an SIP space. However,
the theorem is restricted to the class of A-self-adjoint operators T satisfying condition R(T) ⊆ R(A).
Furthermore, the definition of spectral decomposition on an SIP space has not been explicitly stated.

In this article, we give the definition for spectral decomposition in finite dimensional SIP spaces. We
study necessary, sufficient, and also necessary and sufficient conditions for the existence of a spectral
decomposition for an A-self-adjoint linear operator on a finite dimensional SIP space.

2. A-self-adjoint operators in SIP spaces

In this section we give the definition and some properties of an A-self-adjoint operator on an SIP
space. In contrast to IP spaces, an adjoint of a linear operator in a finite dimensional SIP space does not
always exist and if it exists, the adjoint operator may not be unique. A necessary and sufficient condition
for the existence of an adjoint operator is boundedness. For that, the discussion begins by reviewing SIP
spaces along with a number of definitions and properties that will be needed in the next discussions.

2.1. SIP spaces
From now on, we restrict a semi-inner product (SIP) space is a finite dimensional inner product (IP)

space U over the complex number field C with the IP function 〈x,y〉,∀x,y ∈ U, equipped with an SIP
denoted by [x,y]A = 〈Ax,y〉∀x,y ∈ U for some A, a positive semi-definite operator on U. Let N(A)
denotes the kernel of A and R(A) denotes the range of A, and both are subspaces of U. We obtain
that x ∈ N(A) if and only if [x, x]A = 0. Such elements are called the neutral elements of U. The next
proposition shows some properties of the neutral elements.

Proposition 2.1. Let U be an SIP space over C, with the SIP [x,y]A, ∀x,y ∈ U.

(1) If x ∈ N(A), then [x,y]A = 0 = [y, x]A for all y ∈ U.
(2) If x,y ∈ N(A), then x+ y ∈ N(A) and cx ∈ N(A) for all scalar c.

Proof. Statement (1) can be proven using the Cauchy-Schwarz inequality in SIP spaces. As a result of (1)
we obtain (2).

The following are subspaces which are not containing neutral elements.

Lemma 2.2. Let U be an SIP space induced by a positive semi-definite operator A. If W is a subspace of U such
that W ∩N(A) = 0, then W as an SIP subspace is an IP space.

Proof. Since W is a SIP subspace, we only need to show that the condition [x, x] = 0 can only be satisfied
by x = 0. The premise W ∩N(A) = 0 implies the only neutral element of W is x = 0. Thus the condition
holds.

Let U be an SIP space. Two notions can be defined on U. The first one is a semi-norm, it is a non-
negative real function on U denoted by ‖x‖A =

√
[x, x]A, ∀x ∈ U, which satisfies a number of well known

basic properties of a semi-norm. The second one is an orthogonality; x,y ∈ U are called A-orthogonal if
[x,y]A = 0 and we write x⊥Ay. From Proposition 2.1, we have that every neutral element is A-orthogonal
to other elements. A set S = {x1, . . . , xn} is an A-orthogonal set if xi⊥Axj, where i 6= j and i, j = 1, . . . ,n. If
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W ⊆ U, the A-orthogonal complement of W, denoted by W⊥A , is defined as the set containing all y ∈ U,
where [x,y]A = 0, for all x ∈W. In this case, N(A) ⊆W⊥A . In general, we obtain U =W +W⊥A but the
sum is not a direct sum, particularly when W ∩W⊥A 6= {0}.

For any n-dimensional SIP space U there is an A-orthonormal basis O = {x1, . . . , xm, xm+1, . . . , xn},
where {x1, . . . , xm} is a non-neutral A-orthonormal set of U with m is the rank of A; while xm+1, . . . , xn
are linearly independent neutral elements of U which form a basis of N(A).

The quotient space modulo N(A) is denoted by U/N(A) = {x = x+N(A) | x ∈ U}. The operation
and action on U/N(A) are defined as x+ y = x+ y and cx = cx, for every x = x+N(A), y = y+N(A),
x,y ∈ U, and scalar c ∈ C. Furthermore, U/N(A) is an IP space with the IP defined as

〈x,y〉 = [x,y]A, ∀x,y ∈ U/N(A); x,y ∈ U.

The norm on U/N(A) is defined as ‖x‖ = 〈x, x〉1/2 and elements x and y are orthogonal if 〈x,y〉 = 0.
Proposition 2.3 below shows the orthonormality in U/N(A).

Proposition 2.3. LetU be an SIP space and x,y ∈ U/N(A) for some x,y ∈ U. The vectors x and y are orthonormal
if and only if x and y are A-orthonormal.

Proof.

(⇐) Let x and y be A-orthonormal. Then, ‖x‖ = 〈x, x〉1/2 = [x, x]1/2
A = 1 and similarly ‖y‖ = 1. We also

have 〈x,y〉 = [x,y]A = 0. Hence, x and y are orthonormal.

(⇒) Let x and y be orthonormal, then ‖x‖A = [x, x]1/2
A = 〈x, x〉1/2 = 1 and similarly ‖y‖A = 1. We also

have [x,y]A = 〈x,y〉 = 0. Hence, x and y are A-orthonormal.

From Proposition 2.3, we can see that x⊥y if and only if x⊥Ay.

2.2. A-adjoint operators on SIP spaces
Let U be an SIP space and T : U→ U be a linear operator on U. A linear operator S : U→ U is called

an A-adjoint of T if the condition [T(x),y]A = [x,S(y)]A, ∀ x,y ∈ U holds. In contrast to the case of inner
product spaces where any linear operator on them has a unique adjoint operator, there exists a linear
operator on an SIP space without associated A-adjoint operator. A necessary and sufficient condition for
a linear operator on an SIP space to have an associated A-adjoint operator is being A-bounded. A linear
operator T on an SIP space U is called A-bounded if there is a positive real number c such that

‖T(x)‖A 6 c‖x‖A, ∀x ∈ U.

While on finite dimensional IP spaces any linear operator is bounded, the same property does not apply
on SIP spaces.

Proposition 2.4 ([7]). Let T be a linear operator on a SIP space U. The following statements are equivalent.

(i) T is A-bounded.
(ii) The subspace N(A) is T -invariant.

(iii) The representation matrix of T for any A-orthonormal basis of U is lower block matrix
[
T1 0
T2 T3

]
, where the

size of T1 is m×m.

When T is A-bounded, two linear operators can be defined, T , the operator on the quotient space
U/N(A) induced by T ,

T(x+N(A)) = T(x), ∀x+N(A) ∈ U/N(A),

and T0, the restriction of T on the subspace N(A). The block T1 of the representation matrix of T above,
represents the operator T and the block T3 represents T0.

The next proposition gives a necessary and sufficient condition for the existence of an A-adjoint oper-
ator on an SIP space ([14]).
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Proposition 2.5. Let U be an SIP space and T be a linear operator on U, then

(i) T has an A-adjoint operator(s) iff T is A- bounded; and
(ii) if T is A-bounded and S is an A-adjoint of T , then S is also A-bounded.

Let T be A-bounded. The A-adjoint of T is unique only ifN(A) is the zero subspace which is equivalent
when U is an IP space. One of the A-adjoints of T which is called the distinctive A-adjoint of T , is the
operator T ] = A†T∗A, where A† is the Moore-Penrose inverse of A and T∗ is the adjoint of T . Bovdi [7]

found that if
[
T1 0
T2 T3

]
is a representation matrix of T with respect to an A-orthonormal basis of U, then

the representation matrix of an A-adjoint of T for the same A-orthonormal basis is of the form
[
T∗1 0
S2 S3

]
,

where T∗1 denote the conjugate transpose of T1. Particularly, if we choose an A-orthonormal basis such

that the representation matrix of the positive semi-definite operator A is of the form
[
Im 0
0 0

]
, then the

representation matrix of the distinctive A-adjoint is T ] =
[
T∗1 0
0 0

]
.

2.3. A-self-adjoint operators on SIP spaces
It is well known there are several classes of bounded operators on IP spaces such as the class of normal

operators and the class of self-adjoint operators. These notions have been extended to SIP spaces.

Definition 2.6. Let T be an A-bounded operator on an SIP space U.

a. The operator T is calledA-self-adjoint if T is anA-adjoint operator of T , that is if the following condition
holds:

[Tx,y]A = [x, Ty]A, ∀x,y ∈ U.

b. The operator T is called A-normal if T ]T = TT ] holds, where T ] is the distinctive A-adjoint operator of
T .

In SIP spaces, an equivalent condition that any A-bounded operator T to be A-self-adjoint is the
equation AT = T∗A holds, where T∗ is the adjoint operator of T .

The next proposition is another necessary and sufficient condition of an A-self-adjoint operator in
regard to the induced operator on the quotient spaces U/N(A) ([7]).

Proposition 2.7. Let U be an SIP space with the SIP induced by A. An A-bounded operator T : U → U is
A-self-adjoint iff

T : U/N(A)→ U/N(A)

x+N(A) 7→ T(x) +N(A)

is self-adjoint.

In IP spaces, any self-adjoint operator is normal, i.e., it commutes with its adjoint. In contrast, this
statement is not true for the case SIP spaces. Example 2.8 shows an A-self-adjoint operator on an SIP
space which is not A- normal.

Example 2.8. Let C3 be an SIP space with the SIP map induced by the multiplication operator A =1 0 0
0 1 0
0 0 0

. The operator T =

1 0 0
0 1 0
0 1 2

 is an A-self-adjoint operator on C3, where T ] =

1 0 0
0 1 0
0 0 0

.

However, T is not an A-normal operator.
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One attribute that is well known concerning the class of self-adjoint operators on IP spaces is that it is
the class of linear operators on IP spaces that are orthogonally diagonalizable with real number diagonal
components. Unfortunately, this result can not be extended to the class of A-self-adjoint operators on SIP
spaces.

Definition 2.9. Let U be an SIP space and let T be an A-bounded linear operator on U. The operator T
is A-orthogonally diagonalizable if there is an A-orthonormal basis O of U such that the representation
matrix of T with respect to O, denoted by [T ]O, is diagonal.

Example 2.10 below shows a linear operator on an SIP space which is A-self-adjoint but is not A-
orthogonally diagonalizable.

Example 2.10. Let C3 is the SIP space as shown in Example 2.8. The operator S =

1 0 0
0 2 0
0 1 2

 is A-self-

adjoint operator on the SIP C3, which is notA-orthogonally diagonalizable. In fact, S is not diagonalizable.

Referring to the above fact it is of interest to investigate when an A-self-adjoint operator on an SIP
space is A-orthogonally diagonalizable.

3. Spectral decomposition on SIP spaces

Arias et al. [3] showed that T = T ] if and only if T is A-self-adjoint and R(T) ⊆ R(A). As a result, for
an A-orthonormal basis of the space U, say O, the representation matrix of T with respect to O is of the

form
[
T1 0
T2 T3

]
and since R(T) ⊆ R(A) , then the representation matrix of T ] with respect to O is

[
T1 0
0 0

]
,

where T1 is an m×m self-adjoint matrix. Since T1 is the matrix of T on the IP space U/N(A), then T1 is
orthogonally diagonalizable. So, a sufficient condition for operator T to be orthogonally diagonalizable
in SIP space is R(T) ⊆ R(A) and T A-self-adjoint. Tam dan Zhang ([19]) wrote this condition on Corollary
3.1.

Corollary 3.1. Let Cn be an SIP space with the SIP induced by a positive semi-definite operator A =

[
Im 0
0 0

]
∈

Cn×n. Let T ∈ Cn×n be an A-self-adjoint operator and R(T) ⊆ R(A). If V = {x1, x2, . . . , xn} is a set of A-
orthogonal eigen vectors of T , where x1, . . . , xr ∈ R(A) and xr+1, . . . , xn ∈ N(A), also λi, i = 1, 2, . . . ,n are eigen
values of T each related to xi, then

T = V



λ1
λ2

. . .
λr

0
. . .

0


V−1,

where V∗AV = Ir ⊕ 0.

We observe that the proposed condition in Corollary 3.1 is quite strong, since it does not cover lin-
ear operators with images not contained in R(A), including linear operators with rank greater than the
rank(A). Therefore, it is necessary to explore spectral decomposition of operators T whose ranks are
greater than rank(A), to investigate necessary or sufficient conditions for the existence of the decomposi-
tion.
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Example 3.2. Let C3 be an SIP space induced by A =

1 0 0
0 0 0
0 0 0

. Also, let T =

1 0 0
0 2 1
0 0 3

 be an operator

on C3. It is clear that rank(T) > rank(A). Operator T is A-bounded and A-self-adjoint. We can write T as

the block matrix
[
T1 0
0 T3

]
, where T1 = [1] and T3 =

[
2 1
0 3

]
. We can see the subspace

W =


w0

0

 : w ∈ C

 ,

which contains non-neutral elements of C3, is a T -invariant subspace and W ∩N(A) = {0}. Since T has 3
distinct eigenvalues, it has three A-orthonormal eigenvectors and we can write the spectral decomposition
of T as

T =

1 0 0
0 2 1
0 0 3

 =

1 0 0
0 1 1
0 0 1

1 0 0
0 2 0
0 0 3

1 0 0
0 1 −1
0 0 1

 .

Example 3.2 shows that there is an A-self-adjoint operator satisfying R(T) ⊃ R(A) and A-orthogonally
diagonalizable. In the next section, we will give necessary and sufficient conditions for an A-self-adjoint
operator on an SIP space to have spectral decomposition. The definition of spectral decomposition on an
SIP space is given in Definition 2.9.

3.1. Equivalent conditions for spectral decomposition
Theorem 3.3. Let T be an A-self-adjoint operator on an SIP space U. The operator T is A-orthogonally diagonal-
izable if and only if the following conditions hold.

(i) T0, the restriction T on N(A), is diagonalizable.
(ii) There is a subspace T -invariant W ⊆ U such that W ⊕N(A) = U.

Proof.

(⇒) Let T be anA-orthogonally diagonalizable operator onU. Let O = {u1, . . . ,um,um+1, . . . ,un} be anA-
orthonormal basis ofU such that [T ]O is diagonal, where {u1, . . . ,um} areA-orthonormal and um+1, . . . ,un
are linearly independent neutral elements of O. We obtain that ON = {um+1, . . .un} is a basis ofN(A) such
that the representation matrix of T0, the restriction of T on N(A), with respect to ON is diagonal. Thus
T0 is diagonalizable. Furthermore, if W is the subspace spanned by {u1, . . . ,um}, then U = W ⊕N(A).
Since [T ]O is diagonal, each ui is an eigenvector of T , we obtain T(ui) ∈ W, for all i = 1, 2, . . . ,m. As a
consequence, W is T -invariant.

(⇐) Let T0 be diagonalizable, then there is a basis B0 of N(A) consisting of n−m elements of N(A) which
are also eigenvectors of T . Since W is T -invariant, the restriction of T on W is a linear operator on W.
Furthermore, the restriction of the SIP of U on W is an IP. Thus, the restriction of T on W is a self-adjoint
operator on the IP spaceW, which implies the restriction of T onW is orthogonally diagonalizable. Let B1
be an orthonormal basis on W consisting of m eigenvectors of T . Since any element in B0 is A-orthogonal
to any element in U, we obtain B = B0 ∪ B1 is an A-orthonormal basis of U such that [T ]B is diagonal.
Thus, T is A-orthogonally diagonalizable.

Let us consider an A-self-adjoint operator T on an SIP U which satisfies R(T) ⊆ R(A) as discussed in
Corollary 3.1. We obtain N(A) ⊂ N(T) since N(A) is T -invariant and N(A) ∩ R(T) = {0}. In this case,
condition (i) of Theorem 3.3 holds. Further, R(T) ⊆ R(A) results in condition (ii) holds by the subspace
W = R(A). Hence, the conditions for spectral decomposition on Corollary 3.1 have been covered in
Theorem 3.3.
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As shown in Example 2.10, there is even A-self-adjoint operator which is not diagonalizable. The
following theorem shows that diagonalizability turns as a necessary and sufficient condition for a A-self-
adjoint operator to be A-orthogonally diagonalizable.

Theorem 3.4. Let U be an SIP space induced by a positive semi-definite operator A and let T be an A-self-adjoint
operator on U. The operator T is diagonalizable if and only if T is A-orthogonally diagonalizable.

Proof. Clearly, an A-orthogonally diagonalizable property implies a diagonalizable property. Hence, we
only need to show the sufficient condition for the existence of spectral decomposition. Let T be diago-
nalizable. As a result, the SIP space U can be written as the direct sum U = Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλk , where
λ1, . . . , λk, k 6 n are the distinct eigenvalues of T and for each i = 1, 2, . . . , k, Eλi = {x ∈ U : T(x) = λix}

is the eigenspace related to the eigenvalue λi. For any Eλi , there is an A-orthonormal basis consisting of
eigenvectors of T related to λi. The union of all these bases is an A-orthonormal basis of U as long as
Eλi⊥AEλj for all i 6= j.

Let i 6= j and take any x ∈ Eλi y ∈ Eλj . If x or y is a neutral element of U, then from Proposition 2.1
we have x⊥A y. Now let x and y are both non-neutral elements of U, then we have

λi[x, x] = [λix, x] = [T(x), x] = [x, T(x)] = [x, λix] = λi[x, x].

Since [x, x] 6= 0, we have λi = λi or λi ∈ R. Similarly, we have λj ∈ R. We can also have that

λi[x,y] = [λix,y] = [T(x),y] = [x, T(y)] = [x, λjy] = λj[x,y].

So, (λi − λj)[x,y] = 0. Since λi 6= λj, the equation is held only if [x,y] = 0. Hence we have x⊥Ay and it
has been proven that Eλi⊥AEλj for all i 6= j.

Corollary 3.5 below shows that anA-self-adjoint operator with n distinct eigenvalues isA-orthogonally
diagonalizable.

Corollary 3.5. Let U be an n-dimensional SIP space induced by a positive semi-definite operator A and T be an
A-self-adjoint operator on U. If T has n distinct eigenvalues, then T is A-orthogonally diagonalizable.

Proof. Since T has n distinct eigenvalues, then T has n linearly independent eigenvectors and, as a result,
T is diagonalizable. From Theorem 3.4, T is A-orthogonally diagonalizable.

3.2. Sufficient conditions for spectral decomposition
Up to now, we already obtained necessary and sufficient conditions for an A-self-adjoint operator

to be A-orthogonally diagonalizable. In the following we investigate some more detailed properties or
conditions that satisfy those conditions.

Theorem 3.6. Let T be an A-self-adjoint operator on an SIP space U with condition N(A) ⊆ N(T) holds. If
N(T)∩ R(T) = {0}, then T is A-orthogonally diagonalizable.

Proof. From N(T)∩R(T) = {0}, we obtain U = N(T)⊕R(T). N(A) ⊆ N(T) implies T0 is diagonalizable and
there exists W1 ⊆ N(T) such that N(T) = N(A)⊕W1. Further, we have W =W1⊕R(T) is T -invariant such
that U = N(A)⊕W. Thus, according to Theorem 3.3, T is A-orthogonally diagonalizable.

Note that from the proof of Theorem 3.6. above we can conclude that the N(T)∩ R(T) = {0} condition
itself is a necessary condition for A-orthogonally diagonalizable but it alone is not a sufficient condition
for A-orthogonally diagonalizable as shown by the following example.

Example 3.7. Let C3 be the SIP space discussed in Example 3.2. The operator T =

1 0 0
1 1 0
0 0 0

 on the

SIP space C3 is an A-self-adjoint operator with condition N(T) ∩ R(T) = {0} holds. However, it is not
orthogonally diagonalizable. More precisely, T cannot be diagonalized because one of its eigenvalues,
namely λ1 = 1, has different geometric multiplicity (= 1) and algebraic multiplicity (= 2).
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The next sufficient condition is related to the linear operator on the quotient space induced by the
investigated operator. For that we need the following technical lemma.

Lemma 3.8. Let U be an SIP space, T be an A-bounded linear operator on U, and T be the linear operator on
the quotient space U/N(A) induced by T . Let x = x+N(A), for some x ∈ U be an eigenvector of T related to
an eigenvalue λ, i.e., T(x) = λx. If λ is not an eigenvalue of T0, then there exists x1 ∈ U such that x1 = x and
T(x1) = λx1.

Proof. Let λ be an eigenvalue of T and x ∈ U is a nonzero vector satisfying T(x) = λx . Since T(x) = T(x),
we can write

T(x) − λx = v⇔ (T − λI)(x) = v

for some v ∈ N(A). If v = 0 the proof is complete. Suppose v 6= 0. The assumption that λ is not
an eigenvalue of T0 implies the operator T − λI : N(A) → N(A) is bijective and hence there is a vector
−y ∈ N(A) satisfying (T − λI)(−y) = v. Thus, we have

(T − λI)(x) = v, (T − λI)(x) = (T − λI)(−y), (T − λI)(x+ y) = 0,

T(x+ y) = λ(x+ y), T(x+ y) = λ(x+ y), T(x) = λx.

Therefore, there exists x1 = x+ y 6= 0 such that T(x1) = λx1 and x1 = x.

Theorem 3.9 below shows the relation between the diagonizability of the induced operator on IP space
U/N(A) and the operator on SIP space U.

Theorem 3.9. Let T be an A-self-adjoint linear operator on an SIP space U. If T and T0 have different eigenvalues
and T0 is diagonalizable, then T is A-orthogonally diagonalizable.

Proof. Since T0 is diagonalizable, then there is {xm+1, . . . , xn} a basis of N(A) consisting of eigenvectors
of T0. Since T is A-self-adjoint, then T is a self-adjoint operator on IP space U/N(A). Hence, T has a
spectral decomposition, i.e., there is {x1, . . . , xm} an orthonormal basis of U/N(A) consisting eigenvectors
of T . Let each eigenvector xi correspond to an eigenvalue λi, for i = 1, 2, . . . ,m, and hence λi is not an
eigenvalue of T0. According to Lemma 3.8, for every i = 1, 2, . . . ,m we may assume xi is an eigenvector
of T , i.e., T(xi) = λxi. From the orthonormality property of {x1, . . . , xm}, we obtain {x1, . . . , xm} is also an
orthonormal set with respect to SIP on U.

Hence, we have {x1, . . . , xm, xm+1, . . . , xn} is an A-orthonormal basis of U consisting of eigenvectors of
T . Thus, T is A-orthogonally diagonalizable.

The next Corollary gives the matrix form of Theorem 3.9.

Corollary 3.10. Let Cn be an SIP space with the SIP induced by A =

[
Im 0
0 0

]
. Let T =

[
T1 0
T2 T3

]
be an A-self-

adjoint operator on the SIP space Cn, for some T1 ∈ Cm×m and T3 ∈ C(n−r)×(n−r). If T1 and T3 have different
eigenvalues and T3 is diagonalizable, then T is A-orthogonally diagonalizable.

Theorem 3.9 states that when T and T0 have different eigenvalues, then T is A-orthogonally diagonal-
izable. That condition is sufficient but it is not necessary as shown in the following example.

Example 3.11. Let

T =

1 0 0
0 2 0
0 1 2

 , S =

1 0 0
0 2 0
0 0 2

 ,

be two A-self-adjoint operators on SIP space C3, with the SIP induced by A =

1 0 0
0 1 0
0 0 0

. Both operators

T and S have equal self-adjoint induced operators on the quotient space C3/N(A) with eigenvalues 1
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and 2. The restriction on N(A) of both operators T and S are also equal, which is diagonalizable with
eigenvalue 2. However, the operator T is not A-orthogonally diagonalizable since the eigenvector on the
quotient space related to eigenvalue λ = 2 does not have corresponding non-neutral eigenvector on C3.
In contrast, for the operator S, each eigenvector on the quotient space has corresponding non-neutral
eigenvector on C3. Hence, S is A-orthogonally diagonalizable.
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