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Abstract

This work introduces a new variation of the Hestenes and Stiefel nonlinear conjugate gradient (HS) method by combining
the advantages of the spectral conjugate gradient method and the conjugacy condition of the quasi-Newton method. The
proposed method incorporates inexact line searches and categorizing it as a descent method. By employing line searches that
satisfy the Wolfe conditions, we establish sufficient descent properties and global convergence condition, assuming that the
appropriate conditions are met. Additionally, we perform numerical experiments utilizing benchmark functions frequently used
in optimization assignments to evaluate the effectiveness of the proposed method. The results demonstrate that our method
outperforms the traditional HS method. Furthermore, we successfully implement the newly developed technique to train neural
networks (NNs), demonstrating its practicality for non-traditional optimization tasks.
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1. Introduction

Neural Network (NN) is a computational learning system that employs a complex network of in-
terconnected functions to process and analyze the input data. Each individual neuron in this network is
responsible for converting the received input into a corresponding output signal. The neural units that are
depicted here, establish intra-neuronal connections with at least one alternative neural unit. The weight
coefficient (wi) that modulates these connections denotes the relative importance of a given connection
within the neural network [6]. The training of neural networks (NNs) can be expressed as a nonlinear
unconstrained optimization problem. As a result, the training process involves minimizing the error func-
tion E(w). The standard performance measure for feedforward networks is typically represented by the
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squared error, which is calculated as the average of the squared differences between the output of the
network and the desired target that is:

E(w) =
1
2

N∑
p=1

p∑
i=1

(Opi − T
p
i )

2.

The above equation pertains to the computation of the squared difference error denoted by (Opi − T
p
i )

2.
This value specifically represents the difference between the output at the kth output layer neuron and
the corresponding target output value for a given pattern p, where w ∈ Rm is the vector network weights
[16].

2. The conjugate gradient method

As shown in the following unconstrained optimization problem

min f(x) ∀x ∈ Rm,

where f is a continuously differentiable function, conjugate gradient (CG) method generates a sequence
{xn} such that the nth iterate is given by

xn+1 = xn +αndn, n = 0, 1, 2, . . . , (2.1)

where αn is a small positive number called a step size, and dn is the search direction usually given by

dn+1 =

{
−gn+1, if n = 0,
−gn+1 +βndn, if n > 1,

where gn = ∇f(xn) and βn is the scalar parameter. Certain choices for the parameter βn correspond to
different CG methods. Some well-known formulae for βn are given below:

βHSn =
gTn+1yn

dTnyn
, [11, Hestens-Stiefele (HS)], (2.2)

βFRn =
gTn+1gn+1

gTngn
, [8, Fletcher-Reeves (FR)],

βPRPn =
gTn+1yn

gTngn
, [14, 15, Polak-Ribiere and Polak (PRP)],

βDYn =
||gn+1||

2

dTnyn
, [5, Dai-Yuan (DY)],

where yn = gn+1 − gn and ||.|| is the Euclidean norm. The stepsize αn is usually obtained by inexact
linear search with Wolfe’s criterion given by

f(xn +αndn) 6 f(xn) + σ1αng
T
ndn, (2.3)

dTng(xn +αndn) > σ2g
T
ndn, (2.4)

with 0 < σ1 < σ2 < 1, [9, 20]. The sufficient descent condition holds if there exist a constant c > 0 such
that gTn+1dn+1 6 −c||gn+1||

2, ∀n > 0.
In 1952, Hestenes and Stiefel [11] proposed the HS conjugate gradient method using βn as defined in

(2.2). In 2017, two new spectral conjugate gradient methods (HS and DY) with better convergence were
proposed [18]. Based on Armijo-type line search, a new formula for HS has been developed [13]. To
enhance the performance of the direction, a hybrid combination of the HS formula and the PRP formula
was suggested in [12, 19]. A hybrid conjugate gradient method also extends to applied mathematics
[17, 23]. Numerous approaches for solving problems of this kind have been proposed and are classified
into physics and engineering [21, 22].
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3. Proposed method and the sufficient descent condition

In this section, a modification of the Hestens-Stiefel method is introduced, where the search direction
is given by

dn+1 =

{
−gn+1, if n = 0,
−(1 + θn)gn+1 +β

HS
n dn, if n > 1.

(3.1)

In order to get the formula for θn, we multiply both sides of (3.1) by yn, and apply the recent update of the
conjugacy condition with the condition: dTn+1yn = −tgTn+1sn, where t > 0 and sn = xn+1 − xn = αndn
by Dai and Liao [4]. Doing so, we get:

−tgTn+1sn = −gTn+1yn − θng
T
n+1yn +

gTn+1yn

dTnyn
dTnyn.

This implies that θn = t
gTn+1sn

gTn+1yn
. Since t is a parameter, suppose t has the following form:

t =
gTn+1yn

gTn+1sn
− µ

gTn+1yn

sTnyn
,

where µ ∈ [0, 1]. Now since sn = αndn, we get

θn =
gTn+1sn

gTn+1yn

[
gTn+1yn

gTn+1sn
− µ

gTn+1yn

sTnyn

]
= βHSn

gTn+1dn

||gn+1||2
− µ

gTn+1dn

dTnyn
. (3.2)

3.1. Outline of the new proposed method
The new algorithm includes 6 steps given as follows.

Step 1. Select any initial point x1 ∈ Rm, and accuracy tolerance ε > 0. Let d1 = −g1 = −∇f(x1), and set
n = 1.

Step 2. If ||gn|| < 0, terminate, otherwise go to step 3.
Step 3. Compute step length αn by an inexact line search.
Step 4. Create the next iteration by xn+1 = xn + αndn, determine the gradient gn+1 = ∇f(xn+1), the

spectral parameter θn from the equation (3.2), and βHS from (2.2).
Step 5. Compute dn+1 = −(1 + θn)gn+1 +βn

HSdn.
Step 6. Set n = n+ 1, and return to step 2.

3.2. The sufficient descent condition
The descent property for the suggested conjugate gradient technique (3.1) is demonstrated in the

following lemma.

Lemma 3.1. Let a sequence {xn} and dn be generated by (3.1), and αn be obtained by the Wolfe’s line search (2.3)
and (2.4), if µ ∈ [0, 1], then we have gTn+1dn+1 6 −c||gn+1||

2, where c =
(

1 + µσ2
1−σ2

)
and σ2 ∈ (0, 1).

Proof.

Case 1. If µ = 0, from (3.2) and (3.1) we get gTn+1dn+1 = −||gn+1||
2.

Case 2. If µ 6= 0, the lemma can be proved by induction. For n = 1, gT1 d1 = −||g1||
2 6 0. Assume gTi di 6 0

for all i = 1, 2, . . . ,n. From (3.1) and (2.2) we get:

gTn+1dn+1 =

[
−1 + µ

gTn+1dn

dTnyn

]
||gn+1||

2
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=

[
−(1 − µ) − µ

(
1 −

gTn+1dn

dTnyn

)]
||gn+1||

2 6

[
−(1 − µ) − µ

gTndn

dTnyn

]
||gn+1||

2.

Since yn = gn+1 − gn and from the Wolfe’s condition (2.4), we obtain

gTn+1dn+1 6

[
−(1 − µ) − µ

gTndn

(1 − σ2)dTngn

]
||gn+1||

2.

Now let c =
(

1 + µσ2
1−σ2

)
, which is a positive number, then gTn+1dn+1 6 −c||gn+1||

2. This complete the
proof.

3.3. Convergence analysis of the developed method
The following assumptions are frequently required to prove the global converge analysis of any CG

process.

(1) Assume that f(x) is bounded below on the level set Rm and differentiable in a neighborhood N of the
level set S = {x ∈ Rm : f(x) 6 f(x0)}, then there exists a constant γ > 0 such that ||g(x)|| 6 γ, ∀x ∈ S.

(2) The gradient g(x) is Lipschitz continuous in N, if ∃L > 0, s.t., ||g(x) − g(xn)|| 6 L||x− xn||, ∀x, xn ∈ N.

These assumptions lead to the following lemma.

Lemma 3.2 ([5, Zountendijk theorem]). Once the sequence {xn} is clearly generated by (2.1), the step size αn
satisfies (2.3) and (2.4) and dn is the descent direction, then the following holds:

∞∑
n=1

(gTndn)
2

||dn||2
<∞.

Theorem 3.3. Assume that assumption (1) is true. If µ ∈ [0, 1) and the sequence {xn} generated by using the
algorithm in subsection (3.1), where αn satisfies the Wolfe’s conditions, then lim inf

n→∞ ||gn|| = 0.

Proof. The theorem can be proved by using contradiction. That is, there exists a positive constant δ, such
that ||gn|| > δ or equivalently 1

||gn||2
6 1
δ2 for all n. Multiplying (3.1) by gn+1 and substituting βHS as in

(2.2), we obtain

dTn+1gn+1 = −||gn+1||
2 + µ

gTn+1dn

dTnyn
||gn+1||

2. (3.3)

Dividing both sides of (3.3) by ||gn+1||
2 and using the Lipschitz condition, we get

gTn+1dn+1

||gn+1||2
+ 1 > µ

gTn+1dn

LdTnsn
.

Using (2.4), we have
dTn+1gn+1

||gn+1||2
+ 1 >

σ2g
T
ndn

Lαn||dn||2
.

Therefore,
Lαn

µσ2

[
dTn+1gn+1

||gn + 1||2
+ 1

]
>
gTndn

||dn||2
. (3.4)

Squaring both sides of (3.4) implies that

(
Lαn

µσ2

)2
(
dTn+1gn+1

||gn + 1||2
+ 1

)2

||dn||
2 >

(
gTndn

)2

||dn||2
.
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Since cos2(θ) =
(gTndn)

||dn||||gn||
, then

∞∑
n=1

(
Lαn

µσ2

)2
(
dTn+1gn+1

||gn+1||2
+ 1

)2

||dn||
2 >

∞∑
n=1

||gn||
2,

that is ∞∑
n=1

(
gTndn

)2

||dn||2
>

∞∑
n=1

δ2 =∞. (3.5)

This contradicts the Zourtendijk theorem. Therefore, from (3.5) it follows that

∞∑
n=1

(gTndn)
2

||dn||2
<∞.

This completes the proof. Hence it suggests that our method has a property of global convergence.

4. Numerical results and discussion

We have chosen 45 unconstrained optimization problems in the range [n = 1000, 2000, . . . , 10, 000]
broadly and they are based on the generalization in [1]. All algorithms used strong Wolfe condition . The
codes are adopted with double precision and using the Fortran language. All of these codes are authored
by Andrei [2, 3]. The following figures use Dolan and Moré’s analysis [7] to show how efficient our
algorithm is. Our new method (New) needs fewer iterations (NI) and function evaluations (NF) than the
standard HS ([11]), CR ([17]), and HYB ([10]) conjugate gradient parameters. You can see this in Figures
1 and 2. Moreover, Table 1 presents the percentage of enhancement achieved by our new spectral CG
approach. In comparison with the HS method, our new method exhibits improvements of 20.03% in NI
and 33.77% in NF.
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Figure 1: Performance profile based on NI.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HS-1952

hyb-2024

CR-2024

NEW

Figure 2: Performance profile based on NF.

Table 1: The percentage of improvement between the standard HS method and the new method.

Tools HS method NEW method

NI 100% 79.97%
NF 100% 66.23%
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5. Results of training neural network using the new spectral method

In this section, a new spectral technique has been employed to train the neural networks in classical
artificial intelligence problems (continuous function approximation). This paper presents a comparative
analysis between the conventional HS method and a new method developed in this study. The current
study utilized version (8.1) of the MATLAB neural network toolbox to perform the CG method. Consider
the approximation of the continuous trigonometric function f(x) = sin(x) + cos(2x), where x ∈ [0,π].
The outcomes of the training activity are presented in Table 2, while Figures 3 and 4 provide graphical
illustrations of the results. The standard HS method and our new method have been compared with the
same input and target values. The target error threshold remains at 1 ∗ 10−15, and the maximum number
of epochs is set to 300. The numerical findings reveal that the new method significantly improved the
efficiency of the neural networks in comparison to the traditional HS method.

Table 2: Comparison of the performance between the new method and the standard HS approach.
Methods No. Running Epochs CPU time(s)/Epoch Gradient Step size

1 266 0.00.01 0.000215 0.00
HS 2 147 0.00.37 0.000201 0.00

3 145 0.00.36 0.000221 0.00
4 119 0.00.35 0.000199 0.00
1 40 0.00.01 0.0180 0.00

New 2 114 0.00.27 0.000202 0.00
3 3 0.00.00 0.180 0.00
4 105 0.00.24 0.000199 0.00

119 Epochs
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Figure 3: First epoch performance of standard HS method
for training neural networks
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Figure 4: First epoch performance of the new method for
training neural networks

6. Conclusion

In this study, a new approach to network training has been developed using the conjugate gradient
method. Furthermore, the new method is globally compatible with descent and satisfies adequate condi-
tions. The proposed method has clearly demonstrated its efficiency according to the numerical results.
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