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Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a new virus called severe acute respiratory syn-
drome coronavirus 2 (SARS-COV-2). To describe the spread of this infectious disease, we propose a mathematical model in-
cluding some important aspects, such as the carrier and memory effects as well as the nonlinearity of incidence function. The
memory effect is described by the Hattaf fractal-fractional derivative. Sufficient conditions for the existence and uniqueness
of solutions are established by means of Krasnoselskii’s fixed point theorem and Banach contraction. Furthermore, our results
show that the proposed fractal-fractional model has one stable disease-free equilibrium when the basic reproduction number
satisfiesR0 6 1 and a unique stable endemic equilibrium when R0 > 1. In addition, numerical simulations for different values of
fractal and fractional orders are carried out to illustrate the theoretical results.
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1. Introduction

Since the first case registered in December 2019 in China, the new infection coronavirus disease 2019
(COVID-19) continue to emerge in the world attaining over 773 million people, and over 6.99 million
deaths [29]. In this situation, the world face a sensational loss of human life worldwide and an extraor-
dinary challenge, food systems, the work universe and how we live, relate, and speak with others has
been modified for all time, due to the dynamics of COVID-19, including the mortality, contagion factors,
which present an extraordinary speed with time to the global health. With these challenges, this infectious
disease was declared a global pandemic by the World Health Organization (WHO) on March 11, 2020.
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Most individuals infected with COVID-19 experience mild, moderate, or severe symptoms. Common
symptoms include muscle aches, severe fatigue or tiredness, headache, new and persistent cough, short-
ness of breath, hoarse voice, loss or change of sense of taste or smell, etc. Severe symptoms include
dyspnea and chest pains [25, 29]. Also, critical pathological manifestations of the disease in the infected
population with comorbidities include acute respiratory distress syndrome and respiratory failure [30].
To explore the origin of this infectious disease, the transmission dynamics, and comprehend its profound
impact on economies, social structures and public health various factors have been investigated, such as
the infectiousness of the disease, the number of susceptible and infected individuals and the rate at which
people recover or die. For this reason to compile a comprehensive dataset, many incidence data was
collected from divers countries [11, 19, 20].

Over the last three decades, fractal and fractional calculus have developed a new approach to de-
scribing real-world phenomena within mathematical concepts. The powerful tools of this theory have
given rise to new concepts of differentiation and integration. The pioneering work in this field was ini-
tiated by Antangana [5] in 2017, who presented operators based on generalized Mittag-Leffler functions
and employed the Hausdorff fractal derivative. Recent contributions to this field have been generalized
by Hattaf [15] in 2023, who investigated new differential and integral operators, incorporating a wide
range of definitions. The results obtained for the Hattaf fractal-fractional derivative cover many special
cases, for instance, the generalized Hattaf fractional (GHF) derivative [13], the Caputo-Fabrizio (CF) frac-
tional derivative [9], the Atangana-Baleanu (AB) fractional derivative [6], and the weighted AB fractional
derivative [4].

In the literature, there are numerous applications of fractal and fractional calculus. For instance, Ali
et al. [3] developed a fractal-fractional model for COVID-19 with case study of Wuhan. In [1], the authors
studied a fractal-fractional modified predator-prey mathematical model with immigrations. In [2], the
authors proposed a fractional model for COVID-19 with the effect of asymptomatic and symptomatic
transmission by using the caputo fractional model. Paul et al. [27] investigated a fractional order SEIQRD
epidemic model in order to study the COVID-19 transmission dynamic in Italy. In 2023, the authors in [26]
established a model of prey-predator dynamics by describing the fuzzy fractional diabetes in Caputo’s
sense. In [23], Mahata et al. studied an SEIRV of COVID-19 epidemic model with optimal control in the
context of Caputo fractional sense. In [24], the authors treated the stability analysis and Hopf bifurcation
of a fractional order SEIRV epidemic model with a single delay incorporated in the infectious population
accounting for the time period required by the said population to recover. The study of [28] explored the
dynamical behavior of a fractional order SIR model in the Caputo derivative approach [8].

On the other hand, fixed point theory plays a crucial role in pure and applied mathematics. It provides
powerful tools for proving existence theorems and uniqueness of solutions for various models arising
from the fields of science and engineering. More recently, Lasfar et al. [22] proposed a new fractional
business cycle model and they established the existence of the model solutions by means of fixed point
theory. Based on Schauder fixed point theorem and the construction of a pair of upper and lower solutions
for an epidemic model introduced in [12], the existence of traveling wave solution of that connects the
disease-free equilibrium and the endemic equilibrium has been established. In this study framework, we
will use Krasnoselskii’s fixed point theorem [7, 21] and Banach’s contraction to prove the existence and
uniqueness of solutions for a fractal-fractional model describing the dynamics of COVID-19 with carrier
and general incidence functions for asymptomatic and symptomatic transmission.

The rest of this paper is outlined as follows. Section 2 is devoted to some interesting preliminary
findings essential for the development of this work and the formulation of the Hattaf fractal-fractional
COVID-19 model. Section 3 focuses on the existence and uniqueness of solutions for our formulated
model. Section 4 analyzes the stability of equilibria. Section 5 deals with an application and some numer-
ical simulations to illustrate the analytical results. Finally, Section 6 ends the paper with a conclusion and
some perspectives.
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2. Preliminary and fractal-fractional model formulation

In this section, we give the necessary definitions and results that are needed for the proof of the
main results, and also present a fractal-fractional model formulation for COVID-19 based on the Hattaf
fractal-fractional derivative [15].

Definition 2.1 ([15]). Let I be an open interval of IR. The Hattaf fractal derivative of a function f(t) with
respect to a fractal measure g(η, t) is given by

dg

dtη
f(t) = lim

τ→t

f(t) − f(τ)

g(η, t) − g(η, τ)
, η > 0. (2.1)

If dg
dtη f(t) exists for all t ∈ I, then f is fractal differentiable on the interval I with order η. We notice that

when g(η, t) = tη, we get the Hausdorff fractal derivative [10]. In addition, if g(η, t) = h(t) with h ′(t) > 0
and f(t) is differentiable, then we obtain the general derivative proposed by Yang [31] and (2.1) becomes

dg

dtη
f(t) =

1
h ′(t)

df(t)

dt
.

Next, we recall the definition of the Hattaf fractal-fractional derivative with non-singular kernel in the
sense of Caputo.

Definition 2.2 ([15]). Let α ∈ [0, 1), β,γ,η > 0, and f be a differentiable in the interval (a,b) and fractal
differentiable on (a,b) with order 0 < η 6 1. The generalized Hattaf fractal-fractional derivative of f(t) of
order α in the sense of Caputo with respect to the weight function w(t) is defined as follows:

FFCD
α,β,γ,η
a,t,w f(t) =

N(α)

1 −α

1
w(t)

∫t
a

Eβ[−µα(t− τ)
γ]
dg

dτη
(wf)(τ)dτ,

where w ∈ C1(a,b), w,w ′ > 0 on [a,b], N(α) is a normalization function obeying N(0) = N(1) = 1,

µα =
α

1 −α
and Eβ(t) =

+∞∑
k=0

tk

Γ(βk+ 1)
is the Mittag-Leffler function of parameter β.

Definition 2.2 covers many special cases. In the fact, when g(t,η) = tη, w(t) = 1, and β = γ = 1, we
obtain the fractal-fractional derivative with exponential decay kernel [5] given by

FFCD
α,1,1,η
a,t,1 f(t) =

N(α)

1 −α

∫t
a

exp[−µα(t− τ)]
dg

dτη
f(τ)dτ,

where dg
dtη f(t) = lim

τ→t
f(t)−f(τ)
tη−τη . When g(t,η) = tη, w(t) = 1, and β = 1, γ = 2, we also obtain the

fractal-fractional derivative with exponential decay kernel [5] given by

FFCD
α,1,1,η
a,t,1 f(t) =

N(α)

1 −α

∫t
a

exp[−µα(t− τ)2]
dg

dτη
f(τ)dτ,

When g(t,η) = tη, w(t) = 1, N(α) = 1 − α+ α
Γ(α) , β = γ = α, we obtain the fractal-fractional derivative

with generalized Mittag-Leffler kernel [5] given by

FFCD
α,α,α,η
a,t,1 f(t) =

N(α)

1 −α

∫t
a

Eα[−µα(t− τ)
α]
dg

dτη
f(τ)dτ.

When g(t,η) = t, we obtain the generalized Hattaf fractional (GHF) derivative [13] given by

CD
α,β,γ
a,t,wf(t) =

N(α)

1 −α

1
w(t)

∫t
a

Eβ[−µα(t− τ)
γ]
d

dτ
(fw)(τ)dτ.

The next definition recalls the Hattaf fractal-fractional derivative in Riemann-Liouville sense.
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Definition 2.3. Let α ∈ [0, 1),β,γ,η > 0 and f(t) be continous in the interval (a,b) and fractal differen-
tiable on (a,b) with order 0 < η 6 1. Then the generalized Hattaf fractal-fractional derivative of f(t) of
order α in the sense of Riemann-Liouville with respect to the weight function w(t) is defined as follows:

FFRD
α,β,γ,η
a,t,w f(t) =

N(α)

1 −α

1
w(t)

dg

dtη

∫t
a

Eβ[−µα(t− τ)
γ]f(τ)w(τ)dτ.

Theorem 2.4 ([15]). If ∂g(η,t)
∂t exists and not zero, then

FFRD
α,β,γ,η
0,t,w f(t) =

(
∂g(η, t)
∂t

)−1
RD

α,β,γ
0,t,w f(t),

where RDα,β,γ
0,t,w is the GHF derivative in Riemann-Liouville sense ([13]) of the function f(t) with respect to the

weight function w(t).

For the existence and uniqueness of solution of our fractal-fractional differential model for COVID-19,
we need the following result.

Lemma 2.5 ([7, 21, Krasnoselskii’s fixed point theorem]). Let E be a nonempty closed convex subset of a Banach
space (B, ‖.‖). Suppose that F1 and F2 map E into B such that

(i) F1ϕ1 + F2ϕ2 ∈ E, for all ϕ1,ϕ2 ∈ E;
(ii) F1 is a contraction with constant k < 1;

(iii) F2 is continuous and F2(E) is contained in a compact subset of B.

Then F1 + F2 has a fixed point ϕ ∈ E.

Based on [18], we propose the following fractal-fractional differential model for COVID-19:

FFRD
α,β,β,η
0,t,w x1(t) = A− νx1 − ζ(x1, x2)x2 − ξ(x1, x3)x3,

FFRD
α,β,β,η
0,t,w x2(t) = ζ(x1, x2)x2 + ξ(x1, x3)x3 − (ν+ d+ ρ+ r1)x2,

FFRD
α,β,β,η
0,t,w x3(t) = ρx2 − (ν+ d+ r2)x3,

FFRD
α,β,β,η
0,t,w x4(t) = r1x2 + r2x3 − νx4,

(2.2)

where x1(t), x2(t), x3(t), and x4(t) represent the susceptible, carrier (asymptomatic infected), infected, and
recovered individuals at time t, respectively. A represents the recruitment rate of susceptible population.
The natural death rate in all classes is denoted by ν, while d is the death rate due to COVID-19. The rate
of transfer from the asymptomatic to symptomatic is denoted by ρ. The parameters r1 and r2 are recovery
rates of the asymptomatic and symptomatic individuals, respectively. The term ζ(x1, x2)x2 represents
the effective contact with carrier, and ξ(x1, x3)x3 denotes the effective contact with infected individuals.
So, the term ζ(x1, x2)x2 + ξ(x1, x3)x3 is the total asymptomatic infection rate of susceptible individuals.
Further, the flowchart of the proposed model (2.2) is illustrated in Figure 1.

Since the first three equations of (2.2) do not depend on the last variable x4 and based on Theorem 2.4,
system (2.2) can be rewritten as

CD
α,β,β
0,t,w x1(t) =

∂g(η, t)
∂t

(
A− νx1 − ζ(x1, x2)x2 − ξ(x1, x3)x3

)
,

CD
α,β,β
0,t,w x2(t) =

∂g(η, t)
∂t

(
ζ(x1, x2)x2 + ξ(x1, x3)x3 − (ν+ d+ ρ+ r1)x2

)
,

CD
α,β,β
0,t,w x3(t) =

∂g(η, t)
∂t

(
ρx2 − (ν+ d+ r2)x3

)
,

(2.3)

with initial conditions xi(0) = xi,0 for i = 1, 2, 3.
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Figure 1: The flowchart of model (2.2).

3. Existence and uniqueness of solutions

In this section, we study the existence and uniqueness of solutions of model (2.3). System (2.3) can be
written in the following form:CDα,β,β

0,t,w X(t) =
∂g(η, t)
∂t

Φ(t,X(t)), t ∈ [0, T ],

X(0) = X0,
(3.1)

where X(t) =
(
x1(t), x2(t), x3(t)

)T
, X0 =

(
x1(0), x2(0), x3(0)

)T
, and Φ(t,X(t)) =

(
Φ1(t,X(t)),Φ2(t,X(t)),

Φ3(t,X(t))
)T with 

Φ1(t,X(t)) = A− νx1 − ζ(x1, x2)x2 − ξ(x1, x3)x3,
Φ2(t,X(t)) = ζ(x1, x2)x2 + ξ(x1, x3)x3 − (ν+ d+ γ+ r1)x2,
Φ3(t,X(t)) = ρx2 − (ν+ d+ r2)x3.

Applying the GHF integral in both sides of (3.1), we get

X(t) =
w(0)X0

w(t)
+

1 −α

N(α)

∂g(η, t)
∂t

Φ(t,X(t))

+
α

N(α)Γ(β)w(t)

∫t
0
(t− τ)β−1∂g(η, τ)

∂τ
w(τ)Φ(τ,X(τ))dτ.

(3.2)

Let B = C([0, T ], IR3) be the Banach space of continuous functions from [0, T ] to IR3 defined with the norm

‖ϕ(t)‖ = sup
t∈[0,T ]

|ϕ(t)|.

Furthermore, we consider the following hypotheses.

(H1) There exist positive constants φ, ψ and ε ∈ [0, 1) such that Φ(t,X(t)) 6 φ‖X‖ε +ψ.
(H2) There exists a positive constant M1 > 0 for all X, X̃, such that |Φ(t,X(t)) −Φ(t, X̃(t)| 6M1‖X− X̃‖.
(H3) There exists a positive constant M2 > 0 such that for all η > 0 and t ∈ [0, T ] we have∣∣∣∣∂g(η, t)

∂t

∣∣∣∣ 6M2.
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In addition, we define the following operator F : C([0, T ], IR3) −→ C([0, T ], IR3) such that

FX(t) = F1X(t) +F2X(t),

where 
F1X(t) =

w(0)X0

w(t)
+

1 −α

N(α)

∂g(η, t)
∂t

Φ(t,X(t)),

F2X(t) =
α

N(α)Γ(β)w(t)

∫t
0
(t− τ)β−1∂g(η, τ)

∂τ
w(τ)Φ(τ,X(τ))dτ.

Consequently, (3.2) can be written as

FX(t) =
w(0)X0

w(t)
+

1 −α

N(α)

∂g(η, t)
∂t

Φ(t,X(t))

+
α

N(α)Γ(β)w(t)

∫t
0
(t− τ)β−1∂g(η, τ)

∂τ
w(τ)Φ(τ,X(τ))dτ.

Theorem 3.1. Suppose that (H1), (H2), and (H3) hold such that M1M2(1−α)
N(α) < 1. Then model (2.3) has at least

one solution.

Proof. First, we prove that F1 is a contraction. Consider

E = {X ∈ B : ‖X‖ 6 L,L > 0},

which is closed and convex set. For all X, X̃ ∈ E, we have

|F1X(t) −F1X̃(t)| 6
M1M2(1 −α)

N(α)
‖X− X̃‖.

Then

‖F1X−F1X̃‖ 6
M1M2(1 −α)

N(α)
‖X− X̃‖.

Since M1M2(1−α)
N(α) < 1, we deduce that F1 is a contraction.

Secondly, we prove that F2 is compact. We have

‖F2X‖ 6 max
t∈[0,T ]

∣∣∣∣ α

N(α)Γ(β)w(t)

∫t
0
(t− τ)β−1∂g(η, τ)

∂τ
w(τ)Φ(τ,X(τ))dτ

∣∣∣∣
6

αM2T
β

N(α)Γ(β+ 1)

(
φ‖X‖ε +ψ

)
.

Hence, for all X ∈ E, F2 is bounded. For equicontinuity, let t1, t2 ∈ [0, T ] such that t2 < t1, then

|F2X(t1) −F2X(t2)| =
α

N(α)Γ(β)

∣∣∣∣ ∫t1

0
(t1 − τ)

β−1∂g(η, τ)
∂τ

w(τ)

w(t1)
Φ(τ,X(τ))dτ

−

∫t2

0
(t2 − τ)

β−1∂g(η, τ)
∂τ

w(τ)

w(t2)
Φ(τ,X(τ))dτ

∣∣∣∣.
Therefore, lim

t2−→t1
|F2Y(t1) − F2Y(t2)| = 0. Thus, F2 is equicontinuous. By Arzela-Ascoli theorem, we

deduce that F2 is compact. Furthermore F2 is continuous since X is continuous. Finally to verify the item
(i) of Lemma 2.5, we notice that F1 is a contraction, then

‖X‖ 6 ‖(I−F1)X‖,

and since F2(E) is contained in a compact subset of B we deduce by appropriate construction of the
subset E that for fixed Y in E the contraction X→ F1X+F2Y has a fixed point in E, then X ∈ E. Therefore,
according to Lemma 2.5, we conclude that model (2.3) has at least one solution.



H. EL Mamouni, K. Hattaf, N. Yousfi, J. Math. Computer Sci., 36 (2025), 371–385 377

Theorem 3.2. If
(

1−α
N(α) +

αTβ

N(α)Γ(β+1)

)
M1M2 < 1, then model (2.3) has a unique solution.

Proof. Let X, X̃ ∈ C([0, T ], IR3). We have

‖FX−FX̃‖ 6 ‖F1X−F1X̃‖+ ‖F2X−F2X̃‖

6
(1 −α)M2

N(α)
max
t∈[0,T ]

∣∣Φ(t,X(t)) −Φ(t, X̃(t))
∣∣+ αM2

N(α)Γ(β)

× max
t∈[0,T ]

∣∣∣∣ ∫t
0
(t− τ)β−1w(τ)

w(t)
Φ(τ,X(τ))dτ−

∫t
0
(t− τ)β−1w(τ)

w(t)
Φ(τ, X̃(τ))dτ

∣∣∣∣
6

(
1 −α

N(α)
+

αTβ

N(α)Γ(β+ 1)

)
M1M2‖X− X̃‖.

Since
(

1−α
N(α) +

αTβ

N(α)Γ(β+1)

)
M1M2 < 1, we deduce that F is a contraction. Consequently, the fractal-

fractional differential COVID-19 model (2.3) has a unique solution.

4. Equilibria and their stability

In this section, we first study the existence of equilibria of system (2.3) for the case w(t) = 1 and we
assume that ∂g(η,t)

∂t exists and not zero. As in [17], we assume that the general incidence functions ζ and
ξ are continuously differentiable and satisfy the following hypotheses:

(H4) ζ(0, x2) = 0, ∂ζ∂x1
(x1, x2) > 0, ∂ζ∂x2

(x1, x2) 6 0, for all x1, x2 > 0;
(H5) ξ(0, x3) = 0, ∂ξ∂x1

(x1, x3) > 0, ∂ξ∂x3
(x1, x3) 6 0, for all x1, x3 > 0.

We can verify that E(x0
1, 0, 0), where x0

1 = A
ν , is a disease-free equilibrium of (2.3). According to [18],

system (2.3) has the basic reproduction number as follows:

R0 =
d2ζ(x

0
1, 0) + ρξ(x0

1, 0)
d1d2

,

where d1 = ν + d + ρ + r1 and d2 = ν + d + r2. The second equilibrium of system (2.3) satisfies the
following system of equations

A− νx1 − ζ(x1, x2)x2 − ξ(x1, x3)x3 = 0, ζ(x1, x2)x2 + ξ(x1, x3)x3 − d1x2 = 0, ρx2 − d2x3 = 0.

Then x2 = A−νx1
d1

, x3 =
ρ(A−νx1)
d1d2

, and

d2ζ(x1,
A− νx1

d1
) + ρξ(x1,

A− νx1

d1d2
) = d1d2.

Since x2 = A−νx1
d1

> 0, we have x1 6 A
ν . Therefore, there is no epidemiological equilibrium when x1 >

A
ν .

Consider the function K defined on the closed interval [0, Aν ] by

K(x1) = d2ζ

(
x1,

A− νx1

d1

)
+ ρξ

(
x1,
A− νx1

d1d2

)
− d1d2.

We have K(0) = −d1d2 < 0, K(Aν ) = d1d2(R0 − 1), and

K
′
(x1) = d2

(
∂ζ

∂x1
−
ν

d1

∂ζ

∂x2

)
+ ρ

(
∂ξ

∂x1
−
ρν

d1d2

∂ξ

∂x3

)
> 0.

Then the equation K(x1) = 0 has a unique root x∗1 ∈ (0, Aν ) when R0 > 1. We conclude that our model has
a unique endemic equilibrium when the condition R0 > 1 holds.

From the above results, we get the following theorem.
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Theorem 4.1.

(i) If R0 6 1, then system (2.3) admits one disease-free equilibrium of the form E(x0
1, 0, 0), where x0

1 = A
ν .

(ii) If R0 > 1, then system (2.3) admits a unique endemic equilibrium E∗(x∗1 , x∗2 , x∗3) besides E, where x∗1 ∈ (0, A
ν ),

x∗2 =
A−νx∗1
d1

, and x∗3 =
ρ(A−νx∗1)
d1d2

.

Next, we investigate the stability of the disease-free equilibrium E and the endemic equilibrium E∗ of
model (2.3). For simplicity, we denote CDα,β,β

0,t,w by D
α,β
t,w . For the rest of our study, we suppose w(t) = 1

and ∂g(η,t)
∂t > 0 for all η > 0.

Theorem 4.2. Suppose that hypotheses (H4)-(H5) hold. Then the disease-free equilibrium E of model (2.3) is stable
if R0 6 1.

Proof. Let Ω = {(x1, x2, x3) ∈ IR3, x1 6 x0
1} and suppose that R0 < 1. Consider σ < 1−R0

R0
and let the

following Lyapunov functional

V1(x1, x2, x3) = σ(x
0
1 − x1) + x2 + (σ+ 1)

ξ(x0
1, 0)
d2

x3.

We have

D
α,β
t,1 V1(x1, x2, x3) = −σDα,β

t,1 x1 +D
α,β
t,1 x2 + (σ+ 1)

ξ(x0
1, 0)
d2

D
α,β
t,1 x3

6 d1
∂g(η, t)
∂t

(
(σ+ 1)d2ζ(x

0
1, 0) + (σ+ 1)ρξ(x0

1, 0)
d1d2

− 1
)
x2

+
∂g(η, t)
∂t

(
− σ(x0

1 − x1) + (σ+ 1)
(
ξ(x1, x3) − ξ(x

0
1, 0)

)
x3

)
= −

∂g(η, t)
∂t

σ(x0
1 − x1) + d1

∂g(η, t)
∂t

(
(σ+ 1)R0 − 1

)
x2

+ (σ+ 1)
∂g(η, t)
∂t

(
ξ(x1, x3) − ξ(x

0
1, 0)

)
x3.

Since ζ, ξ are continuously differentiable functions satisfying hypotheses (H4)-(H5), we have

D
α,β
t,1 V1(x1, x2, x3) 6 0.

By applying Theorem 5 of [14], we deduce that the disease-free equilibrium of system (2.3) is stable in Ω
when R0 6 1.

For R0 > 1, we suppose following inequalities for the incidence functions ζ and ξ satisfy, for all
x1, x2, x3 > 0,(

1 −
ζ(x1, x2)

ζ(x1, x∗2)

)(
ζ(x1, x∗2)
ζ(x1, x2)

−
x2

x∗2

)
6 0,

(
1 −

ζ(x∗1 , x∗2)ξ(x1, x3)

ζ(x1, x∗2)ξ(x
∗
1 , x∗3)

)(
ζ(x1, x∗2)ξ(x

∗
1 , x∗3)

ζ(x∗1 , x∗2)ξ(x1, x3)
−
x3

x∗3

)
6 0. (H6)

Applying (ii) of Theorem 2 in [14], we get the following result.

Lemma 4.3. Let u(t) ∈ IR be a continuously differentiable function. For any constant u∗ and for any time t > a,
we define K(t) =

∫u(t)
u∗

ζ(x∗1 ,x∗2)
ζ(x,x∗2)

dx. Then we have

D
α,β
t,1 K(t) >

ζ(x∗1 , x∗2)
ζ(u, x∗2)

D
α,β
t,1 u(t).
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By [14, Corollary 2], we get the following.

Lemma 4.4. Let u(t) ∈ IR+ be a continuously differentiable function and u∗ > 0. Then, for any time t > a, we
have

D
α,β
t,1

[
u(t) − u∗ − u∗ ln

u(t)

u∗

]
6

(
1 −

u∗

u(t)

)
D
α,β
t,1 u(t).

Theorem 4.5. Assume that R0 > 1 and (H4)-(H6) hold. Then the endemic equilibrium E∗ of model (2.3) is stable.

Proof. Consider a Lyapunov functional defined by

V2(x1, x2, x3) = x1 − x
∗
1 −

∫x1

x∗1

ζ(x∗1 , x∗2)
ζ(x, x∗2)

dx+ x∗2P

(
x2

x∗2

)
+
ξ(x∗1 , x∗3)
d2

x∗3P

(
x3

x∗3

)
,

where P(x) = x− 1 − ln x for x > 0. By Lemmas 4.3 and 4.4, we obtain

D
α,β
t,wV2(x1, x2, x3) 6

(
1 −

ζ(x∗1 , x∗2)
ζ(x1, x∗2)

)
D
α,β
t,wx1(t) +

(
1 −

x∗2
x2

)
D
α,β
t,wx2(t) +

ξ(x∗1 , x∗3)
d2

(
1 −

x∗3
x3

)
D
α,β
t,wx3(t).

Then(
∂g(η, t)
∂t

)−1
D
α,β
t,wV2(x1, x2, x3) 6

(
1 −

ζ(x∗1 , x∗2)
ξ(x1, x∗2)

)(
A− νx1 − ζ(x1, x2)x2 − ξ(x1, x3)x3

)
+

(
1 −

x∗2
x2

)
×
(
ζ(x1, x2)x2 + ξ(x1, x3)x3 − d1x2

)
+
ξ(x∗1 , x∗3)
d2

(
1 −

x∗3
x3

)(
ρx2 − d2x3

)
.

Since A = νx∗1 + ζ(x∗1 , x∗2)x
∗
2 + ξ(x∗1 , x∗3)x

∗
3 , ζ(x∗1 , x∗2)x

∗
2 + ξ(x∗1 , x∗3)x

∗
3 = d1x

∗
2 and ρx∗2 = d2x

∗
3 , we get by

simple calculus that(
∂g(η, t)
∂t

)−1

D
α,β
t,wV2(x1, x2, x3)

6 νx∗1

(
1 −

x1

x∗1

)(
1 −

ζ(x∗1 , x∗2)
ζ(x1, x∗2)

)
+ ζ(x∗1 , x∗2)x

∗
2

(
−1 −

x2

x∗2
+
ζ(x1, x∗2)
ζ(x1, x2)

+
ζ(x1, x2)x2

ζ(x1, x∗2)x
∗
2

)
+ ξ(x∗1 , x∗3)x

∗
3

(
−1 −

x3

x∗3
+
ζ(x1, x∗2)ξ(x

∗
1 , x∗3)

ζ(x∗1 , x∗2)ξ(x1, x3)
+
ζ(x∗1 , x∗2)ξ(x1, x3)x3

ζ(x1, x∗2)ξ(x
∗
1 , x∗3)x

∗
3

)
+ ζ(x∗1 , x∗2)x

∗
2

(
3 −

ζ(x1, x∗2)
ζ(x1, x2)

−
ζ(x∗1 , x∗2)
ζ(x1, x∗2)

−
ζ(x1, x2)

ζ(x∗1 , x∗2)

)
+ ξ(x∗1 , x∗3)x

∗
3

(
4 −

ζ(x∗1 , x∗2)
ζ(x1, x∗2)

−
ζ(x1, x∗2)ξ(x

∗
1 , x∗3)

ζ(x∗1 , x∗2)ξ(x1, x3)
−
ξ(x1, x3)x3x

∗
2

ξ(x∗1 , x∗3)x
∗
3x2

−
x2x
∗
3

x∗2x3

)
.

We have

3 −
ζ(x1, x∗2)
ζ(x1, x2)

−
ζ(x∗1 , x∗2)
ζ(x1, x∗2)

−
ζ(x1, x2)

ζ(x∗1 , x∗2)
6 0,

and

4 −
ζ(x∗1 , x∗2)
ζ(x1, x∗2)

−
ζ(x1, x∗2)ξ(x

∗
1 , x∗3)

ζ(x∗1 , x∗2)ξ(x1, x3)
−
ξ(x1, x3)x3x

∗
2

ξ(x∗1 , x∗3)x
∗
3x2

−
x2x
∗
3

x∗2x3
6 0.

By (H4), we get (
1 −

x1

x∗1

)(
1 −

ζ(x∗1 , x∗2)
ζ(x1, x∗2)

)
6 0.

On the other hand, inequality (H6) leads to

−1 −
x2

x∗2
+
ζ(x1, x∗2)
ζ(x1, x2)

+
ζ(x1, x2)x2

ζ(x1, x∗2)x
∗
2
=

(
1 −

ζ(x1, x∗2)
ζ(x1, x∗2)

)(
ζ(x1, x∗2)
ζ(x1, x2)

−
x2

x∗2

)
6 0,
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and

− 1 −
x3

x∗3
+
ζ(x1, x∗2)ξ(x

∗
1 , x∗3)

ζ(x∗1 , x∗2)ξ(x1, x3)
+
ζ(x∗1 , x∗2)ξ(x1, x3)x3

ζ(x1, x∗2)ξ(x
∗
1 , x∗3)x

∗
3

=

(
1 −

ζ(x1, x∗2)ξ(x
∗
1 , x∗3)

ζ(x∗1 , x∗2)ξ(x1, x3)

)(
ζ(x1, x∗2)ξ(x

∗
1 , x∗3)

ζ(x∗1 , x∗2)ξ(x1, x3)
−
x3

x∗3

)
6 0.

Hence,
(
∂g(η,t)
∂t

)−1
D
α,β
t,wV2(x1, x2, x3) 6 0. Thus, Dα,β

t,wV2(x1, x2, x3) 6 0. It follows from [14, Theorem 5]
that the endemic equilibrium E∗ of system (2.3) is stable when R0 > 1.

5. Application and numerical simulations

As an application of our theoretical results, we choose

D
α,β
t,1 x1(t) =

∂g(η, t)
∂t

(
A− νx1 −

κ1x1x2

1 + ε1x2
−
κ2x1x3

1 + ε2x3

)
,

D
α,β
t,1 x2(t) =

∂g(η, t)
∂t

(
κ1x1x2

1 + ε1x2
+
κ2x1x3

1 + ε2x3
− d1x2

)
,

D
α,β
t,1 x3(t) =

∂g(η, t)
∂t

(
ρx2 − d2x3

)
.

(5.1)

Model (5.1) is a special case of system (2.3) with κ1 and κ2 represent the infection rates of carrier and
infected individuals, respectively. Also ε1 and ε2 are the saturation rates. Here, we have ζ(x1, x2) =

κ1x1
1+ε1x2

and ξ(x1, x3) =
κ2x1

1+ε2x3
. In this case, the basic reproduction number R0 of (5.1) is given by

R0 =
A(d2κ1 + ρκ2)

νd1d2
.

Obviously, ζ and ξ satisfy the conditions (H4), (H5), and (H6). By applying Theorems 4.2 and 4.5, we get
the following corollary.

Corollary 5.1.

(i) When R0 6 1, the disease-free equilibrium E of model (5.1) is stable.
(ii) When R0 > 1, the equilibrium E becomes unstable and the endemic equilibrium E∗ of model (5.1) is stable.

By applying the GHF integral in both sides of equations of model (5.1), we obtain

x1(t) = x1(0) +
1 −α

N(α)

∂g(η, t)
∂t

G1(t, x1(t)) +
α

N(α)Γ(β)

∫t
0
(t− τ)β−1∂g(η, τ)

∂τ
G1(τ, x1(τ))dτ,

x2(t) = x2(0) +
1 −α

N(α)

∂g(η, t)
∂t

G2(t, x2(t)) +
α

N(α)Γ(β)

∫t
0
(t− τ)β−1∂g(η, τ)

∂τ
G2(τ, x2(τ))dτ,

x3(t) = x3(0) +
1 −α

N(α)

∂g(η, t)
∂t

G3(t, x3(t)) +
α

N(α)Γ(β)

∫t
0
(t− τ)β−1∂g(η, τ)

∂τ
G3(τ, x3(τ))dτ,

where
G1 (t, x1(t)) = A− νx1 −

κ1x1x2

1 + ε1x2
−
κ2x1x3

1 + ε2x3
,

G2 (t, x2(t)) =
κ1x1x2

1 + ε1x2
+
κ2x1x3

1 + ε2x3
− d1x2,

G3 (t, x3(t)) = ρx2 − d2x3.
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We use the numerical method based on the Lagrange polynomial interpolation cited in [16] to approxi-
mate the solution of model (5.1). By interpolating at point tn = n∆t, we obtain

x1,n+1 = x1,0 +
1 −α

N(α)
G1(tn, x1,n) +

α(∆t)β

N(α)Γ(β+ 2)

×
n∑
k=0

∂g(η, tk)
∂tk

G1(tk, x1,k)An,k,β +G1(tk−1, x1,k−1)Bn,k,β,

x2,n+1 = x2,0 +
1 −α

N(α)
G2(tn, x1,n) +

α(∆t)β

N(α)Γ(β+ 2)

×
n∑
k=0

∂g(η, tk)
∂tk

G2(tk, x2,k)An,k,β +G2(tk−1, x2,k−1)Bn,k,β,

x3,n+1 = x3,0 +
1 −α

N(α)
G3(tn, x3,n) +

α(∆t)β

N(α)Γ(β+ 2)

×
n∑
k=0

∂g(η, tk)
∂tk

G3(tk, x3,k)An,k,β +G3(tk−1, x3,k−1)Bn,k,β,

where
An,k,β = (n− k+ 1)β(n− k+ 2 +β) − (n− k)β(n− k+ 2 + 2β),

Bn,k,β = (n− k)β(n− k+ 1 +β) − (n− k+ 1)β+1.

For numerical simulations, let N(α) = 1 − α+ α
Γ(α) . Furthermore, we take g(t,η) = t2−η

2−η . The valuers of
the others parameters are given in Table 1, which are taken from [18].

Table 1: Parameter values model (5.1).

Parameters Definition Value

A Recruitment rate 50
κ1 Transmission contact rate between x1 and x3 1.2× 10−5

κ2 Transmission contact rate between x1 and x3 Varied
ρ Symptoms period 1/7 day−1

ε1 The measure of inhibition effect for carrier 0.04
ε1 The measure of inhibition effect for infected 0.01
ν Natural death rate 0.01 day−1

r1 Recovery rate from carrier 1/21 day−1

r2 Recovery rate from infected 1/15 day−1

d Death due to disease rate 0.1 day−1

Consider κ2 = 5.5× 10−5, we have R0 = 0.9532 6 1. Therefore, model (5.1) has a disease-free equi-
librium E(5000, 0, 0). By Corollary 5.1 (i), we know that E is stable. Figure 2 illustrates this result. For
κ2 = 1.3× 10−5, we have R0 = 1.9489 > 1. Thus, model (5.1) has a endemic equilibrium. By Corollary 5.1
(ii), we know that E∗ is stable. Figure 4 demonstrates this finding.

We notice that when the parameter α is close to 1, the graph of susceptible, asymptomatic, and
infected individuals converges rapidly to the disease-free equilibrium or to the endemic equilibrium.
Also, we observe the effect of modifying the fractal order η on the graph of susceptible individuals
through Figures 2, 3, 4, and 5. While in Figures 6 and 7, we notice the effect of varying the fractional
order β on susceptible and infected individuals.
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Figure 2: Dynamics of model (5.1) when R0 = 0.9532 6 1, η = 1, and β = 1.
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Figure 3: Dynamics of model (5.1) when R0 = 0.9532 6 1, η = 0.87, and β = 1.
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Figure 4: Dynamics of model (5.1) when R0 = 1.9489 > 1, η = 1, and β = 1.
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Figure 5: Dynamics of model (5.1) when R0 = 1.9489 > 1, η = 0.87, and β = 1.
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Figure 6: Dynamics of model (5.1) when R0 = 0.9532 6 1, η = 1, and β = 0.7.
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Figure 7: Dynamics of model (5.1) when R0 = 1.9489 > 1, η = 1, and β = 0.7.
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6. Conclusion

In this work, we have proposed a fractal-fractional epidemic model for COVID-19 with carrier effect.
The two modes of transmission via direct contact with asymptomatic and symptomatic individuals have
been modeled by two general incidence functions. The existence and uniqueness of solution has been
established by Krasnoselskii’s fixed point theorem which combines between Banach contraction principal
and Schauder fixed point theorem. The stability conditions of the equilibrium points have bee investigated
by means of Lyapunov functionals. Finally, we have presented numerical simulations to support our
analytical results. We conclude that the dynamics of our formulated model has a significant result by
using the Hattaf fractal-fractional derivative, which covers and generalizes various nonlocal operators
existing in the literature.

It is known that COVID-19 can be transmitted not only through direct contact with asymptomatic and
symptomatic people, but it can also spread through a contaminated environment [18]. In future research,
it would be very interesting to extend our model by taking into account the three transmission modes
and other factors.
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