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Abstract

In recent years, utilizing the generalized quantum exponential function (also known as the (q,h)-exponential function) that
extends and unifies the q- and h-exponential functions into a single and convenient form, (q,h)-generalizations of the diverse
polynomials and numbers, such as Euler and tangent polynomials and numbers, have been introduced and studied. Inspired by
these studies, in this work, we focus on defining and analyzing extensions of Frobenius-Euler polynomials and numbers using
the (q,h)-exponential function. Also, we show that the mentioned polynomials are solutions to some higher-order differential
equations. Furthermore, we examine that (q,h)-Frobenius-Euler polynomials are solutions to higher-order differential equations
combined with the q-Bernoulli, q-Euler, and q-Genocchi numbers and polynomials, respectively. Finally, we use a computer
program to visualize the approximate roots of the mentioned polynomials.
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1. Introduction

Scientists, mostly mathematicians, have recently established and built generating maps for new fam-
ilies of special polynomials, such as q-Genocchi, q-Euler, q-Bernoulli polynomials, and so forth, [10–
13, 16, 17] and also see the references cited therein. Elementary properties such as recurrence relations,
symmetric properties, explicit and implicit summation formulas, and varied applications, such as dif-
ferential equations, number theory, functional analysis, quantum mechanics, mathematical analysis, and
mathematical physics, have been worked and analyzed by these types of studies mentioned above.
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Inspired and motivated by the above, in this study, we consider (q,h)-extension of Frobenius-Euler
polynomials, and then some of their formula and relations are analyzed and derived. Also, we provided
that the mentioned polynomials are solutions to some higher-order differential equations. Moreover, we
investigate that (q,h)-Frobenius-Euler polynomials are solutions to higher-order differential equations
combined with the q-Bernoulli, q-Euler, and q-Genocchi numbers and polynomials, respectively. Fur-
thermore, we utilize a computer program to give the structures and shapes of approximate roots of the
mentioned polynomials.

Due to its applications in mathematics, physics, and engineering, the subject of q-calculus began to
surface in the nineteenth century. The references [1–9, 14–19] contain the definitions and notations of
q-calculus and (q,h)-calculus that we review here.

The q-shifted factorial is provided as follows

(δ;q)0 = 1, (δ;q)s =
s−1∏
m=0

(1 − qmδ), s ∈N.

The q-number and q-factorial are provided as follows

[δ]q =
1 − qδ

1 − q
, q ∈ C − {1}; δ ∈ C, [s]q! =

s∏
m=1

[m]q = [1]q[2]q · · · [s]q =
(q;q)s
(1 − q)s

, q 6= 1; s ∈N,

and
[0]q! = 1, q ∈ C; 0 < q < 1.

The q-binomial coefficient is provided as follows(
s

r

)
q

=
[s]q!

[r]q![s− r]q!
=

(q;q)s
(q;q)r(q;q)s−r

, r = 0, 1, . . . , s.

The q-power basis is provided as follows

(µ+ v)sq =

s∑
r=0

(
s

r

)
q

qr(r−1)/2µs−rvr, s ∈N0.

The q-exponential function is provided as

eq(µ) =

∞∑
s=0

µs

[s]q!
=

1
((1 − q)µ;q)∞ , 0 <| q |< 1; | µ |<| 1 − q |−1, (1.1)

The q-Bernoulli, q-Euler, and q-Genocchi polynomials are given, respectively, as follows (see [16, 17]):

l

eq(l) − 1
eq(µl) =

∞∑
s=0

Bs,q(µ)
ls

[s]q!
, (| l |) < 2π, (1.2)

2
eq(l) + 1

eq(µl) =

∞∑
s=0

Es,q(µ)
ls

[s]q!
, (| l |) < π, (1.3)

2l
eq(l) + 1

eq(µl) =

∞∑
s=0

Gs,q(µ)
ls

[s]q!
, (| l |< π). (1.4)

The corresponding numbers of these polynomials above are obtained by choosing µ = 0, namely Bs,q(0)
:= Bs,q, Es,q(0) := Es,q and Gs,q(0) := Gs,q, respectively.
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The q-Frobenius-Euler polynomials are given by (cf. [15])

1 −ω

eq(l) −ω
eq(lµ) =

∞∑
s=0

Hs,q(µ;ω)
ls

[s]q!
,

with a suitable parameter ω.
The corresponding numbers of q-Frobenius-Euler polynomials are obtained just by choosing µ = 0,

namely Hs,q(0;ω) := Hs,q(ω). The usual Frobenius-Euler polynomials and numbers are attained by
taking q→ 1. The bivariate time scale Tq,h(µ) is provided as follows (cf. [2, 3, 7, 18])

Tq,h(µ) = {qsµ+ [µ]qh | µ ∈ R,µ ∈ Z,h,q ∈ R+,q 6= 1}∪ { h

1 − q
}.

The delta (q,h)-derivative of f is provided as follows (cf. [2, 4])

Dq,hf(µ) =
f(qµ+ h) − f(µ)

(q− 1)µ+ h
, (1.5)

for f : Tq,h(µ)→ R being any function. By (1.5), some properties can be observed as follows.

(i) f(µ) is a constant if and only if Dq,hf(µ) = 0, for µ ∈ Tq,h(µ).
(ii) f(µ) = g(µ) + c with some constant c if and only if Dq,hf(µ) = Dq,hg(µ) for all µ ∈ Tq,h(µ).

(iii) f(µ) = c1µ+ c2, where c1 and c2 are constants if and only if Dq,hf(µ) = c1, for µ ∈ Tq,h(µ).

We note from (1.5) that, when q→ 1, the delta (q,h)-derivative operator becomes q-derivative operator
Dq(f) (cf. [1, 3, 6, 7]) and also when h→ 0, the delta (q,h)-derivative operator becomes the h-derivative
operator Dh(f) (cf. [7]). Furthermore, the product rule and quotient rule for Dq,hf(µ) are discovered as
per the following.

(i) Product rule:

Dq,h(f(µ)g(µ)) = g(qµ+ h)Dq,hf(µ) + f(µ)Dq,hg(µ) = f(qµ+ h)Dq,hg(µ) + g(µ)Dq,hf(µ).

(ii) Quotient rule

Dq,h

(
f(µ)

g(µ)

)
=
g(µ)Dq,hf(µ) − f(µ)Dq,hg(µ)

g(µ)g(qµ+ h)
=
g(qµ+ h)Dq,hf(µ) − f(qµ+ h)Dq,hg(µ)

g(µ)g(qµ+ h)
.

The (q,h)-power basis is provided as follows (cf. [19])

(µ− µ0)
s
q,h =

{
1, if s = 0,∏s
i=1(s− (qi−1µ0 + [i− 1]qh)), if s > 0,

where µ0 ∈ R. We note from above that the (q,h)-power basis reduces to q-power basis (denoted by
(µ− µ0)

s
q) when q→ 1 and the (q,h)-power basis reduces to h-power basis (denoted by (µ− µ0)

s
h) when

h→ 0. In addition, it is not hard to observe that lim(q,h)→(1,0)(µ− µ0)
s
q,h = (µ− µ0)

s.
For α being an arbitrary nonzero constant, the (q,h)-exponential function is provided as follows

expq,h(αµ) =

∞∑
i=0

αi(µ− 0)iq,h

[i]!
. (1.6)

It can be observed from (1.6) that the (q,h)-exponential function reduces to q-exponential function in
(1.1) when q → 1 with α = 1 and the (q,h)-exponential function reduces to h-exponential function
(denoted by eh(µ) = (1 + h)

µ
h ) when h → 0 with α = 1. In addition, it is not hard to observe that

lim(q,h)→(1,0) expq,h(αµ) = e
αµ.
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Recently, Kang [8] considered the degenerate form of the (q,h)-exponential function as follows

expq,h(µ : l) =

∞∑
s=0

(µ)sq,h
ls

[s]q!
, (1.7)

where (µ)sq,h =
∏s
r=1(µ− [r− 1]qh with (µ)0

q,h := 1. The (q,h)-tangent polynomials are considered as
follows (cf. [8]) ∞∑

s=0

Ts,q(µ : h)
ls

[s]q!
=

2
eq,h(2 : l)

eq,h(µ : l), (1.8)

where | q |< 1 and h being a non-negative integer. We readily attain from (1.8) that

Ts,q(µ : h) =

s∑
r=0

(
s

r

)
q

(µ)s−rq,h Tr,q(h).

The corresponding numbers of the polynomials in (1.8) are obtained by choosing µ = 0, namely Ts,q(0 :
h) := Ts,q(h). Many formulas and properties of the degenerate (q,h)-tangent polynomials have been
derived in [8].

2. Differential equations of (q,h)-Frobenius-Euler polynomials

Here, by motivating the definition of the polynomials in (1.8), we consider (q,h)-analog Frobenius-
Euler polynomials. Then, we investigate many properties and relations. We state our main definition.

Definition 2.1. The (q,h)-Frobenius-Euler polynomials are introduced as follows:

∞∑
s=0

Hs,q,h(µ;ω)
ls

[s]q!
=

1 −ω

eq,h(1 : l) −ω
eq,h(µ : l), (2.1)

with | q |< 1, ω ∈ C with ω 6= 1, and h ∈ N0. The (q,h)-Frobenius-Euler polynomials are abbreviated
with qhFEP throughout the paper.

We now analyze some special cases of (2.1). We readily observe from (2.1) that when ω = −1, qhFEPs
become to the (q,h)-Euler polynomials Es,q,h(µ) (cf. [9]) provided by

∞∑
s=0

Es,q,h(µ)
ls

[s]q!
=

2
eq,h(1 : l) + 1

eq,h(µ : l),

when µ = 0, qhFEPs become to the (q,h)-Frobenius-Euler numbers (which are the corresponding num-
bers of the (q,h)-Frobenius-Euler polynomials) Hs,q,h(ω) provided by

∞∑
s=0

Hs,q,h(ω)
ls

[s]q!
=

1 −ω

eq,h(1 : l) −ω
,

when q → 1, qhFEPs become the degenerate Frobenius-Euler polynomials Hs,h(µ;ω) (cf. [9, 14]) pro-
vided by ∞∑

s=0

Hs,h(µ;ω)
ls

s!
=

1 −ω

(1 + hl)
1
h −ω

(1 + hl)
µ
h ,

when q → 1 and µ = 0, qhFEP become to the degenerate Frobenius-Euler numbers Hs,h(ω) (cf. [9, 14]),
provided by ∞∑

s=0

Hs,h(ω)
ls

s!
=

1 −ω

(1 + hl)
1
h −ω

,
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when h→ 0, qhFEPs become to the q-Frobenius-Euler polynomials Hs,q(µ;ω) (cf. [15]), provided by
∞∑
s=0

Hs,q(µ;ω)
ls

[s]q!
=

1 −ω

eq(1 : l) −ω
eq(µl),

when h → 0 and µ = 0, qhFEPs become to the q-Frobenius-Euler numbers Hs,q(ω) (cf. [15]), provided
by ∞∑

s=0

Hs,q(ω)
ls

[s]q!
=

1 −ω

eq(1 : l) −ω
,

when h → 0 and q → 1, qhFEPs become to the Frobenius-Euler polynomials Hs(µ;ω) (cf. [9, 14, 15]),
provided by ∞∑

s=0

Hs(µ;ω)
ls

s!
=

1 −ω

el −ω
eµl,

and also when h → 0, q → 1, and µ = 0, qhFEPs become to the Frobenius-Euler numbers Hs(ω) (cf.
[9, 14, 15]), provided by ∞∑

s=0

Hs(ω)
ls

s!
=

1 −ω

el −ω
.

We obtain by (2.1) that
∞∑
s=0

Hs,q,h(µ;ω)
ls

[s]q!
=

∞∑
s=0

Hs,q,h(ω)
ls

[s]q!

∞∑
s=0

(µ)sq,h
ls

[s]q!
=

∞∑
s=0

(
s∑
r=0

(
s

r

)
q

Hr,q,h(ω)(µ)s−rq,h

)
ls

[s]q!
.

Therefore, it is derived that

Hs,q,h(µ;ω) =

s∑
r=0

(
s

r

)
q

Hr,q,h(ω)(µ)s−rq,h . (2.2)

Now, some differential properties of qhFEP are examined as follows.

Theorem 2.2. The (q,h)-derivative property

D
(r)
q,µHs,q(µ;ω) =

[s]q!
[s− r]q!

Hs−r,q(µ;ω), (2.3)

holds for h, s, r ∈N0, and | q |< 1.

Proof. We observe from (1.5) and (2.1) that

D
(1)
q,h,µHs,q,h(µ;ω) = [s]qHs−1,q,h(µ;ω).

Then if we successively apply, we readily attain

D
(r)
q,µHs,q(µ;ω) =

[s]q!
[s− r]q!

Hs−r,q(µ;ω),

which is the claimed property in (2.3).

Theorem 2.3. The solutions of the following (q,h)-differential equation

(1)sq,h

[s]q!
D

(s)
q,h,µHs,q,h(µ;ω) +

(1)s−1
q,h

[s− 1]q!
D

(s−1)
q,h,µHs,q,h(µ;ω) +

(1)s−2
q,h

[s− 2]q!
D

(s−2)
q,h,µHs,q,h(µ;ω)

+ · · ·+
(1)2
q,h

[2]q!
D

(2)
q,h,µHs,q,h(µ;ω) + (1)1

q,hD
(1)
q,h,µ(µ;ω) −ωHs,q,h(µ;ω) − (1 −ω)(µ)sq,h = 0

are qhFEP.
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Proof. We observe by (2.1) and (2.3) that

(1 −ω)eq,h(µ : l) =

∞∑
s=0

Hs,q,h(µ;ω)
ls

[s]q!
(eq,h(1 : l) −ω)

=

∞∑
s=0

Hs,q,h(µ;ω)
ls

[s]q!

( ∞∑
r=0

(1)rq,h
lr

[r]q!
−ω

)

=

∞∑
s=0

(
s∑
r=0

(
s

r

)
q

(1)rq,hHs−r,q,h(µ;ω) −ωHs,q,h(µ;ω)

)
ls

[s]q!
.

(2.4)

Also, it can be written that

(1 −ω)eq,h(µ : l) = (1 −ω)

∞∑
s=0

(µ)sq,h
ls

[s]q!
. (2.5)

Hence, it can be seen by (2.4) and (2.5) that

s∑
r=0

(
s

r

)
q

(1)rq,hHs−r,q,h(µ;ω) −ωHs,q,h(µ;ω) = (1 −ω)(µ)sq,h.

We obtain by (2.3) that

s∑
r=0

(1)rq,h

[r]q!
D

(r)
q,h,µHs,q,h(µ;ω) −ωHs,q,h(µ;ω) − (1 −ω)(µ)sq,h = 0,

which is the asserted equation in the theorem.

Theorem 2.4. The solutions of the following (q,h)-differential equation

Hs,q,h(1;ω) −ωHs,q,h(ω)

[s]q!
D

(s)
q,h,µHs,q,h(µ;ω) +

Hs−1,q,h(1;ω) −ωHs−1,q,h(ω)

[s− 1]q!
D

(s−1)
q,h,µHs,q,h(µ;ω)

+ · · ·+
H2,q,h(1;ω) −ωH2,q,h(ω)

[2]q!
D

(2)
q,h,µHs,q,h(µ;ω) + (H1,q,h(1;ω)

−ωH1,q,h(ω))D
(1)
q,h,µHs,q,h(µ;ω) + (H0,q,h(1;ω) −ωH0,q,h(ω) − (1 −ω))Hs,q,h(µ;ω) = 0

are qhFEP.

Proof. We see by (2.1) and (2.3) that

∞∑
s=0

Hs,q,h(µ;ω)
ls

[s]q!
=

1 −ω

eq,h(1 : l) −ω
eq,h(µ : l)

=
1

1 −ω

(
1 −ω

eq,h(1 : l) −ω
eq,h(1 : l) −ω

1 −ω

eq,h(1 : l) −ω

)
1 −ω

eq,h(1 : l) −ω
eq,h(µ : l)

and then

(1 −ω)

∞∑
s=0

Hs,q,h(µ;ω)
ls

[s]q!
=

∞∑
s=0

(
s∑
r=0

(
s

r

)
q

(
Hr,q,h(1;ω) −ωHr,q,h(ω)

)
Hs−r,q,h(µ;ω)

)
ls

[s]q!
,

which yields the following formula

s∑
r=0

(
s

r

)
q

(
Hr,q,h(1;ω) −ωHr,q,h(ω)

)
Hs−r,q,h(µ;ω) − (1 −ω)Hs,q,h(µ;ω) = 0. (2.6)
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It is attained from (2.3) and (2.6) that
s∑
r=0

(
Hr,q,h(1;ω) −ωHr,q,h(ω)

)
[r]q!

D
(r)
q,h,µHs,q,h(µ;ω) − (1 −ω)Ts,q,h(µ;ω) = 0,

which is the assertion in the theorem.

By (1.7), we develop the following identity (cf. [8]):

eq,h(qµ; l) = eq,q−1h(µ : ql). (2.7)

Theorem 2.5. The solutions of the (q,h)-differential equation

qs
(
Hs,q(1 : q−1h;ω) −ωHs,q(q

−1h;ω)
)

[s]q!
D

(s)
q,h,µHs,q,h(qµ;ω)

+
qs−1

(
Hs−1,q(1 : q−1h;ω) −ωHs−1,q(q

−1h;ω)
)

[s− 1]q!
D

(s−1)
q,h,µHs,q,h(qµ;ω)

+ · · ·+
q2
(
H2,q(1 : q−1h;ω) −ωH2,q(q

−1h;ω)
)

[2]q!
D

(2)
q,h,µHs,q,h(qµ;ω)

+ q
(
H1,q(1 : q−1h;ω) −ωH1,q(q

−1h;ω)
)
D

(1)
q,h,µHs,q,h(qµ;ω)

+
(
H0,q(1 : q−1h;ω) −ωH0,q(q

−1h;ω) − (1 −ω)
)

Hs,q,h(qµ;ω) = 0

are qhFEP.

Proof. We attain from (2.1) and (2.7) that∞∑
s=0

Hs,q,h(qµ;ω)
ls

[s]q!

=
1 −ω

eq,h(1 : l) −ω
eq,h(qµ : l)

=
1

1 −ω

(
1 −ω

eq,q−1h(1 : ql) −ω
eq,q−1h(1 : ql) −ω

1 −ω

eq,q−1h(1 : l) −ω

)
1 −ω

eq,h(1 : l) −ω
eq,h(qµ : l)

and then

(1 −ω)

∞∑
s=0

Hs,q,h(qµ;ω)
ls

[s]q!

=

∞∑
s=0

(
s∑
r=0

(
s

r

)
q

qr
(
Hr,q(1 : q−1h;ω) −ωHs,q(q

−1h;ω)
)

Hs−r,q,h(qµ;ω)

)
ls

[s]q!
,

which means
s∑
r=0

(
s

r

)
q

qr
(
Hr,q(1 : q−1h;ω) −ωHs,q(q

−1h;ω)
)

Hs−r,q,h(qµ;ω) − (1 −ω)Hs,q,h(qµ;ω) = 0.

Changing µ by qµ in (2.3) gives the following equation

Hs−r,q,h(qµ;ω) =
[s− r]q!
[s]q!

D
(r)
q,h,µHs,q,h(qµ;ω).

Thus, we investigate
s∑
r=0

qr
(
Hr,q(1 : q−1h;ω) −ωHs,q(q

−1h;ω)
)

[r]q!
D

(r)
q,h,µHs,q,h(qµ;ω) − (1 −ω)Hs,q,h(qµ;ω) = 0,

which is the assertion in the theorem.
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3. Some differential equations with the coefficients of other polynomials

Here are some differential equations for qhFEP in conjunction with the coefficients of q-Genocchi,
q-Bernoulli, and q-Euler polynomials.

Theorem 3.1. The solutions of the following (q,h)-differential equation

(Es,q + Es,q(1))
[s]q!

D
(s)
q,h,µHs,q,h(µ;ω) +

(
Es−1,q + Es−1,q(1)

)
[s− 1]q!

D
(s−1)
q,h,µHs,q,h(µ;ω)

+ · · ·+
(E2,q + E2,q(1))

[2]q!
D

(2)
q,h,µHs,q,h(µ;ω) +

(
E1,q + E1,q(1)

)
D

(1)
q,h,µHs,q,h(µ;ω)

+ (E0,q + E0,q(1) − 2)Hs,q,h(µ;ω) = 0

are qhFEP in conjunction with the coefficients of q-Euler polynomials.

Proof. We achieve from (1.3) and (2.1) that

∞∑
s=0

Hs,q,h(µ;ω)
ls

[s]q!
=

1 −ω

eq,h(1 : l) −ω
eq,h(µ : l)

=
1
2

(
2

eq(l) + 1
eq(l) +

2
eq(l) + 1

)
1 −ω

eq,h(1 : l) −ω
eq,h(µ : l)

=
1
2

∞∑
s=0

(
s∑
r=0

(
s

r

)
q

(Er,q + Er,q(1))Hs−r,q,h(µ;ω)

)
ls

[s]q!
i,

which means that

2Hs,q,h(µ;ω) =

s∑
r=0

(
s

r

)
q

(Er,q + Er,q(1))Hs−r,q,h(µ;ω). (3.1)

By means of (2.3) and (3.1), it can be written that

s∑
r=0

(Er,q + Er,q(1))
[r]q!

D
(r)
q,h,µHs,q,h(µ;ω) − 2Hs,q,h(µ;ω) = 0,

which is the just desired differential equation in the theorem.

Theorem 3.2. The solutions of the following (q,h)-differential equation

(Bs,q −Bs,q(1))
[s]q!

D
(s)
q,h,µHs,q,h(µ;ω) +

(
Bs−1,q −Bs−1,q(1)

)
[s− 1]q!

D
(s−1)
q,h,µHs,q,h(µ;ω)

+ · · ·+
(B2,q −B2,q(1))

[2]q!
D

(2)
q,h,µHs,q,h(µ;ω) +

(
B1,q −B1,q(1)

)
D

(1)
q,h,µHs,q,h(µ;ω)

+ (B0,q −B0,q(1))Hs,q,h(µ;ω) − [s]qHs−1,q,h(µ;ω) = 0

are qhFEP in conjunction with the coefficients of q-Bernoulli polynomials.

Proof. We obtain from (1.2) and (2.1) that

∞∑
s=0

Hs,q,h(µ;ω)
ls

[s]q!
=

1 −ω

eq,h(1 : l) −ω
eq,h(µ : l)

=
1
l

(
l

eq(l) − 1
eq(l) −

l

eq(l) + 1

)
1 −ω

eq,h(1 : l) −ω
eq,h(µ : l)
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=
1
l

∞∑
s=0

(
s∑
r=0

(
s

r

)
q

(Br,q −Br,q(1))Hs−r,q,h(µ;ω)

)
ls

[s]q!
,

which yields that

[s]qHs−1,q,h(µ;ω) =

s∑
r=0

(
s

r

)
q

(Br,q − Er,q(1))Hs−r,q,h(µ;ω). (3.2)

By means of (2.3) and (3.2), it can be written that

s∑
r=0

(Br,q −Br,q(1))
[r]q!

D
(r)
q,h,µHs,q,h(µ;ω) − [s]qHs−1,q,h(µ;ω) = 0,

which is the just asserted differential equation in the theorem.

Theorem 3.3. The solutions of the following (q,h)-differential equation

(Gs,q +Gs,q(1))
[s]q!

D
(s)
q,h,µHs,q,h(µ;ω) +

(
Gs−1,q +Gs−1,q(1)

)
[s− 1]q!

D
(s−1)
q,h,µHs,q,h(µ;ω)

+ · · ·+
(G2,q +G2,q(1))

[2]q!
D

(2)
q,h,µHs,q,h(µ;ω) +

(
G1,q +G1,q(1)

)
D

(1)
q,h,µHs,q,h(µ;ω)

+ (G0,q +G0,q(1))Hs,q,h(µ;ω) − 2[s]qHs−1,q,h(µ;ω) = 0

are qhFEP in conjunction with the coefficients of q-Genocchi polynomials.

Proof. We observe from (1.4) and (2.1) that

∞∑
s=0

Hs,q,h(µ;ω)
ls

[s]q!
=

1 −ω

eq,h(1 : l) −ω
eq,h(µ : l)

=
1
2l

(
2l

eq(l) + 1
eq(l) +

2l
eq(l) + 1

)
1 −ω

eq,h(1 : l) −ω
eq,h(µ : l)

=
1
2l

∞∑
s=0

(
s∑
r=0

(
s

r

)
q

(Gr,q +Gr,q(1))Hs−r,q,h(µ;ω)

)
ls

[s]q!
,

which means that

2[s]qHs−1,q,h(µ;ω) =

s∑
r=0

(
s

r

)
q

(Gr,q +Gr,q(1))Hs−r,q,h(µ;ω). (3.3)

By means of (2.3) and (3.3), it can be written that

s∑
r=0

(Gr,q +Gr,q(1))
[r]q!

D
(r)
q,h,µHs,q,h(µ;ω) − 2[s]qHs−1,q,h(µ;ω) = 0,

which is the claimed differential equation in the theorem.
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4. Zeros and graphical representations for qhFEP

In this part, certain numerical computations are completed to derive certain zeros of qhFEP and show
some intriguing graphical representations. Remember the definition of qhFEP as follows:

1 −ω

eq,h(1 : l) −ω
eq,h(µ : l) =

∞∑
s=0

Hs,q,h(µ;ω)
ls

[s]q!
.

Certain members of qhFEP are investigated and given as:

H0,q,h(µ;ω) = 1,

H1,q,h(µ;ω) =
1

−1 +ω
−

µ

−1 +ω
+

ωµ

−1 +ω
,

H2,q,h(µ;ω) =
1

(−1 +ω)3 −
h

(−1 +ω)3 −
2ω

(−1 +ω)3 +
2hω

(−1 +ω)3 +
ω2

(−1 +ω)3 −
hω2

(−1 +ω)3 −
hµ

1 −ω

+
hωµ

1 −ω
+

µ2

1 −ω
−
ωµ2

1 −ω
−

[2]q!
(−1 +ω)3 +

ω[2]q!
(−1 +ω)3 −

µ[2]q!
(−1 +ω)2 +

ωµ[2]q!
(−1 +ω)2 ,

H3,q,h(µ;ω) = −
1

(1 −ω)2 +
2h

(1 −ω)2 −
h2

(1 −ω)2 +
hq

(1 −ω)2 −
h2q

(1 −ω)2 +
ω

(1 −ω)2 −
2hω

(1 −ω)2

+
h2ω

(1 −ω)2 −
hqω

(1 −ω)2 +
h2qω

(1 −ω)2 +
h2µ

1 −ω
+
h2qµ

1 −ω
−
h2ωµ

1 −ω
−
h2qωµ

1 −ω
−

2hµ2

1 −ω

−
hqµ2

−ω
+

2hωµ2

1 −ω
+
hqωµ2

1 −ω
+

µ3

1 −ω
−
ωµ3

1 −ω
−

[3]q!
(1 −ω)4 +

ω[3]q!
(1 −ω)4 −

µ[3]q!
(−1 +ω)3

+
ωµ[3]q!

(−1 +ω)3 +
2[3]q!

(1 −ω)3[2]q!
−

2h[3]q!
(1 −ω)3[2]q!

−
2ω[3]q!

(1 −ω)3[2]q!
+

2hω[3]q!
(1 −ω)3[2]q!

+
µ[3]q!

(−1 +ω)3[2]q!
−

hµ[3]q!
(−1 +ω)3[2]q!

+
hµ[3]q!

(−1 +ω)2[2]q!

−
2ωµ[3]q!

(−1 +ω)3[2]q!
+

2hωµ[3]q!
(−1 +ω)3[2]q!

−
hωµ[3]q!

(−1 +ω)2[2]q!
+

ω2µ[3]q!
(−1 +ω)3[2]q!

−
hω2µ[3]q!

(−1 +ω)3[2]q!
−

µ2[3]q!
(−1 +ω)2[2]q!

+
ωµ2[3]q!

(−1 +ω)2[2]q!
.

The zeros of the equality Hs,q,h(µ;ω) = 0 for s = 30 are plotted with 2D structure in Figure 1. Here we
take ω = 2,q = 1

10 , and h = 1
100 on top-left of Figure 1; ω = 2,q = 9

10 , and h = 1
1000 on top-right of Figure

1; ω = −2,q = 1
10 , and h = 1

100 on bottom-left of Figure 1; ω = −2,q = 9
10 ; and h = 1

1000 on bottom-right
of Figure 1.

We now present the 3D behavior of the stacks of zeros of the Hs,q,h(µ;ω) = 0 for 1 6 s 6 30 by
Figure 2. Here we take ω = 2,q = 1

10 , and h = 1
100 on top-left of Figure 2; ω = 2,q = 9

10 , and h = 1
1000

on top-right of Figure 2; ω = −2,q = 1
10 , and h = 1

100 on bottom-left of Figure 2; ω = −2,q = 9
10 , and

h = 1
1000 on bottom-right of Figure 2.

We now provide real zeros of the Hs,q,h(µ;ω) = 0 for 1 6 s 6 30 by Figure 3. Here we take
ω = 2,q = 1

10 , and h = 1
100 on top-left of Figure 3; ω = 2,q = 9

10 , and h = 1
1000 on top-right of Figure 3;

ω = −2,q = 1
10 , and h = 1

100 on bottom-left of Figure 3; ω = −2,q = 9
10 , and h = 1

1000 on bottom-right of
Figure 3.

The approximate solutions of Hs,q,h(µ;ω) = 0 (choosing ω = −2,q = 9
10 , and h = 1

1000 ) are calculated
and listed in Table 1.
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Figure 1: Zeros of Hs,q,h(µ;ω) = 0.

Table 1: Approximate solutions of Hs,q,h(µ;ω) = 0 for u = −2,q = 9
10 , and h = 1

1000 .

Degree µ

1 0.33333
2 -0.15451, 0.78885
3 -0.40150, 0.17230, 1.1354
4 -0.40666-0.17616i, -0.40666+0.17616i, 0.58499, 1.3803
5 -0.55699-0.33972i, -0.55699+0.33972i, -0.018921, 0.98223, 1.5247
6 -0.59217-0.51323i, -0.59217+0.51323i, -0.56122, 0.39438, 1.4631-0.0780i, 1.4631+0.0780i
7 -0.76008, -0.64110-0.68546i, -0.64110+0.68546i, -0.21928, 0.79615, 1.6111-0.2797i, 1.6111+0.2797i

8
-0.77171-0.18693i, -0.77171+0.18693i, -0.65913-0.85315i, -0.65913+0.85315i, 0.20197,

1.1901, 1.6955-0.3905i, 1.6955+0.3905i

9
-0.89195-0.30221i, -0.89195+0.30221i, -0.66964-1.01054i, -0.66964+1.01054i, -0.42380, 0.60852,

1.5396, 1.7348-0.5161i, 1.7348+0.5161i

10
-0.92811-0.46309i, -0.92811+0.46309i, -0.91432, -0.66815-1.16062i, -0.66815+1.16062i,

0.0061573, 1.0058, 1.7441, 1.7784-0.6511i, 1.7784+0.6511i
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Figure 2: Zeros of Hn,q,h(x;u) = 0.

Figure 3: Real zeros of Hs,q,h(µ;ω) = 0.
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5. Conclusion

In recent years, by means of the generalized quantum exponential function (or, say (q,h)-exponential
function) that unifies, extends h- and q-exponential functions in an efficient and convenient form, (q,h)-
extensions of the several polynomials and numbers, such as Euler and tangent polynomials and numbers,
have been studied and investigated. Motivated and inspired by the mentioned studies, in the presented
work, we have introduced (q,h)-extensions of Frobenius-Euler polynomials and numbers, and we then
have derived and analyzed some of their formulae and relations. Also, we have presented that these
polynomials are solutions to some higher-order differential equations. Moreover, we have shown that
(q,h)-Frobenius-Euler polynomials are solutions to higher-order differential equations combined with
the q-Bernoulli, q-Euler, and q-Genocchi numbers and polynomials, respectively. In addition, we have
utilized a computer program to show the structures and shapes of the approximate roots of the mentioned
polynomials. For the subsequent plans, we will consider using the context of the monomiality principle
and umbral calculus to analyze more deep results and properties for (q,h)-Frobenius-Euler polynomials.
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