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Abstract

In this study, we present a mathematical model designed to illustrate the simultaneous occurrence of smoking and heroin
co-abuse infections. To explore non-negative solutions and identify a stable equilibrium point, as well as the fundamental
reproductive number, we enhance the model by integrating Caputo fractional-order (FO) derivative operators. Employing
functional analysis concepts, we derive several results pertaining to the existence of a unique solution. Additionally, we utilize
the Ulam-Hyres (UH) notion to establish the stability of the model solutions. To offer further insights, we present numerical
results for the fractional-order system using an Euler-type numerical technique. These results are visually represented in graphs,
illustrating the diverse responses of the model under different parameter values.
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1. Introduction

Smoking typically involves the inhalation and exhalation of smoke produced by burning the leaves of
the tobacco plant (Nicotiana tabacum). This practice is highly detrimental to the lungs due to the presence
of over 4,000 chemicals in tobacco smoke that can cause significant damage. These chemicals include: (i)
tar, which stains and harms lung tissue and is known to be carcinogenic, causing lung cancer; (ii) Nicotine,
which can lead to the formation of sticky blood platelets and increase the risk of Cardiac heart illness;
(iii) carbon monoxide, a toxic gas that impairs lung function and causes inflammation, increasing the
likelihood of developing lung disease; (iv) Formaldehyde, another chemical present in tobacco smoke
that can cause lung disease; (v) various metal ions such as arsenic, nickel, and cadmium, which are
also known to be carcinogenic; (vi) radioactive compounds such as asbestos, which can contribute to the
development of cancer.
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Smoking is a major global health issue and a leading cause of death, claiming the lives of over seven
million people annually. Out of this number, six million are direct smokers, while approximately 900,000
are non-smokers who are exposed to secondhand smoke [36]. Middle-income countries are estimated to
be home to around 80% of the world’s 1.1 billion smokers, where they suffer from various smoking-related
illnesses and fatalities. The economic impact of smoking is also significant, with an estimated global loss
of two trillion dollars per year, equivalent to about 2% of the global economy. These losses are mainly
due to decreased productivity caused by illness or death resulting from smoking and healthcare costs
associated with treating smoking-related diseases, which account for approximately 30% of the economic
burden.

Experts from various fields are conducting research on the link between smoking and heroin use.
Governments around the world are actively proposing and implementing policies and laws aimed at
addressing smoking and other forms of substance abuse. In [23], the authors presented findings that sug-
gest that hospitals without a smoking policy may inadvertently cause patients to abruptly stop smoking
upon admission. Abrupt cessation of drug use can affect drug metabolism, as cigarette smoking acti-
vates the Human Cytochromes P450 (CYP) 1A2 and 2B6. These enzymes are responsible for metabolizing
many medically important drugs, such as clozapine, olanzapine, and methadone. After quitting smok-
ing, decreased activity of CYP1A2 can lead to adverse drug reactions, including casing of chlozapine and
olanzapine deadly. It is challenging to forecast the appropriate rebate in the dose of drugs metabolized
by CYP 1A2 after smoking cessation. Therefore, therapeutic treatment should be closely monitored when
possible. CYP1A2 activity remains unaffected by nicotine renewal therapy.

The creation of the initial mathematical framework of smoking conduct was attributed to Castillo
et al. [8]. Since then, other articles have expanded on this model by adding new elements or creating
new cohorts [11, 33]. In 2017, Matintu proposed a new adjustment that accounted for moderate, chain,
occasional, and temporary smoking [24]. Some other mathematical investigations of smoking behaviour
are given in the literature [7, 28, 32].

Heroin is an illegal drug derived from morphine, which is found in poppy seeds. The drug is typically
inhaled or smoked, leading to respiratory and lung illnesses like pneumonia and tuberculosis. Heroin
harms the respiratory system’s mucosal tissue and reduces immunity. Throughout the latter half of the
20th century, several mathematical models emerged to elucidate the act of heroin abuse.

Wang and his collaborators developed the heroin epidemic model in 2011, using two bi-linear inci-
dence laws instead of standard incidence laws. He claimed that the population fluctuates over time [34].
Samanta expanded the periodic epidemic model into a more sophisticated non-autonomous form through
an extension [35]. Some nice works on heroin models are listed in [1, 9, 22].

Mathematical models are crucial in predicting the behaviour of infectious diseases and devising effec-
tive measures to inhibit their propagation in the future. To forecast transmission dynamics and reduce
infection rates, researchers develop mathematical models. In the realm of epidemiology, there is a re-
cent tendency to incorporate fractional-order (FO) derivative and integral operators into mathematical
models. These operators offer greater flexibility compared to traditional deterministic models and have
become a focal point in current mathematical research [12, 16, 17, 19]. Fractional-order (FO) differential
equations feature fractional-order derivatives or integral operators that consider both past and current
states. This characteristic makes them a potent tool for forecasting future states [4, 5, 18, 25]. They exhibit
enhanced effectiveness when compared to classical deterministic operators, with Caputo and Riemann-
Liouville operators being commonly employed in fractional-order differential equations [3, 13, 14, 26].
Differential equations find numerous applications in science and technology, including bifurcations, epi-
demiology and various other fields. The Caputo fractional operator is more effective tool for modeling
complex dynamics and generating biologically plausible behavior. Compared to integer-order models,
fractional-order (FO) models utilizing the Caputo operator produce more flexible outcomes. Furthermore,
non-integer models accurately represent real-world phenomena by incorporating memory and heritable
features [27, 30]. The FO models have been used in several fields of applied science such as biomath-
ematics [6, 29, 39], engineering [15], mathematical physics [10, 31], and some other area [21, 37, 38].
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In this paper, we apply the Caputo FO operator to transform Li et al. co-abuse model [20] into (FO)
time derivative. We establish the existence and uniqueness of non-negative solutions for the model and
demonstrate its different version of UH stability. We utilize an Euler-type numerical technique to get an
estimated solution for the system. Finally, we conclude the paper with a summary of our findings. The
structure of the paper is as follows. In Section 2, we introduce the description of the model. In Section
3, we introduce the fundamental concept of fractional calculus. Section 4, presents the primary findings
of our research. Section 5 discusses numerical analysis of the model. Section 6, represents the numerical
simulation. Finally, in Section 7, we provide the concluding remarks.

Assumptions
• People are consistently brought into the susceptible category through birth and immigration at a

rate denoted by Λ.

• People become smokers by being influenced through their interactions with other individuals who
smoke.

• Susceptible individuals adopt heroin use as a result of being influenced by their interactions with
heroin users.

• Smokers transition to heroin use by engaging in interactive activities with heroin users in environ-
ments known for substance abuse, such as clubs, bars, etc.

2. Description of the co-abuse model

In this context, the overall population is denoted by N(t). This population is then divided into seven
distinct sub-populations, which include:

- S(t) individuals who do not currently use cigarettes or heroin but are at risk of starting one of them;
- US individuals who use cigarettes but are not currently undergoing treatment;
- UQ individuals who use heroin but are not currently undergoing treatment;
- HS individuals who use cigarettes and are currently undergoing treatment;
- GSH individuals who use both cigarettes and heroin but are not currently undergoing treatment;
- RT individuals who use both cigarettes and heroin and are currently undergoing treatment;
- R individuals who recover from both cigarettes and heroin.

The model is as 

dS
dt = Λ−β1Π1S −β2Π2S − µS,
dUS

dt = β1Π1S + δ2GSH + ξ2RT + ρ1UQ − γ1US − (τ1 + ρ1 + µ)US,
dUQ

dt = τ1US − (ρ1 + µ)UQ,
dHS

dt = β2Π2S + δ1GSH + ξ3RT + ρ2R − γ2Π2HS − (τ2 + ρ2 + µ)HS,
dGSH
dt = γ1Π1U + γ2Π2HS + ξ1RT − (κ2 + δ+ δ1 + δ2 + ρ3 + µ)GSH,
dRT
dt = τ2HS + δGSH − (κ3 + ξ+ ξ2 + ξ3 + µ)RT ,
dR
dt = κ2GSH + κ3RT − (ρ2 + µ)R,

(2.1)

where initial values are provided as S(0) = S0, US(0) = U0
S, UQ(0) = U0

Q, HS(0) = H0
S, GSH(0) = G0

SH,
RT (0) = R0

T , R(0) = R0, where Π1 = US+ε1GSH+ε2RT
N

,Π2 = HS+ε3GSH+ε4RT
N

.
The following is an explanation of the model’s parameters. The parameter Λ corresponds to the rate

at which individuals are recruited into the population. Π1 is a parameter in the model that captures the
exposure ratio of both smokers and heroin users those susceptible. τ1 represents the ratio of individuals
who are cigarette smokers but not under treatment. γ1Π1 is the rate at which individuals in the US class
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begin to use heroin and move into the GSH class. ξ2 represents the ratio at which individuals in the RT
class return to the US class after successful heroin treatment. δ2 represents the ratio at which individuals
in the RT class quit heroin use without treatment. ρ1 is the ratio at which individuals who quit smoking
in the US class start smoking again. Π2 is the rate at which susceptible individuals enter the HS class
through contact with heroin users. γ2Π2 is the rate at which individuals in the HS class move into the
GSH class through contact with smokers. ρ1 represents the death ratio of individuals in the US class due
to smoking. ρ2 represents the death ratio of individuals in the HS class due to heroin use. ρ3 represents
the death ratio of individuals in the GSH class due to smoking and heroin use. δ1 represents the ratio at
which individuals in the co-abuse class GSH quit smoking. ξ3 represents the ratio at which individuals
in the co-abuse class GSH who only quit smoking during treatment may later relapse and become part
of the heroin user group again. µ represents the death ratio of all individuals in the model. εi, where
i = 1, 2, 3, 4, are modified parameters. The flow chart of our considered model is given in figure 1.

(a)

Figure 1: Diagram for all compartments.

3. Fractional order model

In this section, we presents a description of the suggest model (2.1) using Caputo FO operator. First
we provide the definition of the Caputo operator.

Definition 3.1. Let Z ∈ C[0, T ], then the Caputo operator is formally established as:

CDωt Z(t) =

{
dkz(t)
dtk

, ω = k ∈ N,
1

Γ(k−ω)

∫t
0(t− x)

k−ω−1Z(k)(x)dx, k− 1 < ω < k,k ∈ N.

Definition 3.2. Let Z ∈ L1 ([0, T ] , R), Reimann-Liouville non-integers integral operator order 0 < ω 6 1
is described as;

Iωt Z(t) =
1

Γ(ω)

t∫
0

(t− x)ω−1 Z (x)dx.
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Definition 3.3. If ψ(s) is the Laplace transform of the function ψ(t), then the Caputo fractional operator
Laplace transform is given by:

L
[
c
t0
Dωt ψ(t), s

]
= sωψ(s) −

n−1∑
i=0

sω−i−1ψ(i)(t0),n− 1 < ω 6 n,

it is also written as

L
[
c
t0
Dωt ψ(t), s

]
=
sωψ(s) − sn−1ψ(t0) − s

n−1ψ1(t0) − · · ·− sn−1ψ(n−1)

sn−ω
.

Caputo derivatives are defined using a singular-type kernel. Therefore, the proposed model (2.1) can
be formulated using the singular Caputo model as follows in (3.1):

CDωt S(t) = Λ−β1Π1S −β2Π2S − µS,
CDωt US(t) = β1Π1S + δ2GSH + ξ2RT + ρ1UQ − γ1US − (τ1 + ρ1 + µ)US,
CDωt UQ(t) = τ1US − (ρ1 + µ)UQ,
CDωt HS(t) = β2Π2S + δ1GSH + ξ3RT + ρ2R − γ2Π2HS − (τ2 + ρ2 + µ)HS,
CDωt GSH(t) = γ1Π1US + γ2Π2HS + ξ1RT − (κ2 + δ+ δ1 + δ2 + ρ3 + µ)GSH,
CDωt RT (t) = τ2HS + δGSH − (κ3 + ξ+ ξ2 + ξ3 + µ)RT ,
CDωt R(t) = κ2GSH + κ3RT − (ρ2 + µ)R,

(3.1)

where CDωt is the caputo derivatives operator of fractional order ω.

4. Basic properties of the co-abuse Caputo model

4.1. Invariant region and attractively
The feasible region for the fractional co-abuse model (3.1) is denoted by Ψ and defined as a subset of

the positive real numbers, i.e., Ψ ⊂ R7
+. This region represents the biologically feasible parameter values

for the model,

Ψ = {S(t), US(t), UQ(t), HS(t), GSH(t), RT (t), R(t)εR7
+ : S(t)

+ U(t) + UQ(t) + HS(t) + GSH(t) + RT (t) + R(t) 6 1}.

Lemma 4.1. The considered FO co-abuse model (3.1) with non-negative IVs in region R7
+ is positively invariant.

Proof. Since

CDωt N(t) =C Dωt S(t) + CDωt US(t) +
CDωt UQ(t)

+ CDωt HS(t) +
CDωt GSH(t) +

CDωt RT (t) +
CDωt R(t)

= Λ− µN − ρ1US − ρ2HS − ρ3GSH 6 Λ− µNCDωt N(t) + µN(t) 6 Λ.

By applying LT, we reach

L
[
CDωt N(t) + µN(t)

]
6 L [Λ] , sωN(s) − sω−1N(0) + µN(s) 6

Λ

s
, N(s) [sω + µ] 6 sω−1N(0) +

Λ

s
.

Via inverse LT, one gets

L−1 [N(s)] 6 L−1
[
sω−1N(0)
sω + µ

+
Λ

s(sω + µ)

]
, N(s) 6 N(0)Eω,1(−µt

ω) +ΛtωEω,ω+1(−µt
ω).

Consequently, as t→∞, N(t) converges, and thus the region Ψ is positively invariant in R7
+. Further,

for t→∞, the total population is bounded by Λ
µ .
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4.2. Equilibrium points (EPs)
4.2.1. DFEPs

The EP that is free from co-abuse, represented as E0, is present in a community where there are no
individuals who smoke or use heroin. Thus, from [20], one has

E0 = (S0, Uo
S, U0

Q, H0
S, G0

SH, R0
T , R0) =

(
Λ

µ
, 0, 0, 0, 0, 0, 0

)
.

4.2.2. DEEPs
The EP that is affected by co-abuse, denoted as non-E∗, exists in a community where there are indi-

viduals who smoke or use heroin. To calculate the endemic EP of model (2.1) in relation to the infection
forces (

∏
1,
∏

2), we use the following formula:

E∗ =



S∗ = Λ
β1Π1+β2Π2+µ

,
U∗S =

β2D1Π2S+(ξ2δ2D1+δ)GSH+ξ2τ2HS

D1(ρ1(ρ1+µ)+µ(τ1+ρ1+µ))
,

U∗Q = τ1US

ρ1+µ
,

H∗S =
β2Π2(ρ2+µ)D1S

(γ2Π2+ρ2+µ)(ρ2+µ)D1+τ2(ξ1+ξ2+µ)+τ2µκ3
+

(D1(δ1(ρ2+µ)+ρ2κ3)+ξ3(ρ2+µ)(δ+τ2)+ρ2κ3δ)GSH
(γ2Π2+ρ2+µ)(ρ2+µ)D1+τ2(ξ1+ξ2+µ)+τ2µκ3

,

G∗SH =
γ1D1Π1US+(γ2Π2+ξ2τ2)HS

δ(κ3+ξ2+ξ3+µ)+(κ2+δ1+δ2+ρ3+µ)D1
,

R∗T = δGSH+τ2HS

D1
,

R∗ =
(κ2D1+κ3δ)GSH+τ2κ3HS

(ρ2+µ)D1
.

4.3. Reproduction number (RN)
Following the techniques of [20], we can obtain the basic RN. Let X = (US, HS, GSH, RT ), and rewrite

the model (2.1) as dXdt = F− V , where

F =


β1Π1S + γ1Π1US

β2Π2S + γ2Π2HS

γ1Π1US + γ2Π2HS

0

 .

The following expression can be obtained by computing the partial derivative of F with respect to the free
EP:

F =


β1S
N 0 β1ε1S

N
β1ε2S
N

0 β2S
N

β2ε3S
N

β2ε4S
N

0 0 0 0
0 0 0 0

 .

Next,

V =


(τ1 + ρ1 + µ)US − δ2GSH − ξ2RT − ρ1UQ

(τ2 + ρ2 + µ)HS − δ1GSH − ξ3RT − ρ2R

(κ2 + δ+ δ1 + δ2 + ρ3 + µ)GSH − ξ1RT
(κ3 + ξ+ ξ2 + ξ3 + µ)RT − τ2HS − δGSH.

 .

Also,

V−1 =


(τ1 + ρ1 + µ) 0 −δ2 −ξ2

0 (τ2 + ρ2 + µ) −δ1 −ξ3
0 0 (κ2 + δ+ δ1 + δ2 + ρ3 + µ) ξ1
0 −τ2 −δ (κ3 + ξ1 + ξ2 + ξ3 + µ).

 .
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Hence, the next matrix for the model is as

FV−1 =


β1S

N(τ1+ρ1+µ)
b12 b13 b14

0 b22 b23 b24
0 0 0 0
0 0 0 0

 ,

and b12,b13,b14,b22,b23, and b24 are given in [20]. Next, we have D0 = (δ+ κ2 + δ1 + δ2 + ρ3 + µ), D1 =

(µ+ κ3 + ξ1 + ξ2 + ξ3), F0 =
ξ2(δ(ρ2+µ)+(δ+δ1)τ2)+δ2(−ξ2τ2+D1(ρ2+τ2+µ))

ρ1+τ1+µ
. The spectral radius RHSof the

matrix FV−1, is the basic RN. The RN RHS = max {R0,1, R0,2} , here

R0,1 =
Sβ1

N(ρ1 + τ1 + µ)
, R0,2 =

Sβ2(−δξ+D0D1 + ε3ξ1τ2 + ε4D0τ2

N(−ξ1(δ(ρ2 + µ) + (δ+ δ1)τ2) +D0(−ξ3τ2 +D0(ρ2 + τ2 + µ))
.

4.4. Existence and uniqueness
Here, we deduce some theorems related to existence of unique solution of the considered co-abuse FO

system (3.1). We begin by defining a norm as follows:∥∥(S, US, UQ, HS, GSH, RT , R)
∥∥ = ‖S‖+ ‖US‖+

∥∥UQ

∥∥+ ‖H‖+ ‖GSH‖+ ‖RT‖+ ‖R‖ ,

where ‖S‖ = sup{|S(t)| : tεI}, ‖US‖ = sup{|US(t)| : tεI},
∥∥UQ

∥∥ = sup{
∣∣UQ(t)

∣∣ : tεI}, ‖HS‖ =
sup{|HS(t)| : tεI}, ‖GSH‖ = sup{|GSH(t)| : tεI}, ‖RT‖ = sup{|RT (t)| : tεI}, ‖R‖ = sup{|R(t)| : tεI},
and B = σ(I)× σ(I)× σ(I)× σ(I)× σ(I)× σ(I)× σ(I), defined the Banach space real valued continuous
mapping on the interval I and related supremum norm. For convenience, we can express the model (3.1)
in an equivalent form, which is specified in (4.1):

CDωt S(t) = G1(t, S),
CDωt US(t) = G2(t, US),
CDωt UQ(t) = G3(t, UQ),
CDωt HS(t) = G4(t, HS),
CDωt GSH(t) = G5(t, GSH),
CDωt RT (t) = G6(t, RT ),
CDωt R(t) = G7(t, R).

(4.1)

Equivalently, we have from (4.1), the following system (4.2)

S(t) − S(0) = 1
Γ(ω)

∫t
0(t− x)

ω−1G1(x, S)dx,

US(t) − US(0) = 1
Γ(ω)

∫t
0(t− x)

ω−1G2(x, US)dx,

UQ(t) − UQ(0) = 1
Γ(ω)

∫t
0(t− x)

ω−1G3(x, UQ)dx,

HS(t) − HS(0) = 1
Γ(ω)

∫t
0(t− x)

ω−1G4(x, HS)dx,

GSH(t) − GSH(0) = 1
Γ(ω)

∫t
0(t− x)

ω−1G5(x, GSH)dx,

RT (t) − RT (0) = 1
Γ(ω)

∫t
0(t− x)

ω−1G6(x, RT )dx,

R(t) − R(0) = 1
Γ(ω)

∫t
0(t− x)

ω−1G7(x, R)dx.

(4.2)

Let

Q(t) =



S(t)
US(t)
UQ(t)
HS(t)

GSH(t)
RT (t)
R(t)


, W(t, Q(t)) =



G1(t, X1)
G2(t, I1)
G3(t, Z1)
G4(t, X1)
G5(t, X1)
G6(t, X1)
G7(t, X1)


, Q(0) =



S(0)
US(0)
UQ(0)
HS(0)

GSH(0)
RT (0)
R(0)


.
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From (4.2) we get (4.3)

Q(t) = Q0 −
1

Γ(ω)

∫t
0
(t− x)ω−1

W(x, Q(x))dx. (4.3)

Now we check that the kernels G1,G2, . . . ,G7 are agree with the Lipschiz constraint and contraction under
some retention. We have analyzed for G1, in the next theorem and same can be proved for the rest of
equations.

Theorem 4.2. Let 0 < {β1Π1 +β2Π2 + µ} < 1. The kernel G1, agrees the Lipschiz property as well as contraction.

Proof. For S and S1,

‖G1(t, S) −G1(t, S1)‖ = ‖Λ−β1Π1S −β2Π2S − µS −Λ+β1Π1S +β2Π2S + µS‖
= ‖β1Π1(S − S1) +β2Π2(S − S1) + µ(S − S1)‖
6 β1Π1 ‖(S − S1)‖+β2Π2 ‖(S − S1)‖+ µ ‖(S − S1)‖ .

We can write the above relation as

‖G1(t, S) −G1(t, S1)‖ 6 (β1Π1 +β2Π2 + µ) ‖S(t) − S1(t)‖ , ‖G1(t, S) −G1(t, S1)‖ 6 L1 ‖S(t) − S1(t)‖ ,

where L1 = [β1Π1 +β2Π2 + µ] implies that

‖G1(t, S) −G1(t, S1)‖ 6 L1 ‖S(t) − S1(t)‖ .

Under the Lipschiz condition with constant 0 < {β1Π1 +β2Π2 + µ} < 1, we get that G1 is a contraction as
shown bellow:

‖G1(t, S) −G1(t, S1)‖ 6 L1 ‖S(t) − S1(t)‖ .

For the remaining classes, one may prove the following:

‖G2(t, US) −G2(t, US1)‖ 6 L2 ‖US(t) − US1(t)‖ ,
∥∥G3(t, UQ) −G3(t, UQ1)

∥∥ 6 L3
∥∥UQ(t) − UQ1(t)

∥∥ ,
‖G4(t, HS) −G4(t, HS1)‖ 6 L4 ‖HS(t) − HS1(t)‖ , ‖G5(t, GSH) −G5(t, GSH)‖ 6 L5 ‖GSH(t) − GSH1(t)‖ ,
‖G6(t, RT ) −G6(t, RT 1)‖ 6 L6 ‖RT (t) − RT 1(t)‖ , ‖G7(t, R) −G7(t, R1)‖ 6 L7 ‖R(t) − R1(t)‖ .

Recursively, (4.2) can be given as

Sn(t) − S(0) =
1

Γ(ω)

t∫
0

(t− x)ω−1G1(x, Sn−1)dx, USn(t) − US(0) =
1

Γ(ω)

t∫
0

(t− x)ω−1G2(x, USn−1)dx,

UQn(t) − UQ(0) =
1

Γ(ω)

t∫
0

(t− x)ω−1G3(x, UQn−1)dx, HSn(t) − HS(0) =
1

Γ(ω)

t∫
0

(t− x)ω−1G4(x, HSn−1)dx,

GSHn(t) − GSH(0) =
1

Γ(ω)

t∫
0

(t− x)ω−1G5(x, GSHn−1)dx, RTn(t) − RT (0) =
1

Γ(ω)

t∫
0

(t− x)ω−1G6(x, RTn−1)dx,

Rn(t) − R(0) =
1

Γ(ω)

t∫
0

(t− x)ω−1G7(x, Rn−1)dx.

Now, consider

Φ1n(t) = Sn(t) − Sn−1(t) =
1

Γ(ω)

t∫
0

(t− x)ω−1(G1(x, Sn−1) −G1(x, Sn−2))dx,
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Φ2n(t) = USn(t) − USn−1(t) =
1

Γ(ω)

t∫
0

(t− x)ω−1(G2(x, USn−1) −G2(x, USn−2))dx,

Φ3n(t) = UQn(t) − UQn−1(t) =
1

Γ(ω)

t∫
0

(t− x)ω−1(G3(x, UQn−1) −G3(x, UQn−2))dx,

Φ4n(t) = HSn(t) − HSn−1(t) =
1

Γ(ω)

t∫
0

(t− x)ω−1(G4(x, HSn−1) −G4(x, HSn−2))dx,

Φ5n(t) = GSHn(t) − GSHn−1(t) =
1

Γ(ω)

t∫
0

(t− x)ω−1(G5(x, GSHn−1) −G5(x, GSHn−2))dx,

Φ6n(t) = RTn(t) − RTn−1(t) =
1

Γ(ω)

t∫
0

(t− x)ω−1(G6(x, RTn−1) −G6(x, RTn−2))dx,

Φ7n(t) = Rn(t) − Rn−1(t) =
1

Γ(ω)

t∫
0

(t− x)ω−1(G7(x, Rn−1) −G7(x, Rn−2))dx,

with IVs S0(t) = S(0), US0(t) = US(0), UQ0(t) = UQ(0), HS0(t) = HS(0), GSH0(t) = GSH(0), RT0(t) =
RT (0), R0(t) = R(0). Using norm of the first equation from above, we get

‖Φ1n(t)‖ = ‖Sn(t) − Sn−1(t)‖ ,

‖Φ1n(t)‖ =

∥∥∥∥∥∥ 1
Γ(ω)

t∫
0

(t− x)ω−1(G1(x, Sn−1) −G1(x, Sn−2))dx

∥∥∥∥∥∥ ,

‖Φ1n(t)‖ 6
1

Γ(ω)

∥∥∥∥∥∥
t∫
0

(t− x)ω−1(G1(x, Sn−1) −G1(x, Sn−2))dx

∥∥∥∥∥∥ .

By using Lipschiz condition we get

‖Sn(t) − Sn−1(t)‖ 6
1

Γ(ω)
L1

t∫
0

(t− x)ω−1 ‖Sn−1 − Sn−2‖dx.

This leads us to obtain (4.4)

‖Φ1n(t)‖ 6
1

Γ(ω)
L1

t∫
0

(t− x)ω−1 ∥∥Φ1(n−1)(x)
∥∥dx. (4.4)

We can establish a similar equation for the other equation of the model (4.1) as follows in (4.5):

‖Φ2n(t)‖ 6
1

Γ(ω)
L2

t∫
0

(t− x)ω−1
∥∥∥Φ2(n−1)(x)

∥∥∥dx, ‖Φ3n(t)‖ 6
1

Γ(ω)
L3

t∫
0

(t− x)ω−1
∥∥∥Φ3(n−1)(x)

∥∥∥dx,

‖Φ4n(t)‖ 6
1

Γ(ω)
L4

t∫
0

(t− x)ω−1
∥∥∥Φ4(n−1)(x)

∥∥∥dx, ‖Φ5n(t)‖ 6
1

Γ(ω)
L5

t∫
0

(t− x)ω−1
∥∥∥Φ5(n−1)(x)

∥∥∥dx,

‖Φ6n(t)‖ 6
1

Γ(ω)
L6

t∫
0

(t− x)ω−1
∥∥∥Φ6(n−1)(x)

∥∥∥dx, ‖Φ7n(t)‖ 6
1

Γ(ω)
L7

t∫
0

(t− x)ω−1
∥∥∥Φ7(n−1)(x)

∥∥∥dx.

(4.5)
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From above, we conclude 

Sn(t) =
∑n
i=1Φ1i(t),

USn(t) =
∑n
i=1Φ2i(t),

UQn(t) =
∑n
i=1Φ3i(t),

HSn(t) =
∑n
i=1Φ4i(t),

GSHn(t) =
∑n
i=1Φ5i(t),

RTn(t) =
∑n
i=1Φ6i(t),

Rn(t) =
∑n
i=1Φ7i(t).

We can now present the following result, which guarantees the uniqueness of the solution of the model
(4.1).

Theorem 4.3. The considered FO co-abuse system (4.1) has a unique solution, if 1
Γ(ω)b

ωLi < 1, for i = 1, 2, . . . , 7.

Proof. After verifying that the kernel properties hold, we can analyze (4.4) and (4.5) and use the recursive
approach to obtain the following results given (4.6):

‖Φ1n(t)‖ 6 ‖S0(t)‖
[

1
Γ(ω)

L1b
ω

]n
, ‖Φ2n(t)‖ 6 ‖US0(t)‖

[
1

Γ(ω)
L2b

ω

]n
,

‖Φ3n(t)‖ 6
∥∥UQ0(t)

∥∥ [ 1
Γ(ω)

L3b
ω

]n
, ‖Φ4n(t)‖ 6 ‖HS0(t)‖

[
1

Γ(ω)
L4b

ω

]n
,

‖Φ5n(t)‖ 6 ‖GSH0(t)‖
[

1
Γ(ω)

L5b
ω

]n
, ‖Φ6n(t)‖ 6 ‖RT0(t)‖

[
1

Γ(ω)
L6b

ω

]n
,

‖Φ7n(t)‖ 6 ‖R0(t)‖
[

1
Γ(ω)

L7b
ω

]n
.

(4.6)

It follows that ‖Φ1n(t)‖ → ∞, ‖Φ2n(t)‖ → ∞, ‖Φ3n(t)‖ → ∞, ‖Φ4n(t)‖ → ∞, ‖Φ5n(t)‖ → ∞,
‖Φ6n(t)‖ →∞, ‖Φ7n(t)‖ →∞. Furthermore, from equation (4.6) and by applying the triangle inequality,
we obtain

‖Sn+c(t) − Sn(t)‖ 6
n+c∑
k=n+1

Bk1 =
Bn+1

1 −Bn+c+1
1

1 −B1
, ‖USn+c(t) − USn(t)‖ 6

n+c∑
k=n+1

Bk2 =
Bn+1

2 −Bn+c+1
2

1 −B2
,

∥∥UQn+c(t) − UQn(t)
∥∥ 6

n+c∑
k=n+1

Bk3 =
Bn+1

3 −Bn+c+1
3

1 −B3
, ‖HSn+c(t) − HSn(t)‖ 6

n+c∑
k=n+1

Bk4 =
Bn+1

4 −Bn+c+1
4

1 −B4
,

‖GSHn+c(t) − GSHn(t)‖ 6
n+c∑
k=n+1

Bk5 =
Bn+1

5 −Bn+c+1
5

1 −B5
, ‖RTn+c(t) − RTn(t)‖ 6

n+c∑
k=n+1

Bk6 =
Bn+1

6 −Bn+c+1
6

1 −B6
,

‖Rn+c(t) − Rn(t)‖ 6
n+c∑
k=n+1

Bk7 =
Bn+1

7 −Bn+c+1
7

1 −B7
, (4.7)

where 1
Γ(ω)b

ωLi < 1, by assertion and Bi =
[

1
Γ(ω)Lib

ω
]n

, for i = 1, 2, . . . , 7. Therefore, Sn, USn, UQn,
HSn, GSHn, RTn, Rn are used as the cauchy sequence in G(J). Thus, we have shown that the sequences
are uniformly convergent, as stated in [10]. By applying limit theory to (4.7)) as n approaches infinity, we
can conclude that the limit of these sequences is the unique solution of the model (3.1).

4.5. Ulam-Hyers stability
In this portion, we discuss the different types of Ulam Hyers (UH) stability (UHS). The definitions of

different Ulam Hyers stabilizes for our proposed system. Let q > 0 and =Z : [0,T]× R7 → R+ shows a
continuous function. Consider the inequalities given by:∣∣CDωt V(t) − W(t, V(t))

∣∣ 6 q, (4.8)
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∣∣ 6 q=Z(t), (4.9)∣∣CDωt V(t) − W(t, V(t))
∣∣ 6 =Z(t).

where t ∈ [0,T] and ϑ = max(ϑi)T , for i = 1, 2, . . . , 7.

Definition 4.4. The proposed system will become (UHS) if for every q > 0, and for every solution V ∈ B of
(4.8), ∃=Z > 0 and a solution Q ∈ B with |V(t) − Q(t)| 6 q=Z > 0, where =Z = max(=Zi)

T for i = 1, 2, . . . , 7.

Definition 4.5. The proposed system will be generalized (UHS) if ∃ a function =Z with =Z(0) = 0,
|V(t) − Q(t)| 6 =Z(ϑ), where =Z = max(=Zi)

T for i = 1, 2, . . . , 7.

Definition 4.6. The considered FO co-abuse will be UHRS if ∃U=Z > 0 so that |V(t) − Q(t)| 6 =Z(t)U=Zq.

Definition 4.7. The proposed model is generalized (UHR) if ∃ U=Z > 0, such that |V(t) − Q(t)| 6
=Z(t)U=Z .

Remark 4.8. Let V ∈ B be a solution of (4.9) iff there exists H ∈ B, that possesses the assertions given as:

• |H(t)| 6 ϑ, =Z(t), H = max(Hi)T , for i = 1, 2, . . . , 7.

• cDωt V(t) = W(t, V(t) +H(t).

To aid our exploration of Ulam’s stabilities concerning the suggested model, we’ll initially establish
certain essential outcomes. Moreover, we introduce an assumption that may be beneficial for our subse-
quent analysis. We shall assume that:

(B3) ∀ t ∈ [0, T ], ∃ an increasing function =Z ∈ B and Ω=Z > 0, so that cIω0 =Z(t) 6 Ω=Z=Z(t).

Lemma 4.9. For V ∈ B, the following inequality holds:∣∣∣∣V(t) − V0 −
1

Γ(ω)

∫t
0
(t− x)ω−1

Z(x, V(x))dx

∣∣∣∣ 6 σtω

Γ(ω+ 1)
.

Proof. Since V ∈ B satisfies (4.8). Hence, using second portion of Remark 4.8, one reaches{
cDωt V(t) = W(t, V(t)) +G(t), t ∈ [0,T],
V(0) = V0.

(4.10)

By using the fractional integral, we get the solution of (4.10) and is expressed as:

V(t) = V0 +
1

Γ(ω)

∫t
0
(t− x)ω−1

W(x, V(x))dx+
1

Γ(ω)

∫t
0
(t− x)ω−1G(x)dx.

Given the initial assumption, employing the initial segment of Remark 4.8 enables us to derive the subse-
quent result: ∣∣∣∣V(t) − V0 −

1
Γ(ω)

∫t
0
(t− x)ω−1

W(x, V(x))dx

∣∣∣∣
=

∣∣∣∣ 1
Γ(ω)

∫t
0
(t− x)ω−1G(x)dx

∣∣∣∣ 6 1
Γ(ω)

∫t
0
(t− x)ω−1

|G(x)|dx 6
σtω

Γ(ω+ 1)
.

Hence, which is proved.

Lemma 4.10. Let V ∈ B satisfies (4.9), then∣∣∣∣V(t) − V0 −
1

Γ(ω)

∫t
0
(t− x)ω−1

W(x, V(x))dx

∣∣∣∣ 6 ωΩ=Z=Z(t).
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Proof. Since V ∈ B is a solution of (4.8), given the 2nd portion of Remark 4.8, it can be represented as
follows:

V(t) = V0 +
1

Γ(ω)

∫t
0
(t− x)ω−1

W(x, V(x))dx+
1

Γ(ω)

∫t
0
(t− x)ω−1H(x)dx.

Referring to the initial segment of Remark 4.8, we express the aforementioned equation:

|V(t) − V0 −
cIω0 W(x, V(x))| = |cIω0 H(t)| 6

c Iω0 |H(t)| 6 σcIω0 =Z(t) 6 σΩ=Z(t).

We are now ready to validate the Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR) stability of the
proposed co-abuse system.

Theorem 4.11. Inview of assumption (B1), and if <ZT
ω

Γ(ω+1) < 1, hold, then the solution of (4.2) UH and generalized
UH stable.

Proof. Let q > 0 and V ∈ B is any solution of (4.8). Let Q ∈ B denote unique solution for the model (4.2).
Utilizing (4.3) and Lemma 4.1, one gets

|V(t) − Q(t)| 6

∣∣∣∣V(t) − Q0 −
1

Γ(ω)

∫t
0
(t− x)ω−1

W(x, Q(x))dx

∣∣∣∣
6

∣∣∣∣V(t) − V0 −
1

Γ(ω)

∫t
0
(t− x)ω−1

W(x, Q(x))dx

∣∣∣∣
u

1
Γ(ω)

∫t
0
(t− x)ω−1

|W(x, V(x)) − W(x, Q(x))|dx

6

∣∣∣∣V(t) − V0 −
1

Γ(ω)

∫t
0
(t− x)ω−1

W(x, Q(x))dx

∣∣∣∣u <Z

Γ(ω)

∫t
0
(t− x)ω−1

|V(x) − Q(x)|dx

6
σtω

Γ(ω+ 1)
+

<ZT
ω

Γ(ω+ 1)
|V(t) − Q(t)| .

Through a series of computations, we obtain |V(t) − Q(t)| 6 qJZ, where

JZ =

tω

Γ(ω+1)

1 − <ZT
ω

Γ(ω+1)

.

Hence, the result of UHS is obtained. Therefore, the FO co-abuse system (4.2) is UHS. Next, set =Z(σ) = σJ
so that =Z(0) = 0. Thus, the FO co-abuse model is generalized (UHS).

The provided system demonstrates Ulam-Hyers-Rassias stability (UHRS) and generalized Ulam-Hyers-
Rassias stability (UHRS) based on the following theorem.

Theorem 4.12. Under the assumptions (B1), (B3), and if <ZT
ω

Γ(ω+1) < 1 hold, then the model(4.2) solution is UHRS
and generalized UHRS.

Proof. Via Lemma 4.9, one gets

|V(t) − Q(t)| 6

∣∣∣∣V(t) − Q0 −
1

Γ(ω)

∫t
0
(t− x)ω−1

W(x, Q(x))dx

∣∣∣∣
6

∣∣∣∣V(t) − V0 −
1

Γ(ω)

∫t
0
(t− x)ω−1

W(x, Q(x))dx

∣∣∣∣
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u
1

Γ(ω)

∫t
0
(t− x)ω−1

|W(x, V(x)) − W(x, Q(x))|dx

6

∣∣∣∣V(t) − V0 −
1

Γ(ω)

∫t
0
(t− x)ω−1

W(x, Q(x))dx

∣∣∣∣u <Z

Γ(ω)

∫t
0
(t− x)ω−1

|V(x) − Q(x)|dx

6 σΩ=Z=Z(t) +
<ZT

ω

Γ(ω+ 1)
|V(t) − Q(t)| .

After simplification, one acquires |V(t) − Q(t)| 6
σΩ=Z=Z(t)

1− <ZTω

Γ(ω+1)

. Supposing

U=Z =
Ω=Z

1 − <ZT
ω

Γ(ω+1)

,

we get our result:
|V(t) − Q(t)| 6 =Z(t)Ω=Z . (4.11)

Consequently, the proposed model is UHR stable. Then, by setting σ = 1 in (4.11) along with =Z(0) = 0,
the proposed model is generalized UHR stable.

5. Numerical outcomes of Co-abuse model through Euler method

The task of realizing exact solutions to systems of (FO) differential equations leftovers a challenging
problem in numerical and mathematical modeling. In this segment, we present a methodology for ob-
taining estimated solutions to fractional order systems. We will employ a numerical fractional Euler’s
method. We will explain the algorithm for the fractional Euler’s numerical solution method. Take a
general FO differential equation as given in (5.1):

CDωt X(t) = L (t, X (t)) , a 6 t 6 q, (5.1)

S(t) = c, where a = t0, t1, . . . , tn = q such that tj = c+ j∇. Let i = 0, 1, 2, . . . ,n, and ∇ = q−a
n . Assume

that CDωt X(t) and CD2ω
t X(t) are continuous functions on [a,q]. Via Taylor’s expansion, one gets

X
(
tj+1

)
= X

(
tj +∇

)
= X

(
tj
)
+
∇ω

ω

(
CDωt X(tj)

)
+
∇2ω

2ω2

(
CD2ω

t X
)
(υi) ,

where tj < υj < tj+1. Since ∇ = tj+1 − tj, there exists Θjε (0, 1) such that

X
(
tj+1

)
= X

(
tj
)
+
∇ω

ω

(
CDωt X(tj)

)
+
∇2ω

2ω2

(
CD2ω

t X
) (
tj +Θj∇

)
,

from which we have

ω
(
X(tj+1) − X(tj)

)
∇ω

= L
(
tj, X(tj)

)
+
∇2ω

2ω2

(
CD2ω

t X
) (
tj +Θj∇

)
. (5.2)

For a sufficiently brief time interval, ∇, the term 52ω

2ω2

(
CD2ω

t X
) (
tj +Θj∇

)
in (5.2) could be neglected. So,

from (5.2), the numerical technique is derived in the following format:

X
(
tj+1

)
= X

(
tj
)
+
∇ω

ω
L
(
tj, X(tj)

)
. (5.3)

Agarwal et al. employed Euler’s methods within their paper [20] to devise a comparable numerical
scheme, offering a solution for (5.1) as

X
(
tj+1

)
= X

(
tj
)
+

∇ω

Γ (ω+ 1)
L
(
tj, X(tj)

)
. (5.4)
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The discrete (5.3) and (5.4) only differ in denominator on right sides. In this work, we bring the numerical
technique expressed in (5.3) and employ the earlier scheme for ease of computation. We employ the
numerical estimation scheme (5.4). First we take the equation

CDωt S(t) = Λ−β1Π1S −β2Π2S − µS,

for 0 < ω < 1, t > 0, with initial values S(0)=S0 = 500, US(0) = U0
S = 200, UQ(0) = U0

Q = 100, HS(0) =
H0
S = 100, GSH(0) = G0

SH = 100, RT (0) = R0
T = 0, R(0) = R0 = 0, and the total population N = 1000.

Suppose L (t, S(t)) = Λ−β1Π1S−β2Π2S−µS, so we define CDωt S(t) = L (t, S(t)) with S0 = 500. Next, by
applying the numerical schema expressed at (5.4), one has

X
(
tj+1

)
= X

(
tj
)
+

∇ω

Γ (ω+ 1)
L
(
tj, S(tj)

)
,

where L
(
tj, S(tj)

)
is expressed by

L
(
tj, S(tj)

)
= Λ−β1Π1S(tj) −β2Π2S(tj) − µS(tj),

for j = 0, 1, 2, 3, . . . ,n− 1. Now,

CDωt US(t) = β1Π1S(t) + δ2GSH(t) + ξ2RT (t) + ρ1UQ(t) − γ1US(t) − (τ1 + ρ1 + µ)US(t).

Let

L (t, US(t)) = β1Π1S(t) + δ2GSH(t) + ξ2RT (t) + ρ1UQ(t) − γ1US(t) − (τ1 + ρ1 + µ)US(t),

then we define CDωt US(t) = L (t, US(t)) with US0 = 200. Hence, applying the numerical schema outlined
in (5.4), we have

US

(
tj+1

)
= US

(
tj
)
+

∇ω

Γ (ω+ 1)
L
(
tj, US(tj)

)
,

where L
(
tj, US(tj)

)
is expressed by

L
(
tj, US(tj)

)
= β1Π1S(t) + δ2GSH(t) + ξ2RT (t) + ρ1UQ(t) − γ1US(t) − (τ1 + ρ1 + µ)US(t),

for j = 0, 1, 2, 3, . . . ,n− 1. Next,

CDωt UQ(t) = τ1US(t) − (ρ1 + µ)UQ(t).

Let us suppose

L
(
t, UQ(t)

)
= τ1US(t) − (ρ1 + µ)UQ(t).

Next, we establish CDωt UQ(t) = L
(
t, UQ(t)

)
with UQ0 = 100. Hence, putting on the numerical schema

outlined in (5.4), we have

UQ

(
tj+1

)
= UQ

(
tj
)
+

∇ω

Γ (ω+ 1)
L
(
tj, UQ(tj)

)
,

where L
(
tj, UQ(tj)

)
is expressed by

L
(
tj, UQ(tj)

)
= τ1US(t) − (ρ1 + µ)UQ(t),

for j = 0, 1, 2, 3, . . . ,n− 1. Let us consider

CDωt HS(t) = β2Π2S(t) + δ1GSH(t) + ξ3RT (t) + ρ2R(t) − γ2Π2HS(t) − (τ2 + ρ2 + µ)HS(t).
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Let

L (t, HS(t)) = β2Π2S(t) + δ1GSH(t) + ξ3RT (t) + ρ2R(t) − γ2Π2HS(t) − (τ2 + ρ2 + µ)HS(t).

Next, we establish CDωt HS(t) = L (t, HS(t)) with HS0 = 100. Hence, putting on the numerical solution
scheme outlined in (5.4), we have

HS

(
tj+1

)
= HS

(
tj
)
+

∇ω

Γ (ω+ 1)
L
(
tj, HS(tj)

)
,

where L
(
tj, HS(tj)

)
is expressed by

L
(
tj, HS(tj)

)
= β2Π2S(t) + δ1GSH(t) + ξ3RT (t) + ρ2R(t) − γ2Π2HS(t) − (τ2 + ρ2 + µ)HS(t),

for j = 0, 1, 2, 3, . . . ,n− 1. Now,
CDωt GSH(t) = γ1Π1US(t) + γ2Π2HS(t) + ξ1RT (t) − (κ2 + δ+ δ1 + δ2 + ρ3 + µ)GSH(t).

Consider

L (t, GSH(t)) = γ1Π1US(t) + γ2Π2HS(t) + ξ1RT (t) − (κ2 + δ+ δ1 + δ2 + ρ3 + µ)GSH(t),

then we define CDωt GSH(t) = L (t, GSH(t)) with GSH0 = 100. Hence, by utilizing the numerical solution
scheme outlined in (5.4), we have

GSH
(
tj+1

)
= GSH

(
tj
)
+

∇ω

Γ (ω+ 1)
L
(
tj, GSH(tj)

)
,

where L
(
tj, GSH(tj)

)
is expressed by

L
(
tj, GSH(tj)

)
= γ1Π1US(t) + γ2Π2HS(t) + ξ1RT (t) − (κ2 + δ+ δ1 + δ2 + ρ3 + µ)GSH(t),

for j = 0, 1, 2, 3, . . . ,n− 1. Next,
CDωt RT (t) = τ2HS(t) + δGSH(t) − (κ3 + ξ+ ξ2 + ξ3 + µ)RT (t).

Assume

L (t, RT (t)) = τ2HS(t) + δGSH(t) − (κ3 + ξ+ ξ2 + ξ3 + µ)RT (t),

then we define CDωt RT (t) = L (t, RT (t)) with RT 0 = 0. Hence, utilizing the numerical solution scheme
outlined in (5.4), we have

RT
(
tj+1

)
= RT

(
tj
)
+

∇ω

Γ (ω+ 1)
L
(
tj, RT (tj)

)
,

where L
(
tj, GSH(tj)

)
is expressed by

L
(
tj, RT (tj)

)
= τ2HS(t) + δGSH(t) − (κ3 + ξ+ ξ2 + ξ3 + µ)RT (t),

for j = 0, 1, 2, 3, . . . ,n− 1. At the end, we consider
CDωt R(t) = κ2GSH(t) + κ3RT (t) − (ρ2 + µ)R(t).

Let

L (t, R(t)) = κ2GSH(t) + κ3RT (t) − (ρ2 + µ)R(t).

Next, we establish CDωt R(t) = L (t, R(t)) with R0 = 0. Hence, putting on the numerical schema in (5.4),
we have

R
(
tj+1

)
= R

(
tj
)
+

∇ω

Γ (ω+ 1)
L
(
tj, R(tj)

)
,

where L
(
tj, GSH(tj)

)
is expressed by

L
(
tj, R(tj)

)
= κ2GSH(t) + κ3RT (t) − (ρ2 + µ)R(t),

for j = 0, 1, 2, 3, . . . ,n− 1.
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6. Numerical simulations and discussion

In this part, we are going to depict the numerical results obtained via Euler numerical method. For the
simulation, we take initial values as: S(0) = 500, US(0) = 200, UQ(0) = 100, HS(0) = 100, GSH(0) = 100,
Rt(0) = 0, R(0) = 0. Also, the values of parameters are Λ = 5, β1 = 1, β2 = 0.2, $1 = 0.8, $2 = 0.2,
ξ1 = 0.4, ξ2 = 0.3, ξ3 = 0.6, µ = 0.0002, γ1 = 2.5, γ2 = 2, τ1 = 0.001, τ2 = 0.3, κ2 = 0.3, κ3 = 0.9, δ = 0.3,
δ1 = 0.5, δ2 = 0.35, ρ1 = 0.03, ρ2 = 0.0033, ρ3 = 0.04, ε1 = 1.05, ε2 = 0.7, ε3 = 1.05, ε4 = 0.7, N = 1000. The
figures displaying the compartments of the co-abuse system are presented in Figures 2 and 3. In Figure 2,
the first four compartments of the system are visualized based on the considered parameters and initial
values. In Figure 2 (a), the figure reveals a decrease in the number of susceptible individuals over time.
This decrease can be attributed to their interaction with people who are smoking. In Figure 2 (b), the
figure reveals an increase over time due to the absence of government intervention or treatment options.
In Figure 2 (c), the number of individuals who quit smoking also declines due to a lack of restrictions
and treatment options. In Figure 2 (d), the figure reveals an increase over time due to the absence of
government intervention or treatment options.

Furthermore, Figure 3 displays the dynamics of the last three compartments of the system for con-
sidered parameters and initial values. In Figure 3 (a), it can be observed that the number of co-abuse
individuals increases over time due to the absence of government intervention or treatment options. In
Figure 3 (b), if smoking and heroin treatment options are implemented, the number of co-abuse treat-
ments increases, leading to a higher number of recovered individuals from both smoking and heroin
addiction. Finally, Figure 3 (b) shows that more addicted co-abuse individuals will be able to recover.

Additionally, all the graphs are simulated for some fractional orders to observe the memory features
of the considered system. It’s important to highlight that the model achieves stability more quickly at
lower fractional orders in contrast to higher orders. Additionally, as the fractional order increases, the
graphs of each class tend to converge towards the dynamics of the classical model. Consequently, we
can infer that the suggested model is more advanced and encompasses a broader range of applications
compared to the classical model.
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Figure 2: Graphs of the proposed system for first four classes.
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Figure 3: Graphs of the last three classes.

7. Conclusion

In our study, we introduced a mathematical model that aimed to demonstrate the co-abuse infection
of smoking and heroin. In order to demonstrate solutions that are not negative and to define a stable
equilibrium point and a fundamental reproductive number, we broadened the model by incorporating
Caputo fractional-order (FO) derivative operators. We used functional analysis concepts to develop some
results related to the presence of a solitary solution. Furthermore, we utilized the Ulam-Hyers (UH)
concept to showcase the stability of the model’s solution. To provide additional insight, we showcased
numerical results for the (FO) system using an helpful Euler-type numerical approach. These results
were depicted in graphs, which demonstrated the varied reactions of the considered system for different
parameter values.

Through our analysis, we were able to observe the impact of the different variables on the system’s
dynamics and gain a better understanding of the model’s behavior. By utilizing the numerical results,
we made informed conclusions about the co-abuse infection of smoking and heroin. Overall, the study
provided valuable insights into the co-abuse infection of smoking and heroin and demonstrated the use-
fulness of mathematical modeling for understanding complex systems. A complex system refers to a
system composed of interconnected and interdependent components or elements that, as a whole, exhibit
behaviors or properties that emerge from the interactions among those components. These systems are
characterized by their nonlinearity, dynamic nature, and often have a large number of elements. Soon,
we’ll explore the suggested model by using various tools and ideas like special math operations (fractal-
fractional), fuzzy math concepts, and random processes (stochastic concepts).
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