
J. Math. Computer Sci., 36 (2025), 408–431

Online: ISSN 2008-949X

Journal Homepage: www.isr-publications.com/jmcs

An advanced numerical technique for subdivision depth of
non-stationary quaternary refinement scheme for curves and
surfaces

Ayesha Mahmood, Ghulam Mustafa, Faheem Khan

Department of Mathematics, The Islamia University of Bahawalpur, Pakistan.

Abstract

Refinement schemes are fundamental in computer graphics for generating smooth curves and surfaces. Quaternary non-
stationary subdivision schemes, in particular, have gained prominence due to their ability to handle complex geometric struc-
tures. However, determining the subdivision depth for these schemes remains challenging and often requires extensive compu-
tational resources. Our paper presents a complete methodology with a step-by-step explanation to explore the depth of these
schemes. Since our method relies on convolution techniques, we explain these both theoretically and mathematically. Addition-
ally, several algorithms have been designed to aid in understanding and implementing the method for finding error bounds and
subdivision depth in quaternary non-stationary subdivision schemes. These are numerical methods for efficiently computing
the error bounds and subdivision depth. The numerical applications of these methods are presented. The proposed method sig-
nificantly reduces the computational cost associated with determining subdivision depth. These algorithms work when existing
methods fail to compute bounds and depths.

Keywords: Convolution, error bound, subdivision depth, quaternary non-stationary refinement schemes, algorithm.

2020 MSC: 65D17, 65D05, 65D10, 65Y04.

©2025 All rights reserved.

1. Introduction

Subdivision schemes are a class of algorithms used for generating smooth curves and surfaces by
iteratively refining an initial control mesh. The basic idea behind subdivision schemes [10] is to work on
the principle that a simple initial mesh is used as a starting point and then refined using a set of rules
or algorithms. These schemes are essential tools in the field of computer graphics and computational
geometry, providing a way to represent smooth curves and surfaces with a relatively low initial resolution
and gradually refining them for more realistic and detailed results [11]. These schemes are classified as
stationary and non-stationary [2–6, 9], uniform and non-uniform [13, 14], and linear and non-linear [12]
schemes of any arity. The arity of the subdivision scheme is the number of points inserted at level
`+ 1 between two consecutive level ` points. The refinement schemes are known as binary, ternary, and

Email addresses: ayesha.mehmood@iub.edu.pk (Ayesha Mahmood), ghulam.mustafa@iub.edu.pk (Ghulam Mustafa),
faheem.khan@iub.edu.pk (Faheem Khan)

doi: 10.22436/jmcs.036.04.05

Received: 2024-03-24 Revised: 2024-06-01 Accepted: 2024-07-17

http://dx.doi.org/10.22436/jmcs.036.04.05
http://dx.doi.org/10.22436/jmcs.036.04.05
http://crossmark.crossref.org/dialog/?doi=10.22436/jmcs.036.04.05&domain=pdf

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 409

quaternary, respectively, when there are 2, 3, and 4 points inserted. The term ”quaternary” refers to
the fact that the subdivision scheme inserts four new points at each refinement level between every old
consecutive pair of points of the previous refinement level. Quaternary subdivision schemes refer to the
subdivision process where each control point is replaced by four new points in each iteration. This means
that the number of control points quadruples at every iteration, leading to a finer mesh and smooth
curves or surfaces. For more detail on stationary and non-stationary quaternary subdivision schemes, we
may refer to [1, 25, 28]. In non-stationary quaternary schemes, the refinement rules can vary based on
factors like curvature, tangent direction, or other local geometric properties. This flexibility allows for
more control over the shape of the resulting curves and surfaces.

Error bounds (the difference between the subdivision-generated limit surface and the surface at the
`th level) and subdivision depth (the number of iterations to get the desired shape) are fundamental
concepts in Computer-Aided Geometric Design (CAGD), a field that deals with the mathematical and
computational aspects of creating, manipulating, and representing geometric shapes. These concepts are
especially important in the context of curve and surface approximation and refinement. When working
with curves or surfaces, CAGD practitioners often need to approximate complex shapes with simpler,
more manageable representations. Error bounds allow them to control the trade-off between computa-
tional efficiency and accuracy. Error bounds and subdivision depth are important concepts in the context
of non-stationary quaternary subdivision schemes. These schemes are used in computer graphics and
image processing to refine curves or surfaces by iteratively subdividing them into smaller ones.

Subdivision depth in non-stationary quaternary subdivision schemes has various applications in en-
gineering, particularly in fields such as Computer-Aided Design (CAD), image processing, and geometry
modeling. These schemes are used to refine curves and surfaces in a progressive and controlled manner.
Subdivision depth is vital in the generation and refinement of 3D meshes, which are used in finite element
analysis [7, 18, 30], computational fluid dynamics, and other simulations. By controlling the subdivision
depth, engineers can balance computational efficiency with the accuracy of their simulations.

In product design, achieving smooth and accurate curves and surfaces is essential. This method can
help product designers determine the optimal level for computer-aided geometric models. Engineers
working on mechanical components [26] can benefit from precise control over subdivision depths to en-
sure that critical features are accurately represented. Engineers designing aircraft and spacecraft [29]
can use this method for creating aerodynamic shapes and surfaces. Engineers involved in civil engi-
neering projects, such as bridges and tunnels, can use this method to control the subdivision depth and
achieve realistic visualizations. Engineers designing medical devices and implants can benefit from pre-
cise modeling to ensure a proper fit and function. This method can help achieve the required accuracy. In
environmental engineering applications, accurate terrain modeling is crucial. This method can be used to
optimize the representation of terrain data for analysis [19]. Several authors have calculated error bounds
for various subdivision models, including n-ary [22], tensor product n-ary volumetric [23], and binary
volumetric [24] models. These computations typically rely on the first forward difference and often result
in broad error bounds. However, these methods are not universally applicable to all types of subdivision
schemes, particularly higher arity non-stationary schemes. The proposed method addresses this gap by
proposing an optimal method to estimate subdivision depths specifically for quaternary non-stationary
subdivision schemes.

In recent years, significant research has been dedicated to estimating error bounds [8, 15, 20, 21, 31] and
determining subdivision depth [17, 27] for both stationary and non-stationary subdivision schemes. Sur-
prisingly, there has been a notable gap in the existing literature regarding the computation of subdivision
depth and error bounds for high-arity non-stationary subdivision schemes. In the current work, we focus
on computing error bounds and subdivision depth for quaternary non-stationary refinement schemes,
both univariate and bivariate, in relation to their control polygons. We introduce a novel method based
on the convolution of two vectors to precisely determine these error bounds and subdivision depths for
quaternary non-stationary refinement schemes.

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 410

1.1. Methodology
Here, we design a comprehensive methodology for estimating the error bounds and subdivision depth

of non-stationary quaternary refinement schemes for curves and surfaces, which involves several steps.

• Problem definition: In quaternary subdivision schemes each edge of initial control polygon is di-
vided into 4 sub-edges. Non-stationary schemes are level-dependent and are more appropriate for
generating conic sections. The estimation of error bounds and subdivision depth for specific qua-
ternary non-stationary subdivision schemes, which are based on convolution, is the main problem
of our work.

• Initial data: The initial data serves as the starting point for the subdivision process. It consists of
control points and their weights. The subdivision process refines these control points and weights
to achieve the desired level of smoothness and detail. As the subdivision level increases, the initial
data are iteratively refined, and more detailed approximations of the original shape are generated.

• Convolution: Consider the vector Ji = J`i, at the `th level of resolution, represents the approximation
coefficients. Then the reconstruction algorithm of non-stationary quaternary refinement scheme
used to describe the approximation coefficient of two consecutive stages ` and `+ 1 is defined as

J`+1
i =

∑
n∈N

J`nĥ
`
i−4n = (J`;0n ? ĥ`)j,

where J0i = J`;0i represents the `th resolution and ? denotes the convolution of two vectors J`;0n and
ĥ` = (ĥ`n)n∈N. Generally, for finite lengths lJ and lĥ the convolution of two vectors J` = (J`n)n>0
and ĥ` = (ĥ`n)n>0 can be defined as

(J`;0 ? ĥ`)j =

min{j,lJ−1}∑
n=max{j−(lĥ−1),0}

J`;0n ĥ
`
j−4n, j = 0, 1, . . . , lJ + lĥ − 2.

• Convolution coefficient: Here, first we assign a sequence of constants as vectors q`0,ŝ,q
`
1,ŝ, q

`
2,ŝ, and

q`3,ŝ using methodology given in [27]. With the help of these real valued constants, we estimate Tγc0
for the univariate case and Mγs0

Nγs0 for the bivariate case. Here, the notations γc0 and γs0 are used
for the order of convolution, where c and s are used for the curve and surface cases, respectively.
These constants are monotonically decreasing corresponding to the increase of subdivision level
using convolution. This is the main goal of our proposed work.

• Error estimation framework: We establish a theoretical framework for computing error bounds
for curves and surfaces during the subdivision process. We utilize mathematical analysis to de-
rive expressions that quantify the difference between the original curve/surface and the subdi-
vided curve/surface. Specifically, we determine the error bounds between two consecutive con-
trol polygons of quaternary non-stationary subdivision schemes, i.e., ||ζ`+1 − ζ`||∞, and then be-
tween limit subdivision curves/surfaces and their control polygons, i.e., ||ζ∞ − ζ`||∞. Here, ζ` is the
curve/surface obtained after `th iteration, and ζ∞ is the limit curve/surface.

• Convolution-based subdivision depth determination: We employ the methodology outlined in [27]
to ascertain the optimal subdivision depth for curves and surfaces, taking into account factors such
as target error tolerance and geometric complexity. Additionally, we provide algorithms or guide-
lines for estimating the subdivision depth based on user-defined error tolerance.

• Selection of subdivision scheme: We select interpolating [28] and approximating [1] quaternary
non-stationary subdivision schemes as the focus of the research. The selection is based on their
relevance, uniqueness, and potential benefits.

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 411

Furthermore, in the convolution process, we use a vector to represent approximation coefficients at a given
resolution level. The non-stationary quaternary refinement scheme describes these coefficients between
two consecutive stages by summing the products of the current level’s coefficients with weight functions.
Convolution involves summing the products of two vectors’ elements with appropriately shifted elements
of the other vector. To calculate convolution coefficients, we assign a sequence of constants as vectors,
following a specific methodology. These constants help estimate values for univariate and bivariate cases,
distinguishing between curves and surfaces. They decrease monotonically with increasing subdivision
levels. Some algorithms for implementing these methods are designed and presented in Section 5.

The paper is organized as follows. In Section 2, we discuss definitions of non-stationary quaternary
subdivision schemes, their error bounds, and subdivision depths for both univariate and bivariate cases.
Section 3 presents the main results, numerical applications, and graphical representations for the univari-
ate case. Section 4 does the same for the bivariate case. Section 5 outlines algorithms for convolution,
error bounds, and subdivision depth. Finally, Section 6 presents the conclusion.

2. Preliminaries

Here, we demonstrate notations, main results of convolution, error bounds, subdivision depth, and
numerical experiments for both curve and surface models.

2.1. Quaternary non-stationary univariate case

In a subdivision scheme, a set of control points at level ` is given by {J`i ∈ RN | i ∈ Z, N > 2}, where
` > 0 denotes the subdivision level or iteration level. The refinement process generates new points at the
(`+ 1)th level, which are used in subsequent iterations to further refine the curve/surface. The general
form of a non-stationary quaternary subdivision scheme (NSQSS) can be expressed as:

J`+1
4i+n̂ =

P−1∑
ŝ=0

c`n̂,ŝJ
`
i+ŝ, n̂ = 0, 1, 2, 3, (2.1)

with a necessary condition for the uniform convergence, where P is an integer greater than zero,

P−1∑
ŝ=0

c`n̂,ŝ = 1, n̂ = 0, 1, 2, 3, (2.2)

where {c`n̂,ŝ, n̂ = 0, 1, 2, 3}P−1
ŝ=0 is the set of coefficients are usually called the mask of subdivision scheme

at the `th level. The scheme is classified as non-stationary if the mask depends on `; otherwise, it is a
stationary scheme. The set of initial control polygons can be expressed as {J0i ∈ RN, i ∈ Z}, where N > 2.
Then in the limit `→∞, the procedure describes an infinite set of points in RN. The sequence of control
points {J`i} is associated with the diadic mesh point f`i =

i
4` , i ∈ Z. The formulation (2.1) specify a scheme

by which J`+1
4i replaces/takeover the value J`i at the mesh point f`+1

4i = f`i, while J`+1
4i+1 ,J`+1

4i+2, and J`+1
4i+3

are inserted at the new mesh points J`+1
4i+1 = 1

4(3f
`
i + f

`
i+1), J

`+1
4i+2 = 1

2(f
`
i + f

`
i+1), and J`+1

4i+3 = 1
4(f
`
i + 3f`i+1),

respectively.

2.2. Error bounds and subdivision depth for non-stationary quaternary subdivision schemes

In this subsection, we establish error bounds between two consecutive control polygons of NSQSS,
namely ||χ`+1 − χ`||∞ and error bounds between limit subdivision curves/surfaces and their control poly-
gons, i.e., ||χ∞−χ`||∞, where χ` is the control polygon obtained after `th level and χ∞ is the limiting curve.
We utilize the results from [16], which generalize those in [20]. These generalized results are then applied
to the 4-point approximating scheme [1] and the 4-point interpolating scheme [28] of NSQSS to derive

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 412

error bounds. Now, for estimating error bounds and determining the subdivision depth of NSQSS, we
adjust the coefficients as follows:

q`0,ŝ =

ŝ∑
y=0

(
c`0,y − c

`
1,y
)

, q`1,ŝ =

ŝ∑
y=0

(
c`1,y − c

`
2,y
)

,

q`2,ŝ =

ŝ∑
y=0

(
c`2,y − c

`
3,y
)

, q`3,ŝ = c
`
0,ŝ − (q`0,ŝ + q

`
1,ŝ + q

`
2,ŝ),

(2.3)

with the strong condition provided in [16],

P−1∑
ŝ=0

|q`0,ŝ| < 1,
P−1∑
ŝ=0

|q`1,ŝ| < 1,
P−1∑
ŝ=0

|q`2,ŝ| < 1,
P−1∑
ŝ=0

|q`3,ŝ| < 1.

In compact form, equation (2.3) can be written as
qb̂,ŝ =

ŝ∑
y=0

(c`
b̂,y

− c`
b̂+1,y

), b̂ = 0, 1, 2,

q3,ŝ = c
`
0,ŝ −

2∑
b̂=0

qb̂,ŝ.

Now, let’s assign new symbols for ŝ = 0, 1, . . . ,P− 1, such that

ĥ`4ŝ = q
`
0,ŝ, ĥ`4ŝ+1 = q`1,ŝ, ĥ`4ŝ+2 = q`2,ŝ, ĥ`4ŝ+3 = q`3,ŝ. (2.4)

In the next step, we will continue and provide some convolutional results for a one-dimensional array of
vectors dependent on NSQSS.

Lemma 2.1. Let {J`n;n > 0} represents the vector of finite length and {ĥ`n;n > 0} = (ĥ`n)
4P−1
n=0 with ĥ`n = 0 for

n > 4P. Then one dimensional convolution between J = J`n and ĥ = ĥ`n for NSQSS for curve can be expressed as

((J(0))` ? ĥ`)j =

bj/4c∑
n=0

J`nĥ
`
j−4n. (2.5)

Similarly, the γc0 -times convolution reformulation is described as

((· · · ((((J(0))` ? ĥ`)(0)) ? ĥ`)(0) ? · · · ? ĥ`)(0) ? ĥ`)j =

bj/4γ
c
0 c∑

ŝ=0

J`ŝS
γc0 ;ĥ`

ŝ,j , (2.6)

with

S1;ĥ`
ŝ,j = ĥ`j−4ŝ and S

γc0 ;ĥ`

ŝ,j =

bj/4γ
c
0 −1c∑

J=4ŝ

S1;ĥ`
ŝ,J S

γc0−1;ĥ`

J,j , γc0 > 2.

Hence by (2.6), we get

‖((· · · ((((J(0))` ? ĥ`)(0)) ? ĥ`)(0) ? · · · ? ĥ`)(0) ? ĥ`)‖∞ 6 ‖J`‖∞max
j

{ bj/4γ
c
0 c∑

ŝ=0

|S
γc0 ;ĥ`

ŝ,j |

}
, (2.7)

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 413

where the associated constant of the γc0 -times convolution for NSQSS can be specify as:

Tγc0 = max
j

{ bj/4γ
c
0 c∑

ŝ=0

|S
γc0 ;ĥ`

ŝ,j |

}
= max
j∈Σ(γc0 ,P)

{ bj/4γ
c
0 c∑

ŝ=0

|S
γc0 ;ĥ`

ŝ,j |

}
, (2.8)

with

Σ(γc0 ,P) = {Ω(γc0 ,P) − 4γ
c
0 + 1,Ω(γc0 ,P) − 4γ

c
0 + 2, . . . ,Ω(γc0 ,P)}, (2.9)

and

Ω(γc0 ,P) = (4γ
c
0 − 3)(4P− 1). (2.10)

Proof. Now, we begin with the cases of γc0 = 1 and γc0 = 2 convolutions, and then we will develop the
general case.

Case γc0 = 1: From (2.5), we acquire a relation given in the following

((J(0))` ? ĥ`)j =

bj/4c∑
n=0

J`nĥ
`
j−4n, (2.11)

where b.c represent the integer part. By taking norm, we have

|((J(0))` ? ĥ`)j| =

∣∣∣∣∣
bj/4c∑
n=0

J`nĥ
`
j−4n

∣∣∣∣∣ 6
bj/4c∑
n=0

|J`n|

bj/4c∑
n=0

|ĥ`j−4n|.

By using infinity norm (||J`||∞ = max{|J`0|, . . . , |J`bj/4c|}), we have

|((J(0))` ? ĥ`)j| 6 ‖J`‖∞
bj/4c∑
n=0

|ĥ`j−4n|.

Now

max |((J(0))` ? ĥ`)j| 6 max

(
‖J`‖∞

bj/4c∑
n=0

|ĥ`j−4n|

)
.

We drive

max |((J(0))` ? ĥ`)j| 6 ‖J`‖∞max

(bj/4c∑
n=0

|S1;ĥ`
n,j |

)
,

where
ĥ`j−4n = S1;ĥ`

n,j .

This implies

|((J(0))` ? ĥ`)j|∞ 6 ‖J`‖∞max

(bj/4c∑
n=0

|S1;ĥ`
n,j |

)
.

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 414

Case γc0 = 2: From (2.11), we obtain

(((J(0))` ? ĥ`)(0) ? ĥ`)j =

bj/4c∑
ŝ=0

((J(0))` ? ĥ`)ŝĥ
`
j−4ŝ =

bj/4c∑
ŝ=0

(bŝ/4c∑
n=0

J`nĥ
`
ŝ−4n

)
ĥ`j−4ŝ,

which drives

(((J(0))` ? ĥ`)(0) ? ĥ`)j = J
`
0(ĥ

`
0ĥ
`
j + ĥ

`
1ĥ
`
j−4 + ĥ

`
2ĥ
`
j−8 + ĥ

`
3ĥ
`
j−12 + ĥ

`
4ĥ
`
j−16 + · · ·+ ĥ`b j4c

ĥ`0)

+ J`1(ĥ
`
0ĥ
`
j−16 + ĥ

`
1ĥ
`
j−20 + · · ·+ ĥ`0ĥ`b j4c−4

) + J`2(ĥ
`
0ĥ
`
j−32 + ĥ

`
1ĥ
`
j−36

+ · · ·+ ĥ`0ĥ`b j4c−8
) + · · ·+ J`b j

42 c
ĥ`0ĥ

`
0.

This implies

(((J(0))` ? ĥ`)(0) ? ĥ`)j = J
`
0

(bj/4c∑
n=0

ĥ`nĥ
`
j−4n

)
+ J`1

(bj/4c∑
n=4

ĥ`n−4ĥ
`
j−4n

)
+ J`2

(bj/4c∑
n=8

ĥ`n−8ĥ
`
j−4n

)

+ · · ·+ J`bj/42c

(bj/4c∑
n=4b j

42 c

ĥ`
n−4b j

42 c
ĥ`j−4n

)
.

This further implies

(((J(0))` ? ĥ`)(0) ? ĥ`)j =

bj/42c∑
ŝ=0

(Jŝ)
`

(bj/4c∑
n=4ŝ

ĥ`n−4ŝĥ
`
j−4n

)
.

We acquire

(((J(0))` ? ĥ`)(0) ? ĥ`)j =

bj/42c∑
ŝ=0

(Jŝ)
`

(bj/4c∑
n=4ŝ

S1;ĥ`
ŝ,n S

1;ĥ`
n,j

)
=

bj/42c∑
ŝ=0

(Jŝ)
`S2;ĥ`
ŝ,j ,

where

S2;ĥ`
ŝ,j =

bj/4c∑
n=4ŝ

S1;ĥ`
ŝ,n S

1;ĥ`
n,j . (2.12)

We get

|(((J(0))` ? ĥ`)(0) ? ĥ`)j| =

∣∣∣∣∣
bj/42c∑
ŝ=0

(Jŝ)
`S2;ĥ`
ŝ,j

∣∣∣∣∣ 6 ||J`||∞
bj/42c∑
ŝ=0

|S2;ĥ`
ŝ,j |.

This implies

||(((J(0))` ? ĥ`)(0) ? ĥ`)j||∞ 6 ||J`||∞max

(bj/42c∑
ŝ=0

|S2;ĥ`
ŝ,j |

)
.

General case: The reformulations for the γc0 -th convolutions are obtained by applying the same method,
which is as follows:

((· · · ((((J(0))` ? ĥ`)(0)) ? ĥ`)(0) ? · · · ? ĥ`)(0) ? ĥ`)j =

bj/4γ
c
0 c∑

ŝ=0

J`ŝS
γc0 ;ĥ`

ŝ,j .

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 415

Hence, we get

‖((· · · ((((J(0))` ? ĥ`)(0)) ? ĥ`)(0) ? · · · ? ĥ`)(0) ? ĥ`)‖∞ 6 ‖J`‖∞max
j

{ bj/4γ
c
0 c∑

ŝ=0

|S
γc0 ;ĥ`

ŝ,j |

}
.

Lemma 2.2. The term S
γc0 ;ĥ`

ŝ,j in (2.7) has the following variant

S
γc0 ;ĥ`

ŝ−1,j−4γ
c
0
= S

γc0 ;ĥ`

ŝ,j = S
γc0 ;ĥ`

ŝ+1,j+4γ
c
0
.

Proof. We are now commencing the induction process, which will cover γc0 . Then we have following cases.

Case γc0 = 1:
S1;ĥ`
ŝ,j = ĥ`j−4ŝ = ĥ

`
j+4−4(ŝ+1) = S

1;ĥ`
ŝ+1,j+4. (2.13)

Similarly
S1;ĥ`
ŝ+1,j = ĥ

`
j−4(ŝ+1) = S

1;ĥ`
ŝ,j−4. (2.14)

From (2.12), we have

S2;ĥ`
ŝ,j =

bj/4c∑
n=4ŝ

S1;ĥ`
ŝ,n S

1;ĥ`
n,j .

Using (2.13), we get

S2;ĥ`
ŝ,j =

bj/4c∑
n=4ŝ

S1;ĥ`
ŝ,n S

1;ĥ`
n+1,j+4. (2.15)

After substituting n by n− 4 in (2.15), we obtain

S2;ĥ`
ŝ,j =

bj/4+4c∑
n=4(ŝ+1)

S1;ĥ`
ŝ,n−4S

1;ĥ`
n−3,j+4.

Now by using (2.14), we obtain

S2;ĥ`
ŝ,j =

bj/4+4c∑
n=4(ŝ+1)

S1;ĥ`
ŝ+1,nS

1;ĥ`

n,j+42 .

This implies
S2;ĥ`
ŝ,j = S2;ĥ`

ŝ+1,j+42 .

Now, assuming that it is true for an integer γc0 = N, i.e.,

SN;ĥ`
ŝ,j = SN;ĥ`

ŝ+1,j+4N . (2.16)

Case γc0 = N+ 1: Consider

SN+1;ĥ`
ŝ,j =

bj/4Nc∑
n=4ŝ

S1;ĥ`
ŝ,n S

N;ĥ`
n,j .

By using (2.16), we get

SN+1;ĥ`
ŝ,j =

bj/4Nc∑
n=4ŝ

S1;ĥ`
ŝ,n S

N;ĥ`

n+1,j+4N . (2.17)

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 416

Now, substituting n− 4 in place of n in (2.17), we get

SN+1;ĥ`
ŝ,j =

bj/4N+4c∑
n=4(ŝ+1)

S1;ĥ`
ŝ,n−4S

N;ĥ`

n−3,j+4N .

Using (2.14) and (2.16), we have
SN+1;ĥ`
ŝ,j = SN+1;ĥ`

ŝ+1,j+4N+1 .

Similarly, we can prove
SN+1;ĥ`
ŝ,j = SN+1;ĥ`

ŝ−1,j−4N+1 .

Hence
S
γc0 ;ĥ`

ŝ−1,j−4γ
c
0
= S

γc0 ;ĥ`

ŝ,j = S
γc0 ;ĥ`

ŝ+1,j+4γ
c
0
.

Now the proof is complete.

Now, we arrive at the following functional result by applying Lemmas 2.1 and 2.2.

Corollary 2.3. A γc0 -times convolution using vector ĥ` = {ĥ`0, ĥ`1, . . . , ĥ`4P−1} has the following associated constants

Tγc0 = max
j

{ bj/4γ
c
0 c∑

ŝ=0

|S
γc0 ;ĥ`

ŝ,j |

}
= max
j∈Σ(γc0 ,P)

{ bj/4γ
c
0 c∑

ŝ=0

|S
γc0 ;ĥ`

ŝ,j |

}
.

Proof. Suppose that ĥ` = {ĥ`0, ĥ`1, . . . , ĥ`4P−1}, with P ∈ N and Ω(γc0 ,P) = (4γ
c
0 − 3)(4P − 1). Then using

Lemma 2.1 and for j > Ω(γc0 ,P), we obtain

S
γc0 ;ĥ`

0,j = 0. (2.18)

Similarly, using Lemma 2.2 and for j > Ω(γc0 ,P) + ŝ4γ
c
0 , we get

S
γc0 ;ĥ`

ŝ,j = 0. (2.19)

Finally, using (2.18) and (2.19), we get (2.8).

3. Findings and applications

Now, we discuss some generalized theorems for estimating the error bounds of NSQSS for the curve
model followed by determining the subdivision depth based on convolution. Since the proofs of Theorems
3.1 and 3.2 are similar to the one provided in [16], we omit them here.

Theorem 3.1. Consider ζ` = {J`i; i ∈ Z, ` > 0} be the polygon at `th level of non-stationary subdivision
scheme where J`i be the points recursively described by (2.1) together with mask condition (2.2), and J0i be
the points of initial control polygon. Then the error bound between ` and `+ 1 stages, after two successive
iterations, is

‖ζ`+1 − ζ`‖∞ 6 $κ(Tγc0)
`,

where Tγc0 for γc0 > 1 defined in (2.8) and κ = max
i

∥∥4J0i∥∥ , and

$ = max
(P−2∑
ŝ=0

∣∣c̃`0,ŝ
∣∣ , P−2∑
ŝ=0

∣∣c̃`1,ŝ
∣∣ , P−2∑
ŝ=0

∣∣c̃`2,ŝ
∣∣ , P−2∑
ŝ=0

∣∣c̃`3,ŝ
∣∣), where c̃`a,ŝ =

P−1∑
i=ŝ+1

c`a,i, 0 6 a 6 3,

c̃`1,0 =

P−1∑
i=1

c`1,i −
1
4

, c̃`2,0 =

P−1∑
i=1

c`2,i −
2
4

, c̃`3,0 =

P−1∑
i=1

c`3,i −
3
4

.

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 417

Theorem 3.2. Let ζ∞ be the limit curve associated with the subdivision process and ζ` be the curve
obtained after `th iterations, then under the similar conditions as in Theorem 3.1, the succeeding result
can be demonstrated

ρ` =
∥∥ζ∞ − ζ`

∥∥∞ 6 $κ

(
(Tγc0)

`

1 − Tγc0

)
,

where γc0 > 1, such that Tγc0 < 1 and Tγc0 is defined in (2.8).

Theorem 3.3. let ρ` be the distance between limit curve ζ∞ and its `th level control polygon ζ` and let `
be the subdivision depth. For arbitrary error tolerance ε > 0, if

` > logTγc0

(
ε(1 − Tγc0)

$κ

)
,

then ρ` 6 ε.

Proof. Let, the error bound between limit curve ζ∞ and control polygon or subdivision curve ζ` after `th

level defined in Theorem 3.2 is ρ`, such that

ρ` =
∥∥ζ∞ − ζ`

∥∥∞ 6 $κ

(
(Tγc0)

`

1 − Tγc0

)
.

To acquire the given error tolerance ε > 0, consider the following

$κ

(
(Tγc0)

`

1 − Tγc0

)
6 ε,

implies that
$κ

ε(1 − Tγc0)
6 (T−1

γc0
)`,

and further implies that

` >
log
(

$κ
ε(1−Tγc0

)

)
log(T−1

γc0
)

=

log
(

$κ
ε(1−Tγc0

)

)
− log(Tγc0)

= logTγc0

(
$κ

ε(1 − Tγc0)

)−1

= logTγc0

(
ε(1 − Tγc0)

$κ

)
,

then ρ` 6 ε. The proof is now complete.

3.1. Numerical experiments for curve case
Here are a few numerical applications for calculating the subdivision depths of NSQSS for the uni-

variate case described.

Example 3.4. Consider the initial control polygon J0i = Ji, i ∈ Z with J`i, ` > 1 be described recursively by
the four-point approximating NSQSS presented in [1]. That is

J`+1
4i = −η`1,0J

`
i−1 + η

`
1,1J

`
i + η

`
1,2J

`
i+1 − η

`
1,3J

`
i+2,

J`+1
4i+1 = −η`2,0J

`
i−1 + η

`
2,1J

`
i + η

`
2,2J

`
i+1 − η

`
2,3J

`
i+2,

J`+1
4i+2 = −η`2,3J

`
i−1 + η

`
2,2J

`
i + η

`
2,1J

`
i+1 − η

`
2,0J

`
i+2,

J`+1
4i+3 = −η`1,3J

`
i−1 + η

`
1,2J

`
i + η

`
1,1J

`
i+1 − η

`
1,0J

`
i+2,

(3.1)

where

η`1,0 =
cos
(9ν

4.4`+1

)
sin
(
ν

4.4`+1

)
sin
(7ν

4.4`+1

)
sin
(15ν

2.4`+1

)
sin
(
ν

2.4`
)

sin
(2ν

2.4`
)

sin
(3ν

2.4`
) , η`1,1 =

cos
(
ν

4.4`+1

)
sin
(9ν

4.4`+1

)
sin
(7ν

4.4`+1

)
sin
(15ν

2.4`+1

)
sin2 (ν

2.4`
)

sin
(2ν

2.4`
) ,

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 418

η`1,2 =
cos
(7ν

4.4`+1

)
sin
(
ν

4.4`+1

)
sin
(9ν

4.4`+1

)
sin
(15ν

2.4`+1

)
sin2 (ν

2.4`
)

sin
(2ν

2.4`
) , η`1,3 =

cos
(15ν

4.4`+1

)
sin
(
ν

4.4`+1

)
sin
(7ν

4.4`+1

)
sin
(9ν

2.4`+1

)
sin
(
ν

2.4`
)

sin
(2ν

2.4`
)

sin
(3ν

2.4`
) ,

η`2,0 =
cos
(11ν

4.4`+1

)
sin
(3ν

4.4`+1

)
sin
(5ν

4.4`+1

)
sin
(13ν

2.4`+1

)
sin
(
ν

2.4`
)

sin
(2ν

2.4`
)

sin
(3ν

2.4`
) , η`2,1 =

cos
(3ν

4.4`+1

)
sin
(11ν

4.4`+1

)
sin
(5ν

4.4`+1

)
sin
(13ν

2.4`+1

)
sin2 (ν

2.4`
)

sin
(2ν

2.4`
) ,

η`2,2 =
cos
(5ν

4.4`+1

)
sin
(11ν

4.4`+1

)
sin
(3ν

4.4`+1

)
sin
(13ν

2.4`+1

)
sin2 (ν

2.4`
)

sin
(2ν

2.4`
) , η`2,3 =

cos
(13ν

4.4`+1

)
sin
(3ν

4.4`+1

)
sin
(5ν

4.4`+1

)
sin
(11ν

2.4`+1

)
sin
(
ν

2.4`
)

sin
(2ν

2.4`
)

sin
(3ν

2.4`
) .

For this quaternary 4-point subdivision scheme (P = 4), we have from (2.8),

Tγc0 = max
j∈
∑

(γc0 ,4)

{ bj/4γ
c
0 c∑

ŝ=0

|S
γc0 ;ĥ`

ŝ,j |

}
.

For γc0 = 1, we have

T1 = max
j∈
∑

(1,4)

{ bj/41c∑
ŝ=0

|S1;ĥ`
ŝ,j |

}
= max
j∈{12,13,14,15}

{ bj/41c∑
ŝ=0

|ĥ`j−4ŝ|

}
.

Using Lemma 2.1 and (2.4), we obtain ĥ` = {ĥ`0, ĥ`1, ĥ`2, ĥ`3, ĥ`4, ĥ`5, . . . , ĥ`14, ĥ`15} with ĥ`n = 0 for n > 16. Now
consider

T1 = max
{ b12/4c∑

ŝ=0

|ĥ`12−4ŝ|,
b13/4c∑
ŝ=0

|ĥ`13−4ŝ|,
b14/4c∑
ŝ=0

|ĥ`14−4ŝ|,
b15/4c∑
ŝ=0

|ĥ`15−4ŝ|

}
.

This implies that

T1 = max
{
|ĥ`12|+ |ĥ`8|+ |ĥ`4|+ |ĥ`0|, |ĥ

`
13|+ |ĥ`9|+ |ĥ`5|+ |ĥ`1|, |ĥ

`
14|+ |ĥ`10|+ |ĥ`6|+ |ĥ`2|, |ĥ

`
15|+ |ĥ`11|+ |ĥ`7|+ |ĥ`3|

}
= max

{
0.3173696217, 0.2905725894, 0.3173696218, 0.3323767041

}
= 0.3323767041.

Similarly, we can calculate the values of Tγc0 ,γc0 > 2. For ease, we have calculated the values up to γc0 = 5.

• Convolution coefficients for ` = 1, T1 = 0.3323767041, T2 = 0.1067695669,
T3 = 0.0348669469, T4 = 0.0112772724, and T5 = 0.0036495886.
• Convolution coefficients for ` = 2, T1 = 0.3320519013, T2 = 0.1067908939,
T3 = 0.0347004408, T4 = 0.0112015818, and T5 = 0.0036181802.
• Convolution coefficients for ` = 3, T1 = 0.3320325371, T2 = 0.1067708929,
T3 = 0.0346903059, T4 = 0.0111969710, and T5 = 0.0036162672.
• Convolution coefficients for ` = 4, T1 = 0.3320313304, T2 = 0.1067696450,
T3 = 0.0346896735, T4 = 0.0111966833, and T5 = 0.0036161478.
• Convolution coefficients for ` = 5, T1 = 0.3320312550, T2 = 0.10676956697,
T3 = 0.0346896339, T4 = 0.0111966653, and T5 = 0.0036161404.

(3.2)

Remark 3.5. Here, Tγc0 for γc0 = 1 is equal to δ1 described in [16]. From (3.2), we analyze that as we increase
the order of convolution γc0 , the value of Tγc0 decreases. When the value of Tγc0 decreases, we obtain fewer
iterations (subdivision depth) compared to the previous ones, as verified from Table 1. Note that there

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 419

was a strong condition in [16] that if δ1 > 1, it is impossible to calculate error bounds. However, using the
proposed technique, one can calculate the error bounds for those NSQSS with Tγc0 > 1. Additionally, using
the proposed technique, less computational cost is consumed. Therefore, these are the main advantages
of the proposed approach.

After the computation of convolution coefficients for the proposed scheme and using Theorem 3.3, the
computation of subdivision depth at different levels `, is illustrated in Table 1.

Table 1: Subdivision depth of 4-point approximating NSQSS.

ε 5.49e−9 7.31e−14

Tγc0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5
T1 16 16 16 16 16 26 26 26 26 26
T2 8 8 8 8 8 13 13 13 13 13
T3 5 5 5 5 5 8 8 8 8 8
T4 4 4 4 4 4 6 6 6 6 6
T5 3 3 3 3 3 5 5 5 5 5
ε 2.67e−16 9.74e−19

Tγc0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5
T1 31 31 31 31 31 36 36 36 36 36
T2 15 15 15 15 15 18 18 18 18 18
T3 10 10 10 10 10 12 12 12 12 12
T4 8 7 7 7 7 9 9 9 9 9
T5 6 6 6 6 6 7 7 7 7 7

Remark 3.6. In (3.2) and Table 1, for ` = 1 to ` = 5, the different behavior of the non-stationary scheme
given in Example 3.4 is shown. In Table 1, the rows of T1, T2, T3, T4, and T5 show different subdivision
depths (number of iterations to get the desired model). For instance, obtaining an error tolerance of
7.31e−14 requires twenty-six iterations by the method given in [16], but with our method, it only requires
five iterations, corresponding to T5. The graphical representation or comparison of these convolution
results is presented in Figure 1 (a).

Example 3.7. Consider the 4-point interpolating NSQSS presented in [28]:

J`+1
4i = J`i,

J`+1
4i+1 = −a`0J

`
i−1 + a

`
1J
`
i + a

`
2J
`
i+1 − a

`
3J
`
i+2,

J`+1
4i+2 = −b`0J

`
i−1 + b

`
1J
`
i + b

`
2J
`
i+1 − b

`
3J
`
i+2,

J`+1
4i+2 = −a`3J

`
i−1 + a

`
2J
`
i + a

`
1J
`
i+1 − a

`
0J
`
i+2,

(3.3)

where

a`0 =
sin
(
µ

2`+4

)
sin
(

3µ
2`+4

)
sin
(

7µ
2`+4

)
sin
(
µ

2`+2

)
sin
(

2µ
2`+2

)
sin
(

3µ
2`+2

) , a`1 =
sin
(

3µ
2`+4

)
sin
(

5µ
2`+4

)
sin
(

7µ
2`+4

)
sin2 (µ

2`+2

)
sin
(

2µ
2`+2

) ,

a`2 =
sin
(
µ

2`+4

)
sin
(

5µ
2`+4

)
sin
(

7µ
2`+4

)
sin2 (µ

2`+2

)
sin
(

2µ
2`+2

) , a`3 =
sin
(
µ

2`+4

)
sin
(

3µ
2`+4

)
sin
(

5µ
2`+4

)
sin
(
µ

2`+2

)
sin
(

2µ
2`+2

)
sin
(

3µ
2`+2

) ,

b`0 = b`3 =
sin2 (µ

2`+3

)
sin
(

3µ
2`+3

)
sin
(
µ

2`+2

)
sin
(

2µ
2`+2

)
sin
(

3µ
2`+2

) , b`1 = b`2 =
sin
(
µ

2`+3

)
sin2

(
3µ

2`+3

)
sin2 (µ

2`+2

)
sin
(

2µ
2`+2

) .

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 420

Now apply the convolution to find Tγc0 for γc0 > 1 defined in (2.8) for the proposed scheme at different
subdivision levels are shown in (3.4).

• Convolution coefficients for ` = 1, T1 = 0.3308434393, T2 = 0.1081304002,
T3 = 0.0352273549, T4 = 0.0114818856, and T5 = 0.0037421898.
• Convolution coefficients for ` = 2, T1 = 0.3287889801, T2 = 0.1068579542,
T3 = 0.03462038451, T4 = 0.01122113427, and T5 = 0.0036367912.
• Convolution coefficients for ` = 3, T1 = 0.3282900352, T2 = 0.1065479452,
T3 = 0.03447270344, T4 = 0.0111579122, and T5 = 0.0036113316.
• Convolution coefficients for ` = 4, T1 = 0.3281661991, T2 = 0.1064709379,
T3 = 0.0344360306, T4 = 0.0111422266, and T5 = 0.00360502079.
• Convolution coefficients for ` = 5, T1 = 0.3281352960, T2 = 0.1064517168,
T3 = 0.0344268777, T4 = 0.0111383127, and T5 = 0.0036034464.

(3.4)

If the convolution coefficient Tγc0 is greater than or equal to one then we have to apply the γc0 -times
convolution unit Tγc0 becomes less than one. To obtain a smaller value of Tγc0 convolution may also be
applied even Tγc0 < 1 . A smaller value of Tγc0 produces better outcomes. From the above computations
(3.4), we can observe that, with the increase in the order of convolution γc0 the value of Tγc0 decreases.
For example, for ` = 1 and γc0 = 1 the value of Tγc0 = 0.3308434393 but for γc0 = 5 the value of Tγc0 =
0.0037421898. Tγc0 are calculated up to fifth convolution. After the estimation of convolution coefficients
for the proposed scheme and using Theorem 3.3 the computation of subdivision depth at different levels
`, are illustrated in Table 2.

Table 2: Subdivision depth of 4-point interpolating NSQSS.

ε 1.97e−11 7.37e−14

Tγc0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5
T1 21 20 20 20 20 26 25 25 25 25
T2 10 10 10 10 10 13 13 13 13 13
T3 7 7 7 7 7 8 8 8 8 8
T4 5 5 5 5 5 6 6 6 6 6
T5 4 4 4 4 4 5 5 5 5 5
ε 2.76e−16 1.03e−18

Tγc0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5
T1 31 30 30 30 30 36 36 35 35 35
T2 15 15 15 15 15 18 18 18 18 18
T3 10 10 10 10 10 12 12 12 12 12
T4 8 7 7 7 7 9 9 9 9 9
T5 6 6 6 6 6 7 7 7 7 7

Remark 3.8. In Table 2, the computation of subdivision depth at different levels ` correlated with the pre-
defined error tolerance is presented. For example, twenty-six iterations are required to attain a given
error tolerance of 7.37e−14 by the process given in [16], but with our approach, only five iterations corre-
sponding to T5 are needed. The graphical comparison of different convolutions is demonstrated in Figure
1 (b).

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 421

(a) 4-point approximating NSQSS [1]. (b) 4-point interpolating NSQSS [28].

Figure 1: Figures (a) and (b) represents the comparison between different convolution results for the curve
case. This shows that the error decreases with the increase of order of convolution. Here horizontal axis
shows the error bound and vertical axis shows the subdivision level `.

4. Non-stationary quaternary bivariate case

Let the points {J`i,j; i, j ∈ Z} represents a sequence in RN, N > 2 for the `-th level surface case and is
described as

J`+1
4i+µ,4j+ν =

P−1∑
r̂=0

P−1∑
â=0

c`µ,r̂c
`
ν,âJ

`
i+r̂,j+â, µ,ν = 0, 1, 2, 3, (4.1)

where c`µ,r̂ and c`ν,â satisfies (2.2). Now, consider the new expressions for r̂, â = 0, 1, . . . ,P− 1 and assign
the coefficients E` = {E`n}n∈N and F` = {F`n}n∈N such that{

E`4r̂+ι = c
`
ι,P−r̂−1, ι = 0, 1, 2, 3, and r̂ = 0, . . . ,P− 1,

F`4â+ϕ = q`ϕ,P−â−1, ϕ = 0, 1, 2, 3, and â = 0, . . . ,P− 1.
(4.2)

4.1. Convolution and subdivision depth for quaternary non-stationary bivariate case
In this section, we first present a few notations and the main results of convolutions for the surface

model, then describe the results for error bounds and subdivision depths of non-stationary quaternary
subdivision surfaces (NSQSS).

Lemma 4.1. Let, a two dimensional vector {J`m,n;m,n > 0} and {E`n;n > 0} = (E`n)
4P−1
n=0 , {F`n;n > 0} = (F`n)

4P−1
n=0

with E`n = F`n = 0 for n > 4P. Then convolution of J` = J`n, E` = E`n, and F` = F`n for NSQSS is given by

J
γs0 ;`
i,j =

(
Jγ
s
0−1;0;` ? E`F`

)
i,j

=

bi/4c∑
m=0

bj/4c∑
n=0

J
γs0−1;`
m,n E`i−4mF

`
j−4n.

Similarly, the γs0 -times convolution reformulations are described as

J
γs0 ;`
i,j = (· · · (((Jγs0−1;0 ? E`F`) ? E`F`) ? · · · ? E`F`) ? E`F`)i,j =

bi/4γ
s
0 c∑

m=0

bj/4γ
s
0 c∑

n=0

J0;`
m,nS

γs0 ,E`

m,i S
γs0 ,F`

n,j , (4.3)

with
S1;E`
m,i = E

`
i−4m, and Sγ

s
0 ;E`

m,i =
bi/4γ

s
0−1c∑

J=4m
S1;E`
m,JS

γs0−1;E`

J,i ,

S1;F`
n,j = F`j−4n, and Sγ

s
0 ;F`

n,j =
bj/4γ

s
0−1c∑

r=4n
S1;F`
n,r S

γs0−1;F`

r,j , γs0 > 2.

(4.4)

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 422

From (4.3), we have
max
i,j

|J
γs0 ;`
i,j | 6Mγs0

Nγs0 max
m,n

|J0m,n|.

Here

Mγs0
= max

i

{ bi/4γ
s
0 c∑

m=0

|S
γs0 ,E`

m,i |

}
, (4.5)

and

Nγs0 = max
j

{ [j/4γ
s
0]∑

n=0

|S
γs0 ,F`

n,j |

}
. (4.6)

Also

max
i,j

{ bi/4γ
s
0 c∑

m=0

bj/4γ
s
0 c∑

n=0

|S
γs0 ,E`

m,i ||S
γs0 ,F`

n,j |

}
= max
i,j∈Σ(γs0 ,P)

{ bi/4γ
s
0 c∑

m=0

bj/4γ
s
0 c∑

n=0

|S
γs0 ,E`

m,i ||S
γs0 ,F`

n,j |

}
, (4.7)

where Σ(γs0 ,P) is defined in (2.9).

Proof. To prove this result, we start with the case γs0 = 1 and γs0 = 2 convolution and afterward we
examine the general case.

Case γs0 = 1: Let Ji,j be an arbitrary sequence of vectors, then we have

J
γs0 ;`
i,j =

(
Jγ
s
0−1;0;` ? E`F`

)
i,j

=

bi/4c∑
m=0

bj/4c∑
n=0

J
γs0−1;`
m,n E`i−4mF

`
j−4n.

Where we suppose E`i−4m = S
γs0 ,E`

m,i and F`j−4n = S
γs0 ,F`

n,j for arbitrary sequences E` and F`, thus

J
γs0 ;`
i,j =

(
Jγ
s
0−1;0;` ? E`F`

)
i,j

=

bi/4c∑
m=0

bj/4c∑
n=0

J
γs0−1;`
m,n S1,E`

m,iS
1,F`
n,j ,

implies that

max
i,j

|J
γs0 ;`
i,j | = max

i,j

∣∣∣∣∣
bi/4c∑
m=0

bj/4c∑
n=0

J
γs0−1;`
m,n S1,E`

m,iS
1,F`
n,j

∣∣∣∣∣ 6 max
i,j

|

bi/4c∑
m=0

bj/4c∑
n=0

|S1,E`
m,i ||S

1,F`
n,j |max

m,n
||J
γs0−1;`
m,n |. (4.8)

Consider

M1 = max
i

{ bi/4c∑
m=0

S1,E`
m,i

}
and N1 = max

j

{ bj/4c∑
n=0

S1,F`
n,j

}
.

From (4.8), we have
max
i,j

|J
γs0 ;`
i,j | 6M1N1 max

m,n
|J
γs0−1;`
m,n |.

Case γs0 = 2: Now, by applying two times convolution, we get

J
γs0−1;`
m,n =

(
Jγ
s
0−2;0;` ? E`F`

)
m,n

=
(
(Jγ

s
0−1;0;` ? E`F`) ? E`F`

)
i,j

.

This implies that

J
γs0−1;`
i,j =

bi/4c∑
m=0

bj/4c∑
n=0

(Jγ
s
0−1;0;` ? E`F`)i,jE

`
i−4mF

`
j−4n.

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 423

This gives

J
γs0−1;`
i,j =

bi/4c∑
m=0

bj/4c∑
n=0

(bm/4c∑
u=0

bn/4c∑
v=0

(J
γs0−2;0;`
u,v E`m−4uF

`
n−4v)

)
E`i−4mF

`
j−4n.

This further implies that

J
γs0−1;`
i,j =

bi/42c∑
m=0

bj/42c∑
n=0

J
γs0−2;`
m,n

bi/4c∑
w=4m

E`w−4mE
`
i−4w

bj/4c∑
x=4n

F`x−4nF
`
j−4x.

Again implies

J
γs0−1;`
i,j =

bi/42c∑
m=0

bj/42c∑
n=0

J
γs0−2;`
m,n

bi/4c∑
w=4m

S1,E`
m,wS

1,E`
w,i

bj/4c∑
x=4n

S1,F`
n,xS

1,F`
x,j .

Furthermore

J
γs0 ;`
i,j =

bi/42c∑
m=0

bj/42c∑
n=0

J
γs0−2;`
m,n S2,E`

m,iS
2,F`
n,j .

Now, we get

max
i,j

|J
γs0 ;`
i,j | = max

i,j

∣∣∣∣ bi/42c∑
m=0

bj/42c∑
n=0

J
γs0−2;`
m,n S2,E`

m,iS
2,F`
n,j

∣∣∣∣ 6 max
i,j

bi/42c∑
m=0

bj/42c∑
n=0

∣∣∣∣S2,E`
m,i

∣∣∣∣∣∣∣∣S2,F`
n,j

∣∣∣∣max
m,n

∣∣∣∣Jγs0−2;`
m,n

∣∣∣∣. (4.9)

Let

M2 = max
i

{ bi/42c∑
m=0

∣∣∣∣S2,E`
m,i

∣∣∣∣} and N2 = max
j

{ bj/42c∑
n=0

∣∣∣∣S2,F`
n,j

∣∣∣∣},

then, we acquire from (4.9),

max
i,j

|J
γs0 ;`
i,j | 6M2N2 max

m,n

∣∣∣∣Jγs0−2;`
m,n

∣∣∣∣.
By applying the same procedure, we get the following reformulations for γs0 -th convolution

J
γs0 ;`
i,j =

(
Jγ
s
0−γ

s
0 ;0;` ? E`F`

)
m,n

= (· · · (((Jγs0−1;0;` ? E`F`) ? E`F`) ? · · · ? E`F`) ? E`F`)i,j.

This implies

J
γs0 ;`
i,j =

bi/4γ
s
0 c∑

m=0

bj/4γ
s
0 c∑

n=0

J0;0;`
m,nS

γs0 ,E`

m,i S
γs0 ,F`

n,j =

bi/4γ
s
0 c∑

m=0

bj/4γ
s
0 c∑

n=0

J0;`
m,nS

γs0 ,E`

m,i S
γs0 ,F`

n,j ,

where

S
γs0 ,E`

m,i =

bi/4γ
s
0−1c∑

u=4m

S
γs0−1,E`
m,u S

γs0−1,E`

u,i ,

and

S
γs0 ,F`

n,j =

bj/4γ
s
0−1c∑

v=4n

S
γs0−1,F`
n,v S

γs0−1,F`

n,j .

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 424

Now

max
i,j

|J
γs0 ;`
i,j | = max

i,j

∣∣∣∣ bi/4γ
s
0 c∑

m=0

bj/4γ
s
0 c∑

n=0

J0;`
m,nS

γs0 ,E`

m,i S
γs0 ,F`

n,j

∣∣∣∣ 6 max
i,j

bi/4γ
s
0 c∑

m=0

bj/4γ
s
0 c∑

n=0

∣∣∣∣Sγs0 ,E`

m,i

∣∣∣∣∣∣∣∣Sγs0 ,F`

n,j

∣∣∣∣max
m,n

∣∣∣∣J0;`
m,n

∣∣∣∣. (4.10)

Now consider the following

Mγs0
= max

i

{ bi/4γ
s
0 c∑

m=0

|S
γs0 ,E`

m,i |

}
= max
i∈
∑

(γs0 ,P)

{ bi/4γ
s
0 c∑

m=0

|S
γs0 ,E`

m,i |

}
,

and

Nγs0 = max
j

{ [j/4γ
s
0]∑

n=0

|S
γs0 ,F`

n,j |

}
= max
j∈
∑

(γs0 ,P)

{ [j/4γ
s
0]∑

n=0

|S
γs0 ,F`

n,j |

}
.

then, from (4.10), we have
max
i,j

|J
γs0 ;`
i,j | 6Mγs0

Nγs0 max
m,n

|J0m,n|,

where

max
i,j

{ bi/4γ
s
0 c∑

m=0

bj/4γ
s
0 c∑

n=0

|S
γs0 ,E`

m,i ||S
γs0 ,F`

n,j |

}
= max
i,j∈Σ(γs0 ,P)

{ bi/4γ
s
0 c∑

m=0

bj/4γ
s
0 c∑

n=0

|S
γs0 ,E`

m,i ||S
γs0 ,F`

n,j |

}
,

where Σ(γs0 ,P) is defined in (2.9). This completes the proof.

Now, the generalized results are presented for finding the error bounds of NSQSS, followed by an
improved subdivision depth computation technique based on these error bounds. We omit the proof of
Theorems 4.2 and 4.3 since it is similar to the one given in [16].

Theorem 4.2. Let ζ` = {J`i,j; i, j ∈ Z, ` > 0} the the polygon at the `th level of NSQSS, where J`i,j be the
points recursively described in (4.1) along with the condition (2.2). Also let {J0i,j, i, j ∈ Z} to be the first
control polygon. Then the error bounds of two successive refinements between the level ` and `+ 1, using
the similar technique given in [16], is

‖ζ`+1 − ζ`‖∞ 6 ϑ(Mγs0
Nγs0)

`,

where Mγs0
,Nγs0 ,γs0 > 1 defined in (4.5) and (4.6), and ϑ = max

α,β

{∑3
t=1(χt)(η

t
α,β),α,β = 0, 1, 2, 3

}
, where

χt and ηtα,β for α,β = 0, 1, 2, 3 are defined in [16].

Theorem 4.3. Under the same circumstances used in Theorem 4.2, let ζ∞ be the limit surface associated
with the subdivision process. Then

 h` = ‖ζ∞ − ζ`‖∞ 6 ϑ

(
(Mγs0

Nγs0)
`

1 −Mγs0
Nγs0

)
,

where γs0 > 1 is a natural number, such that Mγs0
Nγs0 < 1.

Theorem 4.4. Let ` be the subdivision depth and let h` be the error bound between NSQSS ζ∞ and its `th

level control polygon ζ`. For arbitrary ε > 0, if

` > log(Mγs0
Gγs0

)

(
ε(1 −Mγs0

Nγs0)

ϑ

)
,

then h` 6 ε.

Proof. The proof in Theorem 3.3 is resemblant.

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 425

4.2. Numerical experiments for bivariate case
Here, some numerical examples to estimate error bounds and subdivision depth for surface models

are presented. First, we find the term Mγs0
Nγs0 for γs0 > 1 using (4.5) and (4.6). From the calculated

results, we observe that the value of Mγs0
Nγs0 decreases with the increase in the order of convolution γs0 .

This is the main advantage of our work. Graphical representation is also presented in Figure 2.

Example 4.5. Consider the tensor product of 4-point approximating NSQSS given in (3.1). Now apply
four-times convolution γs0 to find the four convolution coefficients Mγs0

Nγs0 defined by (4.5) and (4.6).

First convolution (i.e., γs0 = 1): From (2.9) and (2.10), we get Ω(1, 4) = 15 and Σ(1, 4) = {12, 13, 14, 15}.
Now from (4.7), we get

M1N1 = max
i,j∈{12,13,14,15}

{ bi/4c∑
m=0

bj/4c∑
n=0

|S1,E`
m,i ||S

1,F`
n,j |

}

= max
{ b12/4c∑
m=0

b12/4c∑
n=0

|S1,E`
m,12||S

1,F`
n,12|,

b12/4c∑
m=0

b13/4c∑
n=0

|S1,E`
m,12||S

1,F`
n,13|,

b12/4c∑
m=0

b14/4c∑
n=0

|S1,E`
m,12||S

1,F`
n,14|,

b12/4c∑
m=0

b15/4c∑
n=0

|S1,E`
m,12||S

1,F`
n,15|,

b13/4c∑
m=0

b12/4c∑
n=0

|S1,E`
m,13||S

1,F`
n,12|,

b13/4c∑
m=0

b13/4c∑
n=0

|S1,E`
m,13||S

1,F`
n,13|,

b13/4c∑
m=0

b14/4c∑
n=0

|S1,E`
m,13||S

1,F`
n,14|,

b13/4c∑
m=0

b15/4c∑
n=0

|S1,E`
m,13||S

1,F`
n,15|,

b14/4c∑
m=0

b12/4c∑
n=0

|S1,E`
m,14||S

1,F`
n,12|,

b14/4c∑
m=0

b13/4c∑
n=0

|S1,E`
m,14||S

1,F`
n,13|,

b14/4c∑
m=0

b14/4c∑
n=0

|S1,E`
m,14||S

1,F`
n,14|,

b14/4c∑
m=0

b15/4c∑
n=0

|S1,E`
m,14||S

1,F`
n,15|,

b14/4c∑
m=0

b12/4c∑
n=0

|S1,E`
m,15||S

1,F`
n,12|,

b14/4c∑
m=0

b13/4c∑
n=0

|S1,E`
m,15||S

1,F`
n,13|,

b14/4c∑
m=0

b14/4c∑
n=0

|S1,E`
m,15||S

1,F`
n,14|,

b14/4c∑
m=0

b15/4c∑
n=0

|S1,E`
m,15||S

1,F`
n,15|

}
.

Now from (4.4), we have

M1N1 = max
{ 1∑
m=0

1∑
n=0

|E`12−4m||F`12−4n|,
1∑

m=0

1∑
n=0

|E`12−4m||F`13−4n|,
1∑

m=0

1∑
n=0

|E`12−4m||F`14−4n|,

1∑
m=0

1∑
n=0

|E`12−4m||F`15−4n|,
1∑

m=0

1∑
n=0

|E`13−4m||F`12−4n|,
1∑

m=0

1∑
n=0

|E`13−4m||F`13−4n|,

1∑
m=0

1∑
n=0

|E`13−4m||F`14−4n|,
1∑

m=0

1∑
n=0

|E`13−4m||F`15−4n|,
1∑

m=0

1∑
n=0

|E`14−4m||F`12−4n|,

1∑
m=0

1∑
n=0

|E`14−4m||F`13−4n|,
1∑

m=0

1∑
n=0

|E`14−4m||F`14−4n|,
1∑

m=0

1∑
n=0

|E`14−4m||F`15−4n|,

1∑
m=0

1∑
n=0

|E`15−4m||F`12−4n|,
1∑

m=0

1∑
n=0

|E`15−4m||F`13−4n|,
1∑

m=0

1∑
n=0

|E`15−4m||F`14−4n|,

1∑
m=0

1∑
n=0

|E`15−4m||F`15−4n|

}
.

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 426

This implies

M1N1 = max{0.3525036074, 0.3927105546, 0.3927105546, 0.3525036074, 0.3227400449,
0.3595521276, 0.3595521276, 0.3227400449, 0.3525036070, 0.3927105545, 0.3927105545,
0.3525036070, 0.3691720288, 0.4112801945, 0.4112801945, 0.3691720288} = 0.4112801945.

The values of the coefficientsMγs0
Nγs0 are displayed numerically in (4.11). Using Theorem 4.4, the number

of iterations (subdivision depth) for different levels of iteration ` is presented in Table 3.

• Convolution coefficients for ` = 1, M1N1 = 0.4112801945, M2N2 = 0.1004142118,
M3N3 = 0.02497913514, and M4N4 = 0.006236920019.
• Convolution coefficients for ` = 2, M1N1 = 0.4099386719, M2N2 = 0.09935220356,
M3N3 = 0.02471964933, and M4N4 = 0.006170894633.
• Convolution coefficients for ` = 3, M1N1 = 0.4098565426, M2N2 = 0.09909265225,
M3N3 = 0.02465535416, and M4N4 = 0.006154699441.
• Convolution coefficients for ` = 4, M1N1 = 0.4098514156, M2N2 = 0.09902812883,
M3N3 = 0.02463931622, and M4N4 = 0.006150669774.
• Convolution coefficients for ` = 5, M1N1 = 0.4098510948, M2N2 = 0.09901202020,
M3N3 = 0.02463530835, and M4N4 = 0.006149663515.

(4.11)

With the use of Theorem 4.4, Table 3 presents the subdivision depth computations for various levels of
iteration `.

Table 3: Subdivision depth of 4-point approximating NSQSS.

ε 5.42e−7 3.07e−8

Mγs0
Nγs0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5

M1N1 73 73 73 73 73 89 88 88 88 88
M2N2 11 11 11 11 11 14 14 14 14 14
M3N3 8 8 8 8 8 10 9 9 9 9
M4N4 5 5 5 5 5 6 6 6 6 6
ε 1.73e−9 9.81e−11

Mγs0
Nγs0 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5

M1N1 104 104 104 104 104 120 120 120 120 120
M2N2 16 16 16 16 16 19 19 19 19 19
M3N3 11 11 11 11 11 13 13 13 13 13
M4N4 7 7 7 7 7 9 9 9 9 9

Remark 4.6. In Table 3, the computation of subdivision depth at different levels ` corresponding to the
pre-defined error tolerance is presented. For example, seventy-three iterations are required to attain a
given error tolerance of 5.42e−7 by the method described in [16], but with the proposed method, only
four iterations corresponding to M4N4 are needed. The graphical comparison of different convolutions is
demonstrated in Figure 2 (a).

Example 4.7. Consider the tensor product of the 4-point interpolating NSQSS given in (3.3). Now apply
four-times convolution to find the four convolution coefficients Mγs0

Nγs0 using (4.5) and (4.6). These
values are shown in (4.12).

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 427

• Convolution coefficients for ` = 1, M1N1 = 0.3927105545, M2N2 = 0.09703817219,
M3N3 = 0.02421449366, and M4N4 = 0.006038140339.

• Convolution coefficients for ` = 2, M1N1 = 0.3906970120, M2N2 = 0.09652801543,
M3N3 = 0.02408796809, and M4N4 = 0.006006608711.

• Convolution coefficients for ` = 3, M1N1 = 0.3905722769, M2N2 = 0.09649628723,
M3N3 = 0.02408005314, and M4N4 = 0.006004638367.

• Convolution coefficients for ` = 4, M1N1 = 0.3905644848, M2N2 = 0.09649430516,
M3N3 = 0.02407955843, and M4N4 = 0.006004515268.

• Convolution coefficients for ` = 5, M1N1 = 0.3905639975, M2N2 = 0.09649418065,
M3N3 = 0.02407952737, and M4N4 = 0.006004507494.

(4.12)

The number of iterations for various levels ` is presented in Table 4. These values are computed using
Theorem 4.4.

Table 4: Subdivision depth of 4-point interpolating NSQSS.

ε 6.61e−2 1.54e−3

Mγs0Nγ
s
0

` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5
M1N1 7 7 7 7 7 16 16 16 16 16
M2N2 2 2 2 2 2 7 7 7 7 7
M3N3 1 1 1 1 1 4 4 4 4 4
M4N4 1 1 1 1 1 3 3 3 3 3
ε 3.60e−5 8.42e−7

Mγs0Nγ
s
0

` = 1 ` = 2 ` = 3 ` = 4 ` = 5 ` = 1 ` = 2 ` = 3 ` = 4 ` = 5
M1N1 26 25 25 25 25 35 35 35 35 35
M2N2 11 11 11 11 11 15 15 15 15 15
M3N3 7 7 7 7 7 9 9 9 9 9
M4N4 5 5 5 5 5 7 7 7 7 7

Remark 4.8. In Table 4, thirty-five iterations are necessary to achieve a given error tolerance of 8.42× 10−7

using the technique given in [16]. However, with the proposed method, it requires only seven iterations
corresponding to P4Q4. The graphical representation of different convolutions can be seen in Figure 2 (b).

(a) 4-point approximating NSQSS [1]. (b) 4-point interpolating NSQSS [28].

Figure 2: Figures (a) and (b) represents the comparison between different convolution results for the curve
case. This shows that the error decreases with the increase of order of convolution. Here horizontal axis
shows the error bound and vertical axis shows the subdivision level `.

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 428

5. Algorithms to compute subdivision depths

In this subsection, we will provide algorithms for calculating the subdivision depths of schemes with
varying complexity. These algorithms are critical for understanding the entire research work presented
in this publication. Moreover, by applying these algorithms, readers will gain a thorough understanding
of how to determine the subdivision depths, even when working with non-stationary schemes. In this
paper, we provide five algorithms. The convolution coefficient and convolution computation are handled
by Algorithms 1 and 2, respectively. The error bounds for curve and surface cases are determined by
Algorithms 3 and 4, respectively. To estimate the required number of iterations with a specified error
tolerance, Algorithm 5 is used for the curve case and Algorithm 6 for the surface case.

Algorithm 1 The computation of convolution coefficient Tγc0 .
Input: Arity of the subdivision scheme (4 for quaternary case), complexity of the subdivision scheme P, value of
initial difference between two consecutive points, and subdivision level `.

1. Define mask of the subdivision scheme
2. for ŝ from 0 to P− 1
3. calculate ĥ`4ŝ, ĥ`4ŝ+1, ĥ`4ŝ+2 and ĥ`4ŝ+3 that are defined in (2.4).
4. for n < 4P
5. calculate ĥ`n = {ĥ`n}

4P−1
n=0

6. else
7. if n > 4P then
8. return zero
9. end if

10. end for
11. end for
12. for γc0 > 1, calculate Σ(γc0 ,P) = {Ω(γc0 ,P)− 4γ

c
0 + 1,Ω(γc0 ,P)− 4γ

c
0 + 2, . . . ,Ω(γc0 ,P)}, where Ω(γc0 ,P) = (4γ

c
0 −

3)(4P− 1).
13. end for

14. Now compute Tγc0 = maxj∈Σ(γc0 ,P)

{∑bj/4γ
c
0 c

ŝ=0 |S
γc0 ;ĥ`

ŝ,j |

}
15. For finite sequence of ` and γc0 repeat steps 1 to 14.

Output: The values of convolution coefficient Tγc0 at different values of `.

6. Conclusion

This research focuses on the latest approach to computing error bounds and subdivision depth for
non-stationary quaternary subdivision schemes using a convolution methodology. This method yields
excellent results with minimal computational cost and does not depend on specific conditions regard-
ing the coefficients of non-stationary quaternary subdivision schemes. Initially, associations between
constants and the vectors generated by these non-stationary schemes were established, followed by the
formulation of an expression for the convolution. This expression demonstrates values that consistently
decrease as the convolution order increases, applicable to both curves and surfaces. Our method is robust
and performs well with all types of data, creating regular initial control polygons. Increasing the order of
convolution enhances the robustness of the error bounds.

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 429

Algorithm 2 The computation of convolution Mγs0
Nγs0 .

Input: Arity of the subdivision scheme (4 in quaternary case), complexity of the subdivision scheme P,
value of initial difference between two consecutive points, and subdivision level `.

1. Define mask of the subdivision scheme
2. for r̂ from 0 to P− 1 do
3. calculate E`4r̂, E

`
4r̂+1, E`4r̂+2 and E`4r̂+3 that are defined in (4.2)

4. for â from 0 to P− 1 do
5. calculate F`4â, F`4â+1, F`4â+2 and F`4â+3 that are defined in (4.2)
6. for n < 4P do
7. calculate E`n = {E`n}

4P−1
n=0 and F` = {F`n}

4P−1
n=0

8. else
9. if n > 4P then

10. return zero
11. end if
12. end for
13. end for
14. end for
15. for γs0 > 1 calculate Σ(γs0 ,P) = {Ω(γs0 ,P)−4γ

s
0 +1,Ω(γs0 ,P)−4γ

s
0 +2, . . . ,Ω(γs0 ,P)}, whereΩ(γs0 ,P) =

(4γ
s
0 − 3)(4P− 1).

16. end for
17. compute Mγc0

Nγc0 , where

Mγs0
= max

i

{ bi/4γ
s
0 c∑

m=0

|S
γs0 ,E`

m,i |

}
and Nγs0 = max

j

{ [j/4γ
s
0]∑

n=0

|S
γs0 ,F`

n,j |

}
.

18. For finite sequence of ` and γs0 repeat steps 1 to 17.

Output: The values of convolution Mγc0
Nγc0 at different values of `.

Algorithm 3 The error bounds and level of subdivision ` for curve case.
Input: Arity, complexity, subdivision Level ` > 1, order of convolution γc0 > 1, and the value of convolu-
tion coefficient Tγc0 .

1. Mask of the schemes
2. for γc0 ∈N do
3. for ` ∈N do

4. compute $
(

(Tγc0
)`

1−Tγc0

)
κ.

5. end do (`)
6. end do (γc0)

Output: The error bounds at ` > 1 and γc0 > 1.

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 430

Algorithm 4 The error bounds and level of subdivision ` for surface case.
Input: Arity, complexity, subdivision Level ` > 1, order of convolution γs0 > 1, and the value of convolution
coefficient Mγs0Nγs0 .

1. for γs0 ∈N do
2. for ` ∈N do

3. compute ϑ
(

(Mγs0
Nγs0

)`

1−Mγs0
Nγs0

)
.

4. end do (`)
5. end do (γs0)

Output: The error bounds at ` > 1 and γs0 > 1.

Algorithm 5 The subdivision depths at pre-defined error tolerance at different level of subdivision ` for curve case.
Input: γc0 > 1, Tγc0 , κ, and ε.

1. for γc0 ∈N do

2. compute log(Tγc0
)−1

(
$κ

ε(1−Tγc0
)

)
← `

3. end do

Output: The subdivision depths ` at pre-defined error tolerance ε, and γc0 > 1.

Algorithm 6 The subdivision depths at pre-defined error tolerance for different level of subdivision ` for surface
case.
Input: γs0 > 1, Pγs0Qγs0 , ν and ε.

1. for γs0 ∈N do

2. compute log(Mγs0
Nγs0

)−1

(
ϑ

ε(1−Mγs0
Nγs0

)

)
← `

3. end do

Output: The subdivision depths ` at pre-defined error tolerance ε, and γs0 > 1.

References

[1] P. Ashraf, G. Mustafa, A generalized non-stationary 4-point b-ary approximating scheme, Br. J. Math. Comput. Sci., 4
(2014), 104–119. 1, 1.1, 2.2, 3.4, 1a, 2a

[2] P. Ashraf, G. Mustafa, A. Ghaffar, R. Zahra, K. S. Nisar, E. E. Mahmoud, W. R. Alharbi, Unified framework of
approximating and interpolatory subdivision schemes for construction of class of binary subdivision schemes, J. Funct.
Spaces, 2020 (2020), 12 pages. 1

[3] P. Ashraf, G. Mustafa, H. A. Khan, D. Baleanu, A. Ghaffar, K. S. Nisar, A shape-preserving variant of Lane-Riesenfeld
algorithm, AIMS Math., 6 (2021), 2152–2170.

[5] M. Bari, G. Mustafa, A. Ghaffar, K. S. Nisar, D. Baleanu, Construction and analysis of unified 4-point interpolating
nonstationary subdivision surfaces, Adv. Differ. Equ., 2021 (2021), 17 pages.

[4] C. Beccari, G. Casciola, L, Romani, A non-stationary uniform tension controlled interpolating 4-point scheme reproducing
conics, Comput. Aided Geom. Des., 24 (2007), 1–9.

[8] Z. J. Cai, Convergence, error estimation and some properties of four-point interpolation subdivision scheme, Comput. Aided
Geom. Des., 12 (1995), 459–468. 1

[6] A. S. Cavaretta, W. Dahmen, C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., (1991). 1
[9] S. W. Choi, B.-G. Lee, Y. J. Lee, J. Yoon, Stationary subdivision schemes reproducing polynomials, Comput. Aided

Geom. Des., 23 (2006) 351-360. 1
[7] F. Cirak, M. J. Scott, E. K. Antonsson, M. Ortiz, P. Schroder, Integrated modeling, finite-element analysis, and engineer-

ing design for thin-shell structures using subdivision, Comput. Aided Des., 34 (2002), 137–148. 1
[10] N. Dyn, Subdivision schemes in CAGD, Adv. Numer. Anal., 2 (1992), 36–104. 1
[12] N. Dyn, Linear and non-linear subdivision schemes in geometric modeling, Found. Comput. Math., Hong Kong, 363

(2008), 68–92. 1

https://www.researchgate.net/profile/Ghulam-Mustafa-16/publication/272758251_A_Generalized_Non-Stationary_4-Point_b-ary_Approximating_Scheme/links/553b1f380cf245bdd7645f58/A-Generalized-Non-Stationary-4-Point-b-ary-Approximating-Scheme.pdf?_sg%5B0%5D=started_experiment_milestone&origin=journalDetail
https://www.researchgate.net/profile/Ghulam-Mustafa-16/publication/272758251_A_Generalized_Non-Stationary_4-Point_b-ary_Approximating_Scheme/links/553b1f380cf245bdd7645f58/A-Generalized-Non-Stationary-4-Point-b-ary-Approximating-Scheme.pdf?_sg%5B0%5D=started_experiment_milestone&origin=journalDetail
https://doi.org/10.1155/2020/6677778
https://doi.org/10.1155/2020/6677778
https://doi.org/10.1155/2020/6677778
https://doi.org/10.3934/math.2021131
https://doi.org/10.3934/math.2021131
https://doi.org/10.1186/s13662-021-03234-x
https://doi.org/10.1186/s13662-021-03234-x
https://doi.org/10.1016/j.cagd.2006.10.003
https://doi.org/10.1016/j.cagd.2006.10.003
https://doi.org/10.1016/0167-8396(94)00024-M
https://doi.org/10.1016/0167-8396(94)00024-M
https://doi.org/10.1090/memo/0453
https://doi.org/10.1016/j.cagd.2006.01.003
https://doi.org/10.1016/j.cagd.2006.01.003
https://doi.org/10.1016/S0010-4485(01)00061-6
https://doi.org/10.1016/S0010-4485(01)00061-6
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e4723f1a32769a2d17eeae84f151e5191cc463ce
https://www.damtp.cam.ac.uk/user/na/FoCM/FoCM08/Talks/Dyn.pdf
https://www.damtp.cam.ac.uk/user/na/FoCM/FoCM08/Talks/Dyn.pdf

A. Mahmood, G. Mustafa, F. khan, J. Math. Computer Sci., 36 (2025), 408–431 431

[13] N. Dyn, J. A. Gregory, D. Levin, Analysis of uniform binary subdivision schemes for curve design, Constr. Approx., 7
(1991), 127–147. 1

[11] N. Dyn, D. Levin, Subdivision schemes in geometric modeling, Acta Numer., 11 (2002), 73–144. 1
[14] M.-e. Fang, B. Jeong, J. Yoon, A family of non-uniform subdivision schemes with variable parameters for curve design,

Appl. Math. Comput., 313 (2017), 1–11. 1
[16] S. Hashmi, G. Mustafa, Estimating error bounds for quaternary subdivision schemes, J. Math. Anal. Appl., 358 (2009),

159–167. 2.2, 2.2, 3, 3.5, 3.6, 3.8, 4.1, 4.2, 4.6, 4.8
[15] W. Huawei, G. Youjiang, Q. Kaihuai, Error estimation for Doo-Sabin surfaces, Prog. Nat. Sci., 12 (2002), 697–700. 1
[17] S. A. A. Karim, F. Khan, G. Mustafa, A. Shahzad, M. Asghar, An efficient computational approach for computing

subdivision depth of non-stationary binary subdivision schemes, Mathematics, 11 (2023), 1–12. 1
[21] M. Moncayo, S. Amat, Error bounds for a class of subdivision schemes based on the two-scale refinement equation, J.

Comput. Appl. Math., 236 (2011), 265–278. 1
[19] M. Moncayo, J. F. Reinoso, S. Amat, Tight numerical bounds for digital terrain modeling by interpolatory subdivision

schemes, Math. Comput. Simul., 81 (2011), 2258–2269. 1
[18] P. Morin, K. G. Siebert, A. Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models

Methods Appl. Sci., 18 (2008), 707–737. 1
[20] G. Mustafa, F. Chen, J. Deng, Estimating error bounds for binary subdivision curves/surfaces, J. Comput. Appl. Math.,

193 (2006), 596–613. 1, 2.2
[22] G. Mustafa, M. S. Hashmi, Subdivision depth computation for n-ary subdivision curves/surfaces, Vis. Comput., 26

(2010), 841–851.1
[23] G. Mustafa, M. S. Hashmi, Subdivision depth computation for tensor product n-ary volumetric models, Abstr. Appl.

Anal., 2011 (2011), 22 pages. 1
[24] G. Mustafa, S. Hashmi, N. A. Noshi, Estimating error bounds for tensor product binary subdivision volumetric model,

Int. J. Comput. Math., 83 (2006), 879–903.1
[25] A. Nawaz, A. Ghaffar, F. Khan, S. A. A. Karim, A new 7-point quaternary approximating subdivision scheme, In: Intelli.

Sys. Model. Simul. II., Springer, Cham, 444 (2022), 545–566. 1
[26] M. Perini, P. Bosetti, N. Balc, Additive manufacturing for repairing: from damage identification and modeling to Direct

Laser Deposition, Rapid Prototyp. J., 26 (2020), 929–940. 1
[27] A. Shahzad, F. Khan, A. Ghaffar, S. W. Yao, M. Inc, S. Ali, A novel numerical method for computing subdivision depth

of quaternary schemes, Mathematics, 9 (2021), 1–20. 1, 1.1
[28] S. S. Siddiqi, M. Younis, The quaternary interpolating scheme for geometric design, ISRN Comput. Graph., 2013 (2013),

8 pages. 1, 1.1, 2.2, 3.7, 1b, 2b
[29] N. Umetani, B. Bickel, Learning three-dimensional flow for interactive aerodynamic design, ACM Trans. Graph. (TOG).,

37 (2018), 1–10. 1
[30] L. Wang, Integration of CAD and boundary element analysis through subdivision methods, Comput. Ind. Eng., 57 (2009),

691–698. 1
[31] G. Zhou, X.-M. Zeng, Error bounds for Loop subdivision surfaces, Int. J. Comput. Math., 91 (2014), 688–703. 1

https://doi.org/10.1007/BF01888150
https://doi.org/10.1007/BF01888150
https://doi.org/10.1017/S0962492902000028
https://doi.org/10.1016/j.amc.2017.05.063
https://doi.org/10.1016/j.amc.2017.05.063
https://doi.org/10.1016/j.jmaa.2009.04.050
https://doi.org/10.1016/j.jmaa.2009.04.050
https://api.semanticscholar.org/CorpusID:124097161
https://doi.org/10.3390/math11112449
https://doi.org/10.3390/math11112449
https://doi.org/10.1016/j.cam.2011.06.031
https://doi.org/10.1016/j.cam.2011.06.031
https://doi.org/10.1016/j.matcom.2010.12.010
https://doi.org/10.1016/j.matcom.2010.12.010
https://doi.org/10.1142/S0218202508002838
https://doi.org/10.1142/S0218202508002838
https://doi.org/10.1016/j.cam.2005.06.030
https://doi.org/10.1016/j.cam.2005.06.030
https://doi.org/10.1007/s00371-010-0496-0
https://doi.org/10.1007/s00371-010-0496-0
https://doi.org/10.1155/2011/203453
https://doi.org/10.1155/2011/203453
https://doi.org/10.1080/00207160601117263
https://doi.org/10.1080/00207160601117263
https://link.springer.com/chapter/10.1007/978-3-031-04028-3_35
https://link.springer.com/chapter/10.1007/978-3-031-04028-3_35
https://doi.org/10.1108/RPJ-03-2019-0090
https://doi.org/10.1108/RPJ-03-2019-0090
https://doi.org/10.3390/math9080809
https://doi.org/10.3390/math9080809
https://doi.org/10.1155/2013/434213
https://doi.org/10.1155/2013/434213
https://doi.org/10.1145/3197517.3201325
https://doi.org/10.1145/3197517.3201325
https://doi.org/10.1016/j.cie.2009.01.009
https://doi.org/10.1016/j.cie.2009.01.009
https://doi.org/10.1080/00207160.2013.807917

	Introduction
	Methodology

	Preliminaries
	Quaternary non-stationary univariate case
	Error bounds and subdivision depth for non-stationary quaternary subdivision schemes

	Findings and applications
	Numerical experiments for curve case

	Non-stationary quaternary bivariate case
	Convolution and subdivision depth for quaternary non-stationary bivariate case
	Numerical experiments for bivariate case

	Algorithms to compute subdivision depths
	Conclusion

