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Abstract
In this work, we have developed a model that describes the relationships between top predators (such as tigers, hyenas, and

others), crop raiders (such as baboons, warthogs, and deer), and prey (such as deer) in the coffee forests of southwest Ethiopia.
Various potential equilibrium points are identified. Additionally, the model’s stability in the vicinity of these equilibrium points
is examined. An investigation of the model’s Hopf bifurcation is conducted concerning several significant parameters. It is
found that prey species may be extinct due to a lower growth rate and consumption by top predators in the absence of human
interference in the carrying capacity of prey. It is observed that top predators may be extinct due to human interference in their
carrying capacity and their smaller dependence on humans in terms of prey and crop raiders, respectively. It is also found that
there is an increase in intra-species competition among the top predators, which may intensify the stability of the model. Again,
it is also observed that the increase in the intrinsic growth rate of prey and top predators may improve the stability of the model.
Lastly, some numerical simulation results have been shown to help visualize the model’s dynamics.
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1. Introduction

Due to its significance and widespread existence, the study of the dynamic relationship of the prey-
predator system has long been. It will continue to be one of the main topics in both mathematical ecology
and ecology. Mathematical modeling and comprehension of biological events have greatly benefited from
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the advances of recent decades. One major goal of mathematical models in biology is to mathematically
represent the population dynamics of a prey-predator system, a goal that has drawn interest from numer-
ous scholars [4, 6, 8, 14, 34, 36, 39, 40]. One of the prerequisites for comprehending how species interact
with one another is knowledge of species co-occurrence patterns. Furthermore, it’s critical to compre-
hend how human disturbance may impact these patterns, especially in settings with high wildlife-human
crossing rates. Because resources and habitat are shared in these types of environments, human-wildlife
coexistence can be common, and conflicts are likely to arise. This is true in many tropical forest landscapes
in sub-Saharan Africa, where local livelihoods and forest animals coexist together, creating challenges for
livelihood development and wildlife conservation as well as frequent conflicts [1, 17, 24, 28, 32, 33, 35].
Furthermore, a lot of these forest landscapes are being fragmented and cleared for development, two
activities that might change the co-occurrence of species and have an effect on interacting species [18, 19].
Thus, gathering information on the spatiotemporal patterns of a species’ activity can help shed light on
how well-suited a species is to coexist with humans and help direct the creation of policies meant to
co-manage animals and humans.

Here, we investigate the co-occurrence of prey, crop raiders, top predators, and people at a fine spatial
scale in the smallholder landscapes of southwest Ethiopia, utilizing a multi-species occupancy model [27].
These landscapes exhibit a high degree of human-wildlife overlap, which makes this area very fascinating
for studying human-wildlife interactions. In an ecological system, every population uses a different tactic
to find food sources and protect itself, such as refuging or clustering. To create more realistic mathematical
models, a wide range of ecological components and characteristics are used. Every prey-predator inter-
action in population dynamics must take into account the functional response, or the ratio of a predator’s
prey intake to the density of prey per unit of time [5, 37]. The functional response of Holling types I, II, III,
and IV is generally employed for most arthropod predators [7, 9]. Afterward, Rosenzweig and MacArthur
[29] looked into the Lotka-Volterra model, accounting for the predator’s saturation with a Holling type
II functional response and the prey’s logistic growth rate. Majeed and Ghafel [16] are investigating how
a prey-predator model, which takes into account intraspecific competitions and prey shelters, affects the
fear that young animals feel due to the fear of more experienced predators. Panja et al. [26] have sug-
gested using a three-species predator-prey model that includes nonlinear Lotka-Volterra rivalry between
two rival species, x and y. SK et al. [30] are investigating the dynamics of a Lotka-Volterra model in-
cluding three species and intraguild (IG) predation. Interactions between an omnivorous top/intraguild
predator, intraguild prey, and base prey are included in the model. Mondal and el [20] gave a description
of the qualitative behavior of a prey-predator model with prey refuge in discrete time. The prey fraction in
the refuge is thought to be a self-limiting function that increases monotonically with the prey population.
The authors in [31] focus on investigating a basic prey-predator model’s global dynamics. The model
accounts for the impact of harvesting on the population of predators as well as cooperative hunting be-
havior among predators. Mortoja and other authors [22] have developed an ecological model that permits
the inverse feeding mechanism by utilizing the typical prey-predator interactions. A three-species food
web structure with common prey, intermediate, and top predators makes up the mathematical model. On
the other hand, there are several articles in this field see [3, 10–13, 15, 21, 25, 38].

According to the ”humans as super-predators” hypothesis (Figure 1 (a)), the presence of people in the
forest pushes crop-raiders and prey into the top predator space, displacing all other species groupings,
including top predators and prey. According to this theory, all species groups will be more occupied
in places without human presence than in areas with human presence. The ”humans as shield” theory
(Figure 1 (b)) states that the presence of people only displaces top predators, lowering the danger of
predation for both crop raiders and prey. According to this theory, there will be more prey and crop
raiders when humans are there than when they are not, and there will be more top predators when
humans are not around.

The structure of the paper is as follows. A mathematical model is formulated in Section 2. The
positiveness and boundedness are investigated in 3. Section 4 evaluates various potential equilibrium
positions. The analysis of the model’s local stability around these equilibrium locations is conducted in
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Figure 1: Conceptual representation of two study hypotheses: (a) the hypothesis that humans act as super-predators, and (b) the
hypothesis that humans act as a shield.

Section 5. The existence of the Hopf bifurcation around the positive equilibrium point is shown in Section
6. Section 7 presents the findings of the numerical simulation. The conclusions of the primary results are
presented in Section 8.

2. Model formulation

In this paper, we have constructed a model of the interactions of prey (i.e., Deer), crop-raiders (i.e.,
Baboon, Warthog, Bushpig, etc.), and top predator (i.e., Tiger, hyena, etc.) in the presence of the human.
We have taken this idea from the coffee forests of southwestern Ethiopia. Here P(t), CR(t), T(t), and H(t)
are the densities of prey, crop-raiders, top predators, and humans at time t, respectively. We have taken
the following assumptions to construct the model.

• It is assumed that prey grows logistically in the absence of humans and top predators. It is also assumed
that space (carrying capacity) for prey species increases due to the human shield.
• It is considered that the attack rate of prey by top predator is affected by the human shield. Holling

type II functional response function is used for the consumption of prey by top predator.
• The logistic growth of crop-raiders has been taken into consideration in the absence of human, top

predator and without natural death rate of crop-raiders. It is assumed that crop-raiders are also attacked
by the top predator for food. Crowley-Martin type functional response is used for the consumption of
crop-raiders by top predator.
• It is assumed that the space or carrying capacity for crop-raiders increase due to the human shield. It

is also assumed that the consumption of crop-raiders by top predator may affected by human shield.
The crop-raiders may decrease due to the natural death rate.
• It is considered that top predator species increases due to the consumption of prey and crop-raiders.

It is also considered that top predator’s may decrease due to the intra-species competition and natural
deaths.
• A constant rate of recruitment of human has been considered. The human species may decrease due to

the natural deaths.

Keeping the above assumptions in mind, we have formulated the following model:

dP

dt
= r1P(1 −

P

k1 + ξ1H
) −

αPT

(1 +βP)(1 + b1H)
,

dCR
dt

= r2CR(1 −
CR

k2 + ξ2H
) −

γCRT

(1 +β1CR +β2P+β3CRT)(1 + b2H)
− d1CR,

dT

dt
=

α1αPT

(1 +βP)(1 + b1H)
+

γ1γCRT

(1 +β1CR +β2P+β3CRT)(1 + b2H)
−mT 2 − d2T ,

dH

dt
= r3 − d3H,

(2.1)
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with initial conditions P(0) = P0 > 0, CR(0) = CR0 > 0, T(0) = T0 > 0, and H(0) = H0 > 0. The physical
interpretations of the model parameters are given in the Table 1.

Parameter Biological meaning
r1 Intrinsic growth rate of prey
k1 Environmental carrying capacity of prey
ξ1 Increase rate of carrying capacity of prey due to human shield
α Consumption rate of prey by top predator
β Inverse of half-saturation constant for the consumption of prey by top predator
b1 Effects of human shield in the consumption of prey by top predator
r2 Intrinsic growth rate of crop-raiders
k2 Environmental carrying capacity of crop-raiders
ξ2 Increase rate of carrying capacity of crop-raiders due to human shield
γ Consumption rate of crop-raiders by top predator
β1 Inverse of half-saturation constant for the consumption of crop-raiders by top predator
b2 Effects of human shield in the consumption of crop-raiders by top predator
m Intra-species competition among top predator
r3 Intrinsic growth rate of human
k3 Environmental carrying capacity for humans
d1 Natural death rate of crop-raiders
d2 Natural death rate of top predator
d3 Natural death rate of human

Table 1: The physical meaning of all parameters of model.

3. Positiveness and boundedness

Theorem 3.1. All solutions of system (2.1) that start with positive initial conditions P0 > 0, CR0 > 0, T0 > 0, and
H0 > 0 are also positive.

Proof. By integrating system (2.1) for P(t),CR0(t), T(t) > 0, and H(t) > 0, we get

P (t) = P (0) exp
{∫t

0

[
r1(1 −

P

k1 + ξ1H
) −

αT

(1 +βP)(1 + b1H)

]
ds
}
> 0,

CR (t) = CR (0) exp
{∫t

0

[
r2(1 −

CR
k2 + ξ2H

) −
γT

(1 +β1CR +β2P+β3CRT)(1 + b2H)
− d1

]
ds
}
> 0,

T (t) = T (0) exp
{∫t

0

[ α1αP

(1 +βP)(1 + b1H)
+

γ1γCR
(1 +β1CR +β2P+β3CRT)(1 + b2H)

−mT − d2

]
ds
}
> 0,

H (t) > H (0) exp
{∫t

0

[
− d3

]
ds
}

.

Consequently, solutions that possess positive initial conditions will persist thereafter.

Theorem 3.2. The set Z =
{
(P,CR, T ,H) ∈ R4

+ : P + CR + T 6 ν
ξ ,H 6 Hm

}
attracts all the solutions

P(t),CR(t), T(t),H(t) initiating in R4
+.

Proof. By applying the Comparison lemma on the last equation of (2.1), we obtain

lim
t→∞ sup[H(t)] 6

r3

d4
= Hm.
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Now, let Y(t) = α1P(t)+γ1CR(t)+ T(t), then dY
dt = α1

dP
dt +γ1

dCR
dt + dT

dt . Using (2.1) and the human above
bound, we obtain

dY

dt
+ ξ 6 ν,

where ξ = min{r1α1,d1γ1,d2} and ν = 2r1α1(k1 + ξ1Hm) + r2γ1(k2 + ξ2Hm). Then, using Gronwall’s
inequality, we get

0 6 Y(t) 6
ν

ξ

(
1 − e−ξt

)
+ Y(0)e−ξt.

Hence,
0 6 lim sup

t→∞ Y(t) 6
ν

ξ
.

Thus, all solutions of system (2.1) that are initiated in R4
+ are attracted to the region Z.

4. Equilibrium points

The model (2.1) admits the following equilibria.

1. The top predator-free equilibrium point c1 = (P1,CR1, 0,H1) = (k1 +
ζ1r3
d3

, (1 − d1
r2
)(k2 +

ζ2r3
d3

), 0, r3
d3
).

Cleary, CR1 > 0 if

d1

r2
< 1 (4.1)

2. The crop raiders-free equilibrium point c2 = (P2, 0, T2,H2), where H2 = r3
d3

, T2 = mαα1P2
(1+βP2)(1+b1H2)

− d2
m

and P2 is a root of the following polynomials:

w0P
3 +w1P

2 +w2P+w3 = 0,

wherew0 =
mr1β

2(1+b1H2)
2

k1+ζ1H2
,w1 = w0β− r1mβ

2(1+b1H2)
2,w2 = w0

β +α2α1 − r1mβ(1+b1H2)
2 −αd2β(1+

b1H2), and w3 = −(r1m(1+ b1H2)
2 +αd2(1+ b1H2)). So, according to Descartes’ Rule of Signs, the above

polynomial has a unique positive root say c2 if w1 > 0 or w2 < 0. Clearly, T2 > 0 if

m2αα1P2 > d2(1 +βP2)(1 + b1H2).

3. The prey-free equilibrium point c3 = (0,CR3, T3,H3), where

H3 =
r3

d3
= a∗, CR3 =

a∗(mT + d2)

γγ1 − a∗(m+mβ3T 2 + d2β1 + d2β3)
.

Clearly, CR3 > 0 if

γγ1 > a
∗(m+mβ3T

2 + d2β1 + d2β3).

T3 is a root of the following fifth-degree polynomial

h1T
5 + h2T

4 + h3T
3 + h4T

2 + h5T + h6 = 0,

where

h1 = −γ,

h2 = −a∗r2a
∗
2β3a3m+ a∗2a

2
3(r2 − d1),

h3 = −2a∗a3(a
∗a2 − a1) − a

∗2
a3mr2a

∗
2

(
β1 +

d2β3

m
−

1
a∗1

)
−
m2r2a

2
2β3

a∗1
,
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h4 = −2a∗a∗2a3(r2 − d1)(a1 − a
∗a2) − a

∗2
a3d2r2a

2
2

(
β1 −

1
a∗1

)
−
r2a

2
2m

a∗1
(β1m+ 2d2β3) − r2a

∗
2β3a

∗β3 (a2a
∗ − a1) ,

h5 = −γ
(
a∗1 − 2a∗a1a2 + a

∗2
a∗2

)
− r2a

∗ (a∗a2 − a1)

(
a∗2β1 + a

2
2β3 −

a2
2
a∗1

)
−
r2a

2
2d2

a∗1
(2β1m+β3d2) ,

h6 = a∗2(r2 − d1)
(
a2

1 + a
∗2
a2

2 − 2a∗a1a2

)
+ r2a

∗d2

(
a∗2
a∗1

− a∗2β1

)
(a2a

∗ − a1) −
r2a
∗
2β1d

2
2

a∗1
,

and a1 = γγ1, a2 = m+d2β1 +d2β3, a3 = mβ3, a∗1 = k1 +ξ1a
∗, a∗2 = 1+b2a

∗. So, according to Descartes’
rule of signs, the above polynomial has a unique positive root, say T3, if one of the following cases is hold:

• hi > 0, i = 3, 4, 5, 6;
• h2 < 0,h3 < 0,hi > 0, i = 4, 5, 6;
• h2 < 0,h3 < 0,h4 < 0,hi > 0, i = 5, 6;
• hi < 0, i = 2, 3, 4, 5,h6 > 0.

4. The PH-equilibrium point cPH =
(
a∗1 , 0, 0,a∗

)
.

5. The CRH-equilibrium point cCRH =
(

0,
(

1 − d1
r2

)
(k2 + ξ2a

∗) , 0,a∗
)

, which exists under condition (4.1).

6. The positive equilibrium point c∗ =
(
P∗,C∗R, T∗,H∗

)
, where

H∗ = a∗, T∗(P) =
r1

α
(1 + b1a

∗)

(
1 +

(
β−

1
k1 + ξ1a∗

)
P−

β

k1 + ξ1a∗
P2
)

and (P∗,C∗R) is the positive intersection point of the following isoclines after substituting H∗, T∗ in the
second and third equations we obtained,

f1(P,CR) = r2

(
1 −

CR
k2 + ξ2a∗

)
−

γT∗(P)

(1 +β1CR +β2P+β3CRT∗(P))(1 + b2a∗)
− d1 = 0,

f2(P,CR) =
α1αP

(1 +βP)(1 + b1a∗)
+

γ1γCRT
∗(P)

(1 +β1CR +β2P+β3CR)(1 + b2a∗)
−mT∗(P) − d2 = 0.

As CR → 0 we have

f1(P, 0) = r2 −
γT∗(P)

(1 +β2P)(1 + b2a∗)
− d1 = 0, f2(P, 0) =

α1αP

(1 +βP)(1 + b1a∗)
−mT∗(P) − d2 = 0.

From f1(P, 0) and f2(P, 0) one can get Pf1 is a root of

γr1β

(k1 + ξ1a∗)
P2 + r1

(
1

k1 + ξ1a∗
+ r2β1 −β

)
P− r1 + r2α = 0,

which has a unique root provided that r1

(
1

k1+ξ1a∗
+ r2β1 −β

)
and −r1 + r2α are both positive or both

negative or r1

(
1

k1+ξ1a∗
+ r2β1 −β

)
and −r1 + r2α is negative, and Pf2 is a root of

s1P
3 + s2P

2 + s3P+ s4 = 0, (4.2)

where

s1 =
mr1(1 + b1a

∗)β2

k1 + ξ1a∗
,
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s2 = 2
mr1(1 + b1a

∗)β

k1 + ξ1a∗
−mr1(1 + b1a

∗)β2,

s3 =
mr1(1 + b1a

∗)β

k1 + ξ1a∗
+

α1α
2

(1 + b1a∗)
− 2mr1(1 + b1a

∗)β−αd2β,

s4 = −(mr1(1 + b1a
∗) −αd2) .

It’s clear that s1 is positive and s4 is negative. So, according to Descartes’ rule of signs the polynomial
(4.2) has a unique root provided that s2 and s3 are both positive or both negative. Now, we assume that

Pf1 < Pf2 . (4.3)

Also, we assume that the following conditions are satisfied:

dP

dCR
= −

∂f1

∂CR
/
∂f1

∂P
> 0,

dP

dCR
= −

∂f2

∂CR
/
∂f2

∂P
< 0. (4.4)

So, the slope of f2(P,CR) is negative. It is clear that the two isoclines f1(P,CR) and f2(P,CR) uniquely
cross at a point (P∗,C∗R) in the positive P-CR plane. Consequently, the interior equilibrium point is real
and is defined as c∗ = (P∗,C∗R, T∗,H∗). The following result is obtained.

Lemma 4.1. Model (2.1) has a unique interior equilibrium point c∗(P∗,C∗R, T∗,H∗) provided that the conditions
(4.3) and (4.4) hold.

5. Local stability

The Jacobian matrix of model (2.1) is

J(P,CR, T ,H) = [aij]4×4 =


a11 0 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
0 0 0 a44

 , (5.1)

a11 = −
αT

(b1H+ 1)(βP+ 1)2 − r1

(
2P

k1 + ξ1H
− 1
)

,

a13 = −
αP

(b1H+ 1)(βP+ 1)
,

a14 =
r1ξ1P

2

(k1 + ξ1H)2 +
αb1PT

(b1H+ 1)2(βP+ 1)
,

a21 =
β2γCT

(b2H+ 1)(β1C+β2P+β3CT + 1)2 ,

a22 = −
γT(β2P+ 1)

(b2H+ 1)(β1C+β2P+β3CT + 1)2 − r2

(
2C

k2 + ξ2H
− 1
)
− d1,

a23 = −
γC (β1C+β2P+ 1)

(b2H+ 1)(β1C+β2P+β3CT + 1)2 ,

a24 =
r2ξ2C

2

(k2 + ξ2H)2 +
b2γCT

(b2H+ 1)2(β1C+β2P+β3CT + 1)
,

a31 =
αα1T

(b1H+ 1)(βP+ 1)2 −
β2γ1γCT

(b2H+ 1)(β1C+β2P+β3CT + 1)2 ,

a32 =
γ1γT(β2P+ 1)

(b2H+ 1)(β1C+β2P+β3CT + 1)2 ,

a33 =
γ1γC (β1C+β2P+ 1)

(b2H+ 1)(β1C+β2P+β3CT + 1)2 − 2mT − d2 +
αα1P

(b1H+ 1)(βP+ 1)
,
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a34 = −
b2γ1γCT

(b2H+ 1)2(β1C+β2P+β3CT + 1)
−

αα1b1PT

(b1H+ 1)2(βP+ 1)
,

a44 = −d3.

Now, to examine the local stability of each equilibrium, we should calculate the Jacobian matrix (5.1)
around each of them. So, the Jacobian matrix around c1 is given as

J(c1) = [uij]4×4


−r1 0 u13 r1ξ1

0 r2(
d1
r2

− 1) u23 r2ξ2(
d1
r2

− 1)2

0 0 u33 0
0 0 0 −d3

 , (5.2)

u13 = −
(αk1 + (r3ξ1

d3
)

(b1r3
d3 + 1)(β(k1 +

r3ξ1
d3 ) + 1)

,

u23 =
γ(k2 + (r3ξ2)/d3)(d1/r2 − 1))

((b2r3)/d3 + 1)(β2(k1 + (r3ξ1)/d3) −β1(k2 + (r3ξ2)/d3)(d1/r2 − 1) + 1)
,

u33 =
αα1(k1 + (r3ξ1)/d3)

((b1r3)/d3 + 1)(β(k1 + (r3ξ1)/d3) + 1)
− d2 −

γ1γ(k2 + (r3ξ2)/d3)(d1/r2 − 1))
(b2r3)/d3 + 1)(β2(k1 + (r3ξ1)/d3)

,

−β1(k2 + (r3ξ2)/d3)(d1/r2 − 1) + 1)).

The characteristic equation of (5.2) is

(−r1 − λ)(r2(
d1

r2
− 1) − λ)(u33 − λ)(−d3 − λ) = 0.

So, the roots of above equation are λ1 = −r1, λ2 = r2(
d1
r2

− 1), λ3 = u33, and λ4 = −d3. It’s easy to
investigate the negativity of all eigenvalues provided that condition (4.1) is satisfied along with

u33 < 0. (5.3)

Therefore, according to the stability criterion, the equilibrium point c1 is locally asymptotically stable.
The following theorem is given.

Theorem 5.1. Provided that the conditions (4.1) and (5.3) hold, the equilibrium point c1 is locally asymptotically
stable.

We can calculate the jacobian matrix (5.1) around c2 as previous way by

J(c2) = [eij]4×4 =


e11 0 e13 e14
0 e22 0 0
e31 e32 e33 e34
0 0 0 −d3

 , (5.4)

e11 = −
αT2

(b1a∗ + 1)(βP2 + 1)2 − r1

(
2P2

k1 + ξ1a∗
− 1
)

,

e31 =
αα1T2

((b1r3)/d3 + 1)(βP2 + 1)
,

e22 = r2 − d1 −
γT2

((b2r3)/d3 + 1)(β2P2 + 1)
,

e32 =
γ1γT2

((b2r3)/d3 + 1)(β2P2 + 1)
,

e13 = −
αP2

((b1r3)/d3 + 1)(βP+ 1)
,
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e33 =
αα1P

((b1r3)/d3 + 1)(βP2 + 1)
− 2mT2 − d2,

e14 =
r1ξ1P

2

(k1 + (r3ξ1)/d3)2 +
αb1P2T2

(b1r3)/d3 + 1)2(βP2 + 1)
,

e34 = −
αα1b1P2T2

((b1r3)/d3 + 1)2(βP+ 1)
.

The characteristic equation of (5.4) is

(−d3 − λ)(e22 − λ)[λ
2 − (e11 + e33)λ+ e11e33 − e13e31] = 0. (5.5)

The first two roots of (5.5) are λ1 = −d3 and λ2 = e22 and the other two roots are

λ3,4 =
(e11 + e33)±

√
(e11 + e33)2 − 4(e11e33 − e13e31)

2
.

So, due to the Routh-Hurwitz stability criterion the equilibrium point c2 is locally asymptotically stable
if all roots of the characteristic equation (5.5) have negative real parts which are satisfied if the following
conditions hold

e22 < 0, e11 + e33 < 0, e11e33 > e13e31. (5.6)

Thus, the following theorem is obtained.

Theorem 5.2. Provided that the conditions (5.6) hold, the equilibrium point c2 is locally asymptotically stable.

For equilibrium point c3, the Jacobian matrix (5.1) around c3 can be calculated as

J(c3) = [dij]4×4


d11 0 0 0
d21 d22 d23 d24
d31 d32 d33 d34
0 0 0 d44

 ,

d11 = −
αT3

(b1a∗ + 1)
+ r1,

d21 =
β2γCT3

(b2H3 + 1)(β1C3 +β3C3T3 + 1)2 ,

d22 = −
γT3

(b2a∗ + 1)(β1C3 +β3C3T3 + 1)2 − r2

(
2C3

k2 + ξ2a∗
− 1
)
− d1,

d23 = −
γC3 (β1C3 + 1)

(b2a∗ + 1)(β1C3 +β3C3T3 + 1)2 ,

d24 =
r2ξ2C

2
3

(k2 + ξ2a∗)2 +
b2γC3T3

(b2a∗ + 1)2(β1C3 +β3C3T3 + 1)
,

d31 =
αα1T3

(b1a∗ + 1)
−

β2γ1γC3T3

(b2a∗ + 1)(β1C3 +β3C3T3 + 1)2 ,

d32 =
γ1γT3

(b2a∗ + 1)(β1C3 +β3C3T3 + 1)2 ,

d33 =
γ1γC (β1C3 ++1)

(b2a∗ + 1)(β1C3 +β3C3T3 + 1)2 − 2mT3 − d2,

d34 = −
b2γ1γC3T3

(b2a∗ + 1)2(β1C3 +β3C3T3 + 1)
,

d44 = −d3.
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The characteristic equation of J(c3) is

(−d3 − λ)(d11 − λ)[λ
2 − (d22 + d33)λ+ d22d33 − d23d32] = 0. (5.7)

The first root of (5.7) is λ1 = −d3, where the second root of it is λ2 = − αT3
(b1a∗+1) + r1, which is negative

with

αT3

(b1a∗ + 1)
> r1 (5.8)

and the other two roots are λ3,4 =
(d11+d33)±

√
(d11+d33)2−4(d11d33−d13d31)

2 , which are negative if

d11 + d33 < 0, (5.9)
d11d33 > d13d31. (5.10)

So, according to Routh-Hurwitz stability criterion c3 is locally asymptotically stable if (5.8) and (5.9) are
holds. Thus, the following theorem is given.

Theorem 5.3. Provided that the conditions (5.8), (5.9), and (5.10) hold, the equilibrium point c3 is locally asymp-
totically stable.

In the following, we find the Jacobian matrix (5.1) around cPH as

J(cPH) = [fij]4×4 =


f11 0 f13 f14
0 f22 0 0
0 0 f33 0
0 0 0 f44

 , f11 = −r1

(
2a∗1

k1 + ξ1a∗
− 1
)

,

f13 = −
αa∗1

(b1a∗ + 1)(βa∗1 + 1)
, f14 =

r1ξ1a
∗2

1
(k1 + ξ1a∗)2 ,

f22 = r2 − d1, f33 = −d2 +
αα1a

∗
1

(b1a∗ + 1)(βa∗1 + 1)
, f44 = −d3.

The characteristic equation of J(cPH) is

(λ1 − f11)(λ2 − f22)(λ− f33)(λ4 − f44) = 0,

where λ1 = −r1

(
2a∗1

k1+ξ1a∗
− 1
)

, λ2 = r2 − d1, λ3 = −d2 +
αα1a

∗
1

(b1a∗+1)(βa∗1+1) , and λ4 = −d3. So, all those roots
are negative provided that

2a∗1
k1 + ξ1a∗

> 1, d1 > r2, d2 >
αα1a

∗
1

(b1a∗ + 1)(βa∗1 + 1)
. (5.11)

Thus, we can write the following theorem.

Theorem 5.4. Provided that the conditions (5.11) hold, the equilibrium point cPH is locally asymptotically stable.

We calculate the Jacobian matrix (5.1) around cCRH as

J(cCRH) =


h11 0 0 0
0 h22 h23 h24
0 0 h33 0
0 0 0 h44

 , h11 = r1, h22 = −r2 + d1,
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h23 = −
γ

(b2a∗ + 1)
, h24 = r2ξ2

(
1 −

d1

r2

)2

, h33 =
γ1γ

β1(b2a∗ + 1)
− d2, h44 = −d3.

Unfortunately, we get one root of it characteristic equation h11 = r1 which is positive. So, this point can
not be stable. In the following, we discuss the local stability of positive equilibrium point c∗. The Jacobian
matrix around c∗ is given as

J(P∗,C∗R, T∗,H∗) = [mij]4×4 =


m11 0 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34

0 0 0 m44

 .

So, the eigenvalues of J(c∗) are the roots of the following equation

(−d3 − λ)(λ
3 +M1λ

2 +M2λ+M3) = 0, (5.12)

where

M1 = −(m11 +m22 +m33),
M2 = m11(m22 +m33) +m22m33 −m13m31 −m23m32,
M3 = m11(m23m32 −m22m33) +m13(m22m31 −m21m32),

and

m11 = −
αT∗

(b1H∗ + 1)(βP∗ + 1)2 − r1

(
2P∗

k1 + ξ1H∗
− 1
)

,

m13 = −
αP∗

(b1H∗ + 1)(βP∗ + 1)
,

m14 =
r1ξ1P

∗2

(k1 + ξ1H∗)2 +
αb1P

∗T∗

(b1H∗ + 1)2(βP∗ + 1)
,

m21 =
β2γC

∗
RT
∗

(b2H∗ + 1)(β1C
∗
R +β2P∗ +β3C

∗
RT
∗ + 1)2 ,

m22 = −
γT∗(β2P

∗ + 1)
(b2H∗ + 1)(β1C

∗
R +β2P∗ +β3C

∗
RT
∗ + 1)2 − r2

(
2C∗R

k2 + ξ2H∗
− 1
)
− d1,

m23 = −
γC∗R

(
β1C

∗
R +β2P

∗ + 1
)

(b2H∗ + 1)(β1C
∗
R +β2P∗ +β3C

∗
RT
∗ + 1)2 ,

m24 =
r2ξ2C

∗2

R

(k2 + ξ2H∗)2 +
b2γC

∗
RT
∗

(b2H∗ + 1)2(β1C
∗
R +β2P∗ +β3C

∗
RT
∗ + 1)

,

m31 =
αα1T

∗

(b1H∗ + 1)(βP∗ + 1)2 −
β2γ1γC

∗
RT
∗

(b2H∗ + 1)(β1C
∗
R +β2P∗ +β3C

∗
RT
∗ + 1)2 ,

m32 =
γ1γT

∗(β2P
∗ + 1)

(b2H∗ + 1)(β1C
∗
R +β2P∗ +β3C

∗
RT
∗ + 1)2 ,

m33 =
γ1γC

∗
R

(
β1C

∗
R +β2P

∗ + 1
)

(b2H∗ + 1)(β1C
∗
R +β2P∗ +β3C

∗
RT
∗ + 1)2 − 2mT∗ − d2 +

αα1P
∗

(b1H∗ + 1)(βP∗ + 1)
,

m34 = −
b2γ1γC

∗
RT
∗

(b2H∗ + 1)2(β1C
∗
R +β2P∗ +β3C

∗
RT
∗ + 1)

−
αα1b1PT

(b1H+ 1)2(βP+ 1)
,

m44 = −d3.

Keep above in mind, based on the Routh-Hurwitz rule, c∗ will exhibit asymptotic stability if and only if
M1 > 0, M3 > 0, and M1M2 > M3. Therefore, M1 > 0 if

m11 +m22 +m33 < 0, (5.13)
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and M3 > 0 if

m11m23m32 +m13m22m31 > m13m21m32 +m11m22m33. (5.14)

On other hand,

M1M2 −M3 = (m11 +m22 +m33)[m13m31 −m22m33 +m23m32 −m11(m22 +m33)]

+m11m22m33 −m11m23m32 −m13m21m32 −m13m22m31

= (m11 +m33)(m13m31 −m
2
22) +m

2
33(m11 +m22)

+ (m22 +m33)(m23m32 −m
2
11) − 2m11m22m33 −m13m21m32.

This condition M1M2 > M3 is satisfied provided that the following condition holds:

(m11 +m33)(m13m31 −m
2
22) +m

2
33(m11 +m22) + (m22 +m33)(m23m32 −m

2
11)

2m11m22m33 +m13m21m32
> 1. (5.15)

Hence, the following theorem is obtained.

Theorem 5.5. Assume that the conditions (5.13), (5.14), and (5.15) are satisfied, then the positive equilibrium point
c∗ is locally asymptotically stable.

6. Hopf bifurcation

By using [2, 23], the steady state c∗ changes as the parameter γ1 crosses the threshold value γ∗1 ,
which implies that c∗ may become unstable due to Hopf bifurcation when forced to operate within
particular restrictions on its parameters. In the case where we use γ∗1 as the bifurcation parameter, the
Hopf bifurcation threshold and its conditions are clearly clarified in the following theorem.

Theorem 6.1. Assuming the following conditions are satisfied

γ∗1 > 0, (6.1)
Mi > 0, i = 1, 2, (6.2)

where Mi, i = 1, 2 are the coefficients of the characteristic equation given in equation (5.12) with γ1 = γ∗1 and the
formula for γ∗1 is designated in the following proof, then, there exists a Hopf bifurcation for A3 at γ1 = γ∗1 .

Proof. The value of the bifurcation parameter can be determined by setting M1(γ
∗
1)M2(γ

∗
1) −M3(γ

∗
1)=0,

which gives:

γ∗1 =
(b2a

∗ + 1)(β1C3 +β3C3T3 + 1)2Γ

γT3m13m21
.

Clearly, γ∗1 > 0 if condition (6.1) holds, where Γ = (m11 +m33)(m13m31 −m
2
22) +m

2
33(m11 +m22) + (m22 +

m33)(m23m32 −m
2
11) − 2m11m22m33. Clearly, γ∗1 > 0 if condition (5.15) holds. Now, at γ1 = γ∗1 equation

(5.12) can be written as

(λ+M1)(λ
2 +M2) = 0. (6.3)

According to condition (6.2), the above equation has three roots: a negative root λ1 = −M1 and two purely
imaginary roots λ2,3 = ±i

√
M2. In a neighborhood of γ∗1 , the roots have the following forms: λ1 = −M1,

λ2,3 = σ1(λ1)± iσ2(γ1). Clearly, Re(λ2,3)|γ1=γ
∗
1
= σ1(γ

∗
1) = 0 indicates that the first condition for Hopf

bifurcation has been met at γ1 = γ∗1 . Now, to confirm the transversality condition, we substitute σ1(γ1)±
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iσ2(γ1) into equation (6.3) and then compute its derivative with respect to γ∗1 , θ(γ∗1)ψ(γ
∗
1) + Σ(γ

∗
1)φ(γ

∗
1),

where the form of θ(γ1), ψ(γ1), Σ(γ1), and φ(γ1) are

ψ(γ1) = 3σ2
1(γ1) + 2M1(γ1)σ1(γ1) +M2(γ1) − 3σ2

2(γ1),
φ(λ1) = 6σ1(λ1)σ2(λ1) + 2M1(λ1)σ2(λ1),

θ(λ1) = σ
2
1(λ1)M

′
1(λ1) +M

′
2(λ1)σ1(λ1) +M

′
3(λ1) −M

′
1(λ1)σ

2
2(λ1),

Σ(λ1) = 2σ1(λ1)σ2(λ1)M
′
1(λ1) +M

′
2(λ1)σ2(λ1).

Now at λ1 = λ∗1 , substituting σ1(λ
∗
1) = 0 and σ2(λ

∗
1) =

√
M2(λ∗1) into equation (6.3), the following is

obtained:

ψ(λ∗1) = −2M2(λ
∗
1), φ(λ∗1) = 2M1(λ

∗
1)
√
M2(λ∗1),

θ(λ∗1) =M
′
3(λ
∗
1) −M

′
1(λ
∗
1)M2(λ

∗
1), Σ(λ∗1) =M

′
2(λ
∗
1)
√
M2(λ∗1),

where

M
′
1(λ
∗
1) =

γC(β1C3 + 1)
(b2a∗ + 1)(β1C3 +β3C3T3 + 1)2 , M

′
2(λ
∗
1) = 0, M

′
3(λ
∗
1) = 0.

Hence, condition (6.2) gives

θ(λ∗1)ψ(λ
∗
1) + Σ(λ

∗
1)φ(λ

∗
1) = 2M

′
1(λ
∗
1)M

2
2(λ
∗
1) + 2M1(λ

∗
1)
√
M2(λ

∗
1) 6= 0.

That means the Hop bifurcation has occurred at λ∗1 .

7. Numerical results

The dynamical behaviour of the proposed model has been checked with the help of the ode45 package
of MATLAB 2015. The existence of a prey-free equilibrium point has been depicted in Figure 2. This is
happening due to the small growth rate of prey and the increase in prey consumption by top predators
in the coffee forests in southwestern Ethiopia.

Figure 2: Stability of prey-free equilibrium point of model (2.1) for the parametric values r1 = 0.02,k1 = 10, ξ1 = 0.0,α = 0.1,β =
0.1,b1 = 0.1, r2 = 1.0,k2 = 15, ξ2 = 0.0,γ = 0.2,β1 = 0.2,β2 = 0.3,β3 = 0.4,b2 = 0.2,d1 = 0.01,α1 = 0.02,γ1 = 0.8,m = 0.5,d2 =
0.01, r3 = 0.5,d3 = 0.2.
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Figure 3 represents the stability of the top predator-free equilibrium point for the proposed model.
Due to the major influence of the human shield, the top predators are surviving to eat the prey, which can
lead the top predator species towards extinction in the coffee forests of southwestern Ethiopia. Also, the
stability of the existence of the prey, crop raiders, and top predator in the presence of a human shield has
been seen in Figure 4. By adding humans to the list of species in coffee forest ecosystems, we can learn
more about how human activity affects the occurrence of different species.

Figure 3: Stability of the top predator-free equilibrium point of model (2.1) for the parameters r1 = 1.0,k1 = 10, ξ1 = 0.1,α =
0.1,β = 0.1,b1 = 0.00001, r2 = 1.0,k2 = 10, ξ2 = 0.2,γ = 0.2,β1 = 0.2,β2 = 0.3,β3 = 0.4,b2 = 0.00002,d1 = 0.01,α1 = 0.02,γ1 =
0.2,m = 0.01,d2 = 0.1, r3 = 1.0,d3 = 0.1.

Figure 4: Stability of the interior or coexistence equilibrium point of model (2.1) for the set of parameters r1 = 0.1,k1 = 10, ξ1 =
0.0,α = 0.01,β = 0.1,b1 = 0.01, r2 = 0.2,k2 = 10, ξ2 = 0.0,γ = 0.02,β1 = 0.3,β2 = 0.04,β3 = 0.03,b2 = 0.03,d1 = 0.01,α1 =
1,γ1 = 0.08,m = 0.5,d2 = 0.02, r3 = 0.01,d3 = 0.02.

The bifurcation diagram of model (2.1) with respect to m has been presented in Figure 5. From this
figure, it is observed that the model may undergo Hopf bifurcation due to the change of value of m from
0 to 0.02. It is seen that prey, crop-raiders, and top predator species are experienced with oscillatory or
unstable solutions for 0 6 m < 0.0007. But the three species may maintain stability for 0.0007 < m 6 0.02.
No change in the stability of the human species has been found for 0 6 m 6 0.02. So, it can be concluded
that the increased rate of intra-species competition among the top predators may increase the stability of
the coffee forests in the presence of humans. Again, the bifurcation diagram of model (2.1) with respect
to β has been depicted in Figure 6. This figure shows that the model may go through Hopf bifurcation
for the change of β from 0.4 to 2.0. It is seen that prey, crop raiders, and top predator species may show
stable steady state behaviour for 0.4 6 β < 0.528 and 1.344 < β 6 2. But all these three species may
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display unstable behaviour for 0.528 < β < 1.344. It has been found that the human species may remain
unaffected by the change in β. So, it can be concluded that the increase in the half-saturation constant for
the top predator may change the system dynamics.

Figure 5: Bifurcation diagram of model (2.1) with respect to m for the set of parameters r1 = 0.1,k1 = 10, ξ1 = 0.0,α = 0.7,β =
0.1,b1 = 0.01, r2 = 0.2,k2 = 10, ξ2 = 0.0,γ = 0.02,β1 = 0.3,β2 = 0.04,β3 = 0.03,b2 = 0.03,d1 = 0.01,α1 = 1.0,γ1 = 0.001,d2 =
0.02, r3 = 0.01,d3 = 0.02.

Figure 6: Bifurcation diagram of model (2.1) with respect to β for r1 = 0.1,k1 = 10, ξ1 = 1.0,α = 0.1,b1 = 0.1, r2 = 0.2,k2 =
10, ξ2 = 1.0,γ = 0.02,β1 = 0.3,β2 = 0.04,β3 = 0.03,b2 = 0.03,d1 = 0.01,α1 = 1.0,γ1 = 0.01,m = 0.01,d2 = 0.02, r3 = 0.01,d3 =
0.02.

The bifurcation diagram of model (2.1) with respect to b1 has been presented in Figure 7. From this
figure, it is observed that the model may experience Hopf bifurcation due to the variation of b1 from 0.1 to
1.2. It is seen that prey may be extinct for 0.188 6 b1 < 0.419, but the species may show stable steady state
behaviour for 0.419 < b1 < 0.562 and 1.112 < b1 6 1.2. The oscillatory behaviour of prey species has been
observed for 0.562 < b1 < 1.112. Also, it has been found that crop raider species may show stable steady-
state behaviour for 0.1 6 b1 < 0.54 and 1.112 < b1 6 1.2. But the crop raider species may show oscillatory
behaviour for 0.54 < b1 < 1.112. The top predator species may show stable steady-state behaviour for
0.1 6 b1 < 0.562 and 1.112 < b1 6 1.2. But the top predator species may continue unstable behaviour for
0.562 < b1 < 1.112. So it can be concluded that an increase in human interference with prey species may
be responsible for the stable dynamics of the model. Hence, human interference can be beneficial for the
stability of the coffee forest ecosystem in southwestern Ethiopia. Also, the bifurcation diagram of model
(2.1) with respect to γ1 has been depicted in Figure 8. This figure shows that the model may undergo
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Figure 7: Bifurcation diagram of model (2.1) with respect to b1 for the set of parameters r1 = 0.1,k1 = 10, ξ1 = 1.0,β = 0.1,α =
0.1, r2 = 0.2,k2 = 10, ξ2 = 1.0,γ = 0.2,β1 = 0.3,β2 = 0.04,β3 = 0.03,b2 = 0.03,d1 = 0.01,α1 = 0.1,γ1 = 0.1,m = 0.01,d2 =
0.02, r3 = 0.03,d3 = 0.02.

Figure 8: Bifurcation diagram of model (2.1) with respect to γ1 for the set of parametric values r1 = 0.1,k1 = 10, ξ1 = 1.0,β =
0.1,b1 = 0.2,α = 0.1, r2 = 0.2,k2 = 10, ξ2 = 1.0,γ = 0.2,β1 = 0.3,β2 = 0.04,β3 = 0.03,b2 = 0.03,d1 = 0.01,α1 = 0.1,m =
0.01,d2 = 0.02, r3 = 0.01,d3 = 0.02.

Hopf bifurcation due to the change of γ1 from 0.01 to 0.8. It is observed that stable dynamics exist for
prey species for 0.01 < γ1 < 0.1285 and the prey may go extinct for 0.1285 < γ1 6 0.8. Crop raider and top
predator species may show stable steady state behaviour for 0.01 6 γ1 < 0.1206 and 0.6341 < γ1 6 0.8.
But crop raiders and top predators may show unstable behaviour for 0.1206 < γ1 < 0.6341. So, it can
be concluded that an increase in the conversion rate of crop raiders to top predators may be responsible
for the extinction of prey. Thus, the conditions outlined in Theorem 6.1 are fulfilled, and model (2.1)
encounters a Hopf bifurcation for 0.1206 < γ1 < 0.6341.

The bifurcation diagram of model (2.1) with respect to r1 has been depicted in Figure 9. From this
figure, it is seen that the model may go through Hopf bifurcation for the change in value of r1 from 0.001
to 0.01. It is observed that prey, crop raiders, and top predator species may show oscillatory behaviour for
0.001 6 r1 < 0.002377, but they continue stable steady state behaviour for 0.002377 < r1 6 0.01. Hence, it
can be concluded that the increase in the intrinsic growth rate of prey may be beneficial for the stability of
the ecosystem, which consists of prey, crop raiders, and top predators. Finally, the bifurcation diagram of
model (2.1) with respect to r3 has been presented in Figure 10. The model may possess Hopf bifurcation
due to the variation of r3 from 0.08 to 0.11. It was found that prey, crop raiders, and top predators
may show some oscillatory dynamics for 0.08 6 r3 < 0.1072, but they may continue stable steady state
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behaviour for 0.1072 < r3 6 0.11. It has been found that the increase of humans in coffee forests may
increase the stability of prey, crop raiders, and top predator species.

Figure 9: Bifurcation diagram of model (2.1) with respect to r1 for the set of parametric values k1 = 10, ξ1 = 1.0,α = 0.1,β =
0.1,b1 = 0.1, r2 = 0.2,k2 = 10, ξ2 = 1.0,γ = 0.02,β1 = 0.3,β2 = 0.04,β3 = 0.03,b2 = 0.03,d1 = 0.01,α1 = 1.0,γ1 = 0.01,m =
0.01,d2 = 0.02, r3 = 0.01,d3 = 0.02.

Figure 10: The bifurcation diagram of model (2.1) r1 = 0.1,k1 = 10, ξ1 = 1.0,β = 0.1,b1 = 0.2,α = 0.1, r2 = 0.2,k2 = 10, ξ2 =
1.0,γ = 0.2,β1 = 0.3,β2 = 0.04,β3 = 0.03,b2 = 0.03,d1 = 0.01,α1 = 0.1,γ1 = 0.1,m = 0.01,d2 = 0.02,d3 = 0.02.

8. Conclusion

In this paper, we have formulated a model among the interactions of prey (e.g., deer’s), crop raiders
(e.g., baboons, warthogs, etc), and top predators (e.g., tigers, hyenas, etc) in the coffee forests of south-
western Ethiopia. It is considered that prey grow logistically in the absence of humans and top predators.
It is also considered that the environmental carrying of prey may be increased due to the human shield.
It is considered that crop raiders grow logistically in the absence of humans and top predators. It is also
considered that top predators consume prey, as well as crop raiders, through Holling type II functional
form, depending on human intelligence. The intra-species competition among the top predators has been
taken into consideration. It is assumed that humans are increasing in the coffee forests at a constant rate
and decreasing due to the natural constant decay rate. From the analysis of the model, it is found that
prey species may be extinct due to a lower growth rate and consumption by top predators in the absence
of human interference in the carrying capacity of prey. It has been observed that top predators may be
extinct due to the human interference in the carrying capacity and the smaller dependence on humans
in the consumption terms of prey and crop raiders, respectively. It is also found that there is an increase
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in intra-species competition among the top predators, which may intensify the stability of the model.
This happens due to the absence of human interference in the carrying capacity of prey and crop raiders
and the smaller conversion rate of crop raiders among top predators. It may create a food crisis for top
predators, which creates intra-species competition among top predators. It is found that the stability of
the model may increase with an increase in the half saturation constant of the top predator. It is seen that
the increase in human dependency on the consumption of prey may improve the stability of the model.
It is also reported that there has been an increase in the stability of the model with the increase in the
conversion rate of crop raiders. Again, it is observed that the increase in the intrinsic growth rate of prey
and top predators may improve the stability of the model.
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[13] H. Khan, J. Alzabut, O. Tunç, M. K. A. Kaabar, A fractal-fractional COVID-19 model with a negative impact of quaran-

tine on the diabetic patients, Result Control Optim., 10 (2023), 1–15. 1
[14] A. J. Lotka, A natural population norm. I, J. Wash. Acad. Sci., 3 (1913), 241–248. 1
[15] S. J. Majeed, R. M. Adbulkareem, Stability analysis of a prey-predator model with additional food, refuge, and variable

carrying capacity, AIP Conf. Proc., 2834 (2023). 1
[16] S. J. Majeed, S. F. Ghafel, Stability Analysis of a Prey-Predator Model with Prey Refuge and Fear of Adult Predator, Iraqi

J. Sci., 63 (2022), 4374–4387. 1
[17] S. J. Majeed, R. K. Naji, A. A. Thirthar, The dynamics of an Omnivore-predator-prey model with harvesting and two

different nonlinear functional responses, AIP Conf. Proc., 2096 (2019). 1
[18] E.-L. Marjakangas, N. Abrego, V. Grøtan, R. A. F. de Lima, C. Bello, R. S. Bovendorp, L. Culot, É. Hasui, F. Lima,
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