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Abstract
This paper investigates the suitable conditions for the uniqueness and existence results for a class of fuzzy fractional Caputo

Volterra-Fredholm integro differential equations (FFCV-FIDEs) with boundary conditions. The findings are based on Banach
contraction principle and Schaefer’s fixed point theorem. Additionally, the solution to the given problem is found using the
Adomian decomposition technique (ADT). We support the concept with various instances. The relationship between the lower
and upper reduce approximations of the fuzzy solutions has been demonstrated numerically and graphically via MATLAB.
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1. Introduction

The idea of fractional calculus (FC) dates back to the days of Leibniz and Newton. Since then, a num-
ber of mathematicians have made contributions to the theoretical development of FC. Its application to
real-world issues has garnered a lot of attention in recent years. The mathematical modelling of processes
and systems in the domains of porous media, aerodynamics, electromagnetic, physics, viscoelasticity,
control theory, electro-chemistry, signal processing, chemistry, and so on gives rise to fractional DEs in
many engineering and scientific disciplines (see [7, 12, 16, 28, 30, 33, 34, 37]). Recently, fractional DEs have
seen a substantial theoretical development (see [4, 9, 15, 26, 27] and the references therein). Some math-
ematicians are interested in solving problems involving IDEs. The uniqueness and existence of solutions
to fractional IDEs were examined in a number of studies [6, 18, 24, 25, 35, 36]. However, the majority of
works deal with numerical analysis of fractional IDEs, or fractional DEs. The number of approaches for
locating these approximations has increased recently. A few of these techniques are the wavelet method
[37], Homotopy analysis method [17, 23], variational iteration method [17, 32], ADT [19–22], fractional
differential transform method [7], collocation method [29], and reproducing kernel method [26, 31], etc.

Many academics have developed the concept of FIDEs in recent years. Zadeh was the first to identify
the relationship between arithmetic operations and fuzzy numbers. Additionally, they extension the idea
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of function fuzzy integration. The fuzzy mapping function was also suggested by Cheng and Zadeh
[13], Dubois and Prade [15], and others. Furthermore, [16] provided a basic fuzzy calculus based on the
extension idea. Numerous techniques have been developed recently for solving fuzzy IDEs. Abbasbandy
and Hashemi (2011) worked on FVIDEs, which they formulated and solved using the homotopy analysis
approach and variational iteration method [1]. Techniques: residual power, two-dimensional Legendre
wavelet, flitted reproduction kernel Hilbert space, transform of fuzzy Laplace, and Abu Araub’s dis-
cussion of the kernel technique for replicating results in fuzzy Fredholm-Volterra integral equation [8],
Alaroud, Al-smadi et al.’s work on residual power series method under the generalised H-differentiability
[5], and residual power The FFVIDE analysis that Naveed Ahmad and colleagues [4] examined. The frac-
tional derivative (FD) in the Atangana-Baleanu meaning of FFDEs was examined by Arqub et al. [10].
FFVIDEs in the context of FD Caputo-Atangana-Baleanu have been worked on by writers in [9]. They
made advantage of kernel function adoption. The ADT was developed by G. Adomian, and it has been
successfully used to solve a large number of nonlinear DEs using approximations that converge fast to
the desired result in [2].

Motivated by the above articles, in this paper, we examine a new class of FFCV-FIDEs and demonstrate
the existence and uniqueness of solutions inside their specified domain. Additionally, we will study the
the approximation of solution of the following model by using ADT:

Dη χ̃(t, θ) = ϕ̃(t, θ) +B(t)=(χ̃(t, θ)) +
∫t

0
ϑ(t, λ)=(χ̃(λ, θ))dλ+

∫T
0
ϑ1(t, λ)=(χ̃(λ, θ))dλ, (1.1)

β1χ̃(0, θ) +β2χ̃(T , θ) = β̃3, (1.2)

where t ∈ Ψ := (0, T ], =(χ̃(t, θ)) is a nonlinear function and kernels ϑ(t, λ), ϑ1(t, λ), and ϕ̃(t, θ) are
sufficiently smooth functions on Ψ and furthermore, B(t) 6= 0 on Ψ. β1,β2 ∈ R with β1 + β2 6= 0, and
β̃3 ∈ RΩ represents (θ− 1, 1 − θ).

An outline of the paper’s structure is provided below. In Section 2, the fundamental concepts, nota-
tions, lemmas, and theorems of fuzzy and fuzzy FC were reviewed. In Section 3, we examine the existence
and uniqueness of a solution of the given model (1.1)-(1.2). In Section 4, the solution approximation of
the proposed model was tested using an ADT. Moreover, the convergence analysis is shown. Numerical
experiments and a concrete computing technique are presented in Section 5.

2. Auxiliary results

The basic ideas of fuzzy calculus are defined in this part, and these definitions will be applied to the
problems and approximate solutions that are put forth.

Definition 2.1 ([4]). χ̃ : R → [0, 1] is mapped to is shown as a fuzzy number that satisfies the following
criteria: for example, χ̃ is upper semi continuous on R; cl(supp χ̃) is compact; and χ̃ is normal, closure,
and fuzzy convex set. The set of all fuzzy numbers is represented by the symbol RΩ. For any x, v ∈ RO

and k ∈ R, also, we define (x⊕ v)θ = xθ ⊕ vθ, (k� x)θ =
[
kxθ,kx̄θ

]
.

Definition 2.2 ([5]). Let χ̃ is a Fuzzy number in a parametric form given by χ̃ = (χ(θ), χ̄(θ)), it fulfills the
following characteristics.

1. χ(θ) be a non decreasing, bounded, and right continuous function over θ ∈ [0, 1].
2. χ̄(θ) be a non increasing, bounded, and left continuous function over θ ∈ [0, 1].

χ(θ) 6 χ̄(θ) for θ ∈ [0, 1].

Definition 2.3 ([4]). The θ-level set of a fuzzy number χ̃ ∈ RΩ defined by [ χ̃]θ is identified by

[χ̃]θ =

{
r ∈ R/χ̃(r) > θ, if 0 < θ 6 1,
cl(supp χ̃), if θ = 0.

The fuzzy number appears in θ level set is a bounded and closed interval [χ(θ), χ̄(θ)], where χ(θ) is the
left side end point and χ̄(θ) right side end point.
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Definition 2.4 ([11]). The extended Hukuhara derivative (eH-derivative) of fuzzy-valued function Ω̃ :
[x,y]→ RΩ at c0 is expressed by

Ω̃′eH (c0) = lim
h→0

Ω (c0 + h)	eHΩ (c0)

h

if
(
Ω̃′
)
eH

(c0) ∈ RΩ, we say that Ω̃ is extended Hukuhara differentiable (eH-differentiable) at c0. Fur-
thermore, we say that Ω̃ is [(i)-eH]-differentiable at c0 if

(
Ω̃′eH

)
θ
(c0) =

[(
Ωθ
)′
(c0) ,

(
Ωθ
)′
(c0)

]
, 0 6 θ 6 1,

and that Ω̃ is [(ii)-eH]-differentiable at c0 if(
Ω̃′eH

)
θ
(c0) =

[(
Ωθ
)′
(c0) ,

(
Ωθ
)′
(c0)

]
, 0 6 θ 6 1.

Definition 2.5 ([11]). For a function Ω(t), the fractional integral (FI) of order η > 0 in the Riemann-
Liouville sense is defined as follows:

IηΩ(u) =
1
Γ(η)

∫u
0
(u− t)η−1Ω(t)dt, u > 0, η ∈ R, I0Ω(u) = Ω(u).

Definition 2.6 ([11]). Based on its θ-level examples, the R-L FI of order η of the fuzzy function Ω̃(u,η)
may be expressed as follows:

[
IηΩ̃(u; θ)

]
=
[
IηΩ(u; θ), IηΩ̄(u; θ)

]
, where

IηΩ(u, θ) =
1
Γ(η)

∫u
0
(u− t)η−1Ω(t, θ)dt,u > 0,η ∈ R,

IηΩ̄(u, θ) =
1
Γ(η)

∫u
0
(u− t)η−1Ω̄(t, θ)dt,u > 0,η ∈ R.

Definition 2.7 ([14]). The order η Caputo FD is expressed in the following equation.

DηΩ(u) =

{
1

Γ(q−η)

∫u
0 (u− v)q−η−1Ωq(v)dv, q− 1 6 η < q,

dq

dvqΩ(u), η = q, q ∈N.

The characteristics are as

• Iη1Iη2Ω(u) = Iη1+η2Ω(u), η1,η2 > 0;

• Iη1 (uη2) =
{
Γ(η2+1)u1+η2
Γ(η2+η1+1) , η2 > 0,η1 > −1,u > 0.

Definition 2.8 ([11]). Based on its θ-level examples, the Caputo FD of order η of the fuzzy function Ω̃(u, θ)
may be expressed as follows:

[
DηΩ̃(u; θ)

]
=
[
DηΩ(u; θ),DηΩ̄(u; θ)

]
, where

DηΩ(u, θ) =

{
1

Γ(m−η)

∫u
0 (u− t)m−η−1Ωm(u, θ)dt, m− 1 6 η < m,

dm

dtmΩ(u, θ), η = m,m ∈N,

Dη[Ω̄(u, θ)] =

 1
Γ(m−η)

∫u
0 (u− t)m−η−1Ω̄m(u, θ)dt, m− 1 6 η < m,

dm

dtm Ω̄(u, θ), η = m,m ∈N.

Note that Ω̃θ(t) is shown as Ω̃(t, θ).
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3. Existence and uniqueness results

We will talk about the uniqueness and existence results for FFCV-FIDE (1.1) in this part. To make
things easier, we’ve included a list of the theories we’ll be using to deepen our discussion.

(H1) The function =(χ̃(t, θ)) satisfies the Lipschitz condition with respect to χ̃(t, θ), with L(> 0) being
Lipschitz constant, and =(0) = 0, ∀t ∈ Ψ.

(H2) The kernels ϑ(t, λ), ϑ1(t, λ) are bounded and continuous by Θ1 > 0 and Θ∗1 > 0 on Ψ×Ψ.
(H3) The functions B(t) and ϕ̃(t, θ) are bounded by Θ2(> 0) and Θ3(> 0), respectively.

Theorem 3.1. Let ϕ̃(t, θ),B(t), ϑ(t, λ), and ϑ1(t, λ) are smooth functions on [0, T ]. Then, the FFCV-FIDE (1.1)-
(1.2) is comparable to the form below

χ̃(t, θ) = h̃(t, θ) −
β2

β1 +β2

1
Γ(η)

∫T
0
(T − λ)η−1

[
B(λ)=(χ̃(λ, θ))

+

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ

+
1
Γ(η)

∫t
0
(t− λ)η−1

[
B(λ)=(χ̃(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ,

(3.1)

where

h̃(t, θ) =
β̃3

β1 +β2
−

β2

β1 +β2

1
Γ(η)

∫T
0
(T − λ)η−1ϕ̃(λ, θ)dλ+

1
Γ(η)

∫t
0
(t− λ)η−1ϕ̃(λ, θ)dλ, (3.2)

here, β̃3 is fuzzy value.

Proof. Applying Iη to both sides of (1.1) yields

χ̃(t, θ) = χ̃(0, θ) +
1
Γ(η)

∫t
0
(t− λ)η−1

[
ϕ̃(λ, θ) +B(λ)=(χ̃(λ, θ))

+

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ.

(3.3)

Based on the aforementioned equation at t = T , we can readily obtain

χ̃(T , θ) = χ̃(0, θ) +
1
Γ(η)

∫T
0
(T − λ)η−1

[
ϕ̃(λ, θ) +B(λ)=(χ̃(λ, θ))

+

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ.

The condition (1.2) provides us with the following identity:

χ̃(0, θ) =
β̃3

β1 +β2
−

β2

β1 +β2

1
Γ(η)

∫T
0
(T − λ)η−1

[
ϕ̃(λ, θ) +B(λ)=(χ̃(λ, θ))

+

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ.

Therefore, by adding the aforementioned value of χ̃(0, θ) to (3.3), we may obtain the required equivalent
form.

Theorem 3.2. Let (H1)-(H3) hold. Furthermore, we consider that |=(χ̃(t, θ))| 6 Θ∗, ∀t ∈ [0, T ] and χ̃(t, θ) ∈ RΩ.
The FFCV-FIDE (1.1)-(1.2) has at least one solution in Ψ.
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Proof. Let Φ : C ([0, T ], RΩ)→ C ([0, T ], RΩ) be an operator, which is described as

Φ(χ̃(t, θ)) = h̃(t, θ) −
β2

β1 +β2

1
Γ(η)

∫T
0
(T − λ)η−1

[
B(λ)=(χ̃(λ, θ))

+

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ

+
1
Γ(η)

∫t
0
(t− λ)η−1

[
B(λ)=(χ̃(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ,

where the h̃(t, θ) is given in (3.2). Here, we demonstrate the fixed point of the operator Φ by demon-
strating that Φ is continuous on C ([0, T ], RΩ) and compact on each bounded subset of C ([0, T ], RΩ). This
implies that the statement part one in Schaefer’s theorem is false, which implies that the part two in
Schaefer’s theorem must be true, as will be demonstrated in a series of steps.

(i) Initially, we establish the continuity of the operator Φ. Let χ̃n be a sequence convergence to χ̃ in
C ([0, T ], RΩ) as n→∞. ∀ χ̃n, χ̃ ∈ C ([0, T ], RΩ), for any t ∈ [0, T ], we get

|Φ (χ̃n(t, θ)) −Φ(χ̃(t, θ))| 6
∣∣∣∣ β2

β1 +β2

∣∣∣∣ 1
Γ(η)

∫T
0
(T − λ)η−1

[
|B(λ)| |= (χ̃n(λ, θ)) − =(χ̃(λ, θ))|

+

∫λ
0
|ϑ(λ, s)| |= (χ̃n(s, θ)) − =(χ̃(s, θ))|ds+

∫T
0
|ϑ1(λ, s)|

∣∣∣= (χ̃n(s, θ))
− =(χ̃(s, θ))

∣∣∣ds]dλ+ 1
Γ(η)

∫t
0
(t− λ)η−1

[
|B(λ)| |= (χ̃n(λ, θ)) − =(χ̃(λ, θ))|

+

∫λ
0
|ϑ(λ, s)| |= (χ̃n(s, θ)) − =(χ(s, θ))|ds

+

∫T
0
|ϑ1(λ, s)| |= (χ̃n(s, θ)) − =(χ(s, θ))|ds

]
dλ

6

(
1 +

|β2|

|β1 +β2|

)(
Θ2LT

η

Γ(η+ 1)
+
Θ1LT

η+1

Γ(η+ 2)
+
Θ∗1LT

η+1

Γ(η+ 2)

)
‖χ̃n − χ̃‖ → 0 as n→∞.

Φ is implied to be continuous by this.

(ii) Next, we will demonstrate how C ([0, T ], RΩ) translates bounded set to itself using the operatorΦ, i.e.,
∀κ > 0,∃ a n > 0 and ∀χ̃ ∈ Eκ, we get ‖Φ(χ̃)‖ 6 n, and Eκ is defined by Eκ = {χ̃ ∈ C ([0, T ], RΩ) : ‖χ̃‖ 6 κ}.
∀t ∈ [0, T ],

|Φ(χ̃(t, θ))| 6
∣∣∣∣ β2

β1 +β2

∣∣∣∣ 1
Γ(η)

∫T
0
(T − λ)η−1

[
|B(λ)||=(χ̃(λ, θ))|

+

∫λ
0
|ϑ(λ, s)||=(χ̃(s, θ))|ds+

∫T
0
|ϑ1(λ, s)||=(χ̃(s, θ))|ds

]
dλ+

1
Γ(η)

∫t
0
(t− λ)η−1

[
|B(λ)||=(χ̃(λ, θ))|

+

∫λ
0
|ϑ(λ, s)||=(χ̃(s, θ))|ds+

∫T
0
|ϑ1(λ, s)||=(χ̃(s, θ))|ds

]
dλ

6

(
1 +

|β2|

|β1 +β2|

)(
Θ2(η+ 1) + (Θ1 +Θ

∗
1)T

Γ(η+ 2)

)
LTη‖χ̃‖

6

(
1 +

|β2|

|β1 +β2|

)(
Θ2(η+ 1) + (Θ1 +Θ

∗
1)T

Γ(η+ 2)

)
κLTη.

By choosing n =
(

1 +
|β2|

|β1+β2|

)(
Θ2(η+1)+(Θ1+Θ

∗
1)T

Γ(η+2)

)
κLTη, we have ‖Φ(χ̃(t, θ))‖ 6 n. We get ‖Φχ̃‖ 6 n,

the set Ek is implied to be confined by this.
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(iii) Φ operators bounded set into equi-continuous sets of C ([0, T ], RΩ), let t1, t2 ∈ (0, T ], and t1 < t2.
∀χ̃ ∈ Eκ, we get

| Φ (χ̃ (t2, θ) −Φ (χ̃ (t1, θ)) |

=
∣∣∣ 1
Γ(η)

∫t2

0
(t2 − λ)

η−1

[
B(λ)=(χ̃(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ

−
1
Γ(η)

∫t1

0
(t1 − λ)

η−1

[
B(λ)=(χ̃(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ
∣∣∣

=
∣∣∣ 1
Γ(η)

∫t1

0

(
(t2 − λ)

η−1 − (t1 − λ)
η−1
) [
B(λ)=(χ̃(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds

+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ+

1
Γ(η)

∫t2

t1

(t2 − λ)
η−1

×

[
B(λ)=(χ̃(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ
∣∣∣

6
Θ2L‖χ̃‖
Γ(η+ 1)

∣∣2 (t2 − t1)
η +

(
t
η
1 − tη2

)∣∣+ Θ1L‖χ̃‖
Γ(η+ 2)

∣∣∣2 (t2 − t1)
η+1 +

(
t
η+1
1 − tη+1

2

) ∣∣∣
+
Θ∗1L‖χ̃‖
Γ(η+ 2)

∣∣∣2 (t2 − t1)
η+1 +

(
t
η+1
1 − tη+1

2

) ∣∣∣ −→ 0 as t1 −→ t2.

|Φ (χ̃ (t2, θ)) −Φ (χ̃ (t1, θ))| → 0 as t1 → t2. This illustrates how the operator converts C ([0, T ], RΩ) into
an equicontinuous set from a bounded set. Consequently, the Arzela-Ascoli theorem states that operator
Φ is compact. For the final stage, consider the set ι, which is given by

ι = {χ̃ ∈ C ([0, T ], RΩ) : χ̃ = σΦ(χ̃) for 0 < σ < 1} .

Now that the prior set is bounded, we may demonstrate it. Assume that χ̃ ∈ ι. ∀t ∈ [0, T ], we get

χ̃(t, θ) = σ

(
h̃(t, θ) −

β2

β1 +β2

1
Γ(η)

∫T
0
(T − λ)η−1

[
B(λ)=(χ̃(λ, θ))

+

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ+

1
Γ(η)

∫t
0
(t− λ)η−1

×

[
B(λ)=(χ̃(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ

)
,

h̃(t, θ) is given in Theorem 3.1. Also, |ϕ̃(t, θ)| 6 Θ3 from assumption (H3), we get

|h̃(t, θ)| 6
|β2|

|β1 +β2|
+

(
1 +

|β2|

|β1 +β2|

)
Θ3

Γ(η+ 1)
:= Θ4.

Then, ∀t ∈ [0, T ], using |=(χ̃(t, θ))| 6 Θ∗, we have

|χ̃(t, θ)| =
∣∣∣σ(h̃(t, θ) − β2

β1 +β2

1
Γ(η)

∫T
0
(T − λ)η−1

[
B(λ)=(χ̃(λ, θ))

+

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ+

1
Γ(η)

∫t
0
(t− λ)η−1

×

[
B(λ)=(χ̃(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ

)∣∣∣
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6 |h̃(t, θ)|+
|β2|

|β1 +β2|

1
Γ(η)

∫T
0
(T − λ)η−1

[
|B(λ)||=(χ̃(λ, θ))|

+

∫λ
0
|ϑ(λ, s)||=(χ̃(s, θ))|ds+

∫T
0
|ϑ1(λ, s)||=(χ̃(s, θ))|ds

]
dλ+

1
Γ(η)

∫t
0
(t− λ)η−1

×

[
B(λ)||=(χ̃(λ, θ))|+

∫λ
0
|ϑ(λ, s)||=(χ̃(s, θ)) | ds+

∫T
0
|ϑ1(λ, s)||=(χ̃(s, θ)) | ds

]
dλ

6 Θ4 +

(
1 +

|β2|

|β1 +β2|

)(
Θ2(η+ 1) + (Θ1 +Θ

∗
1)T

Γ(η+ 2)
Θ∗Tη

)
= n∗,

where n∗ = Θ4 +
(

1 +
|β2|

|β1+β2|

)(
Θ2(η+1)+(Θ1+Θ

∗
1)T

Γ(η+2)

)
Θ∗Tη. This establishes the boundedness of every

χ̃ ∈ ι. The set ι is hence limited.
Additionally, Schaefer’s theorem establishes the existence of a fixed point for theΦ. This indicates that

there is at least one solution for the FFCV-FIDE (1.1)-(1.2), ∀t ∈ [0, T ], χ̃(t). Moreover, we can demonstrate
that FFCV-FIDE (1.1)-(1.2) has a unique continuous solution on [0, T ] by employing the assumptions in
(H1)-(H3),

Υ =

(
Θ2(η+ 1) + (Θ1 +Θ

∗
1)T
)

Γ(η+ 2)
LTη

(
1 +

|β2|

|β1 +β2|

)
< 1.

4. Methodology of ADT

This study demonstrates how to approximate the FFCV-FIDE solutions (1.1) ([2, 3]) using an ADT.
Examine the FFCV-FIDE (1.1) that follows. The result of applying the Iη operator to both sides of the
FFCV-FIDE (1.1) is

χ̃(t, θ) = χ̃0 + I
η(ϕ̃(λ, θ)) + Iη(B(t)=χ̃(t, θ))) + Iη

[∫t
0
ϑ(t, λ)=(χ̃(λ, θ))dλ+

∫T
0
ϑ1(t, λ)=(χ̃(λ, θ))dλ

]
.

ADT describes the solution χ̃(t, θ) as a series

χ̃(t, θ) =
∞∑
i=0

χ̃i(t, θ) (4.1)

and M1, the nonlinear term, is broken down as M1 =
∑∞
i=0 Pi, in which the Adomian polynomials Pi are

supplied by

Pi =
1
i!
di

dvi

[
M1

( ∞∑
l=0

viχ̃l

)]
v=0

.

Hence,

P0 =M1 (χ̃0) , P1 = χ̃1M
′
1 (χ̃0) , P2 = χ̃2M

′
1 (χ̃0) +

1
2
χ̃2

1M
′′
1 (χ̃0) , . . . .

The primary prerequisites for (1.1) are distinguished by their significant role in formulating the solution
and their straightforward treatment of the recurrence connections. Next, we create an Adomian equation
for the BVP that matches (3.1). The components χ̃0, χ̃2, χ̃2, . . . are found iteratively by

χ̃(t, θ) = h̃(t, θ) −
β2

β1 +β2

1
Γ(η)

∫T
0
(T − λ)η−1

[
B(λ)=(χ̃(λ, θ))

+

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ+

1
Γ(η)

∫t
0
(t− λ)η−1

×

[
B(λ)=(χ̃(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̃(s, θ))ds+

∫T
0
ϑ1(λ, s)=(χ̃(s, θ))ds

]
dλ.

(4.2)
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We construct this Adomian equation in such a way that the boundary condition is automatically satisfied
by the final solution. The following are obtained recurrence relations:

χ̃0(t, θ) = h̃(t, θ),
...

χ̃k+1(t, θ) = −
β2

β1 +β2

1
Γ(η)

∫T
0
(T − λ)η−1

[
B(λ)= (χ̃k(λ, θ)) +

∫λ
0
ϑ(λ, s)Pkds

+

∫T
0
ϑ1(λ, s)Pkds

]
dλ+

1
Γ(η)

∫t
0
(t− λ)η−1

[
B(λ)= (χ̃k(λ, θ)) +

∫λ
0
ϑ(λ, s)Pkds

+

∫T
0
ϑ1(λ, s)Pkds

]
dλ, k > 0.

(4.3)

The above relation is the only one utilized in the solution of BVP. If the series (4.1) is convergent uniformly,
we can approximate the solution of FFCV-FIDE (1.1) by solving (4.2) and applying the initial condition,
or by solving (4.3) and applying the boundary condition, and receiving the M terms

ΦM(t, θ) =
M−1∑
i=1

χ̃i(t, θ). (4.4)

4.1. Convergence analysis
This section describes the convergence of the approximate solution for such an IVP that was previously

discussed.

Theorem 4.1. Let’s assume that (H1)-(H3) are accurate. Take into consideration 0 < Υ < 1 as shown in

Υ =

(
Θ2(η+ 1) + (Θ1 +Θ

∗
1)T
)

Γ(η+ 2)
LTη

(
1 +

|β2|

|β1 +β2|

)
< 1. (4.5)

Subsequently, the series (4.1) converges uniformly to the BVP’s solution χ̃(t, θ) in (1.1). Additionally, an approxi-
mate solution to χ̃(t, θ) is given by the partial sum (4.4).

Keep in mind that since ϕ̃(t, θ) ∈ C(Ψ), χ̃0(t, θ) ∈ C(Ψ). Thus, for any t ∈ Ψ, there exists Θ ∈ R and
Θ > 0 such that |χ̃0(t, θ)| 6 Θ. We now demonstrate that the ith term in the series (4.1) meets the given
requirement,

|χ̃i(t, θ)| 6 ΘΥi on Ψ, (4.6)

where Υ was given in (4.5). For i = 1, we get

|χ̃1(t, θ)| =
∣∣∣Iη[h̃(t, θ) − β2

β1 +β2
+B(t)= (χ̃0(t, θ)) +

∫t
0
ϑ(t, λ)= (χ̃0(λ, θ))dλ+

∫T
0
ϑ1(t, λ)= (χ̃0(λ, θ))dλ

]∣∣∣
6 Θ4 +Θ2L |χ̃0(t, θ)| Iη(1) +Θ1L |χ̃0(t, θ)| Iη(t) +Θ∗1L |χ̃0(t, θ)| Iη(t)

= Θ4 +
Θ2L

Γ(η+ 1)
|χ̃0(t, θ)| tη +

Θ1L

Γ(η+ 2)
|χ̃0(t, θ)| tη+1 +

Θ∗1L

Γ(η+ 2)
|χ̃0(t, θ)| tη+1 6 Υ |χ̃0(t, θ)| 6 ΘΥ.

Here, we consider (4.6) is true for i = k− 1, i.e., |χ̃k−1(t, θ) |6 ΘΥk−1. Proceeding in the same way as
previously, for i = k, we get

|χ̃k(t, θ)| =
∣∣∣Iη[h̃(t, θ) − β2

β1 +β2
+B(t)= (χ̃k−1(t, θ)) +

∫t
0
ϑ(t, λ)= (χ̃k−1(λ, θ))dλ

+

∫t
0
ϑ1(t, λ)= (χ̃k−1(λ, θ))dλ

]∣∣∣ 6 Υ |χ̃k−1(t, θ)| 6 ΘΥk.
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We find the required outcome at (4.6) as an answer. Consequently, for every t ∈ Ψ,

∞∑
i=0

|χ̃i(t, θ)| 6
∞∑
i=0

ΘΥi,

∑∞
i=0ΘΥ

i is a convergent series for 0 < Υ < 1. Then,
∑∞
i=0 χ̃i(t, θ) is converges uniformly to the Weier-

strass M-test. Therefore, again using the Weierstrass M-test, there is a uniform convergence of the series
(4.1). As a result, the partial sum in (4.4) approximates the answer to (1.1).

5. An example

Consider the following FFCV-FIDE:

D
1
2 χ̃(t, θ) = ϕ̃(t, θ) +B(t)χ̃(t, θ) +

∫t
0
ϑ(t, λ)χ̃(λ, θ)dλ+

∫ 1

0
ϑ1(t, λ)χ̃(λ, θ)dλ,

2χ̃(0, θ) + χ̃(1, θ) = β̃3,

here, β1 = 2, β2 = 1, β̃3 = (θ− 1, 1 − θ), where ϕ̃(t, θ) = 3t(θ− 1, 1 − θ), B(t) =
−(t3)

10 , ϑ(t, λ) = −3λt
10 ,

and ϑ1(t, λ) = −6λt
10 . Apply I1/2 in Eq. (5.1). The preceding Eq. (5.1) has an equivalent form under type

(i)-differentiability, which is

χ(t, θ) = h(t, θ) −
β2

β1 +β2

1
Γ(η)

∫ 1

0
(1 − λ)η−1

[
B(λ)=(χ(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ(s, θ))ds

+

∫ 1

0
ϑ1(λ, s)=(χ(s, θ))ds

]
dλ+

1
Γ(η)

∫t
0
(t− λ)η−1

×

[
B(λ)=(χ(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ(s, θ))ds+

∫ 1

0
ϑ1(λ, s)=(χ(s, θ))ds

]
dλ

χ̄(t, θ) = h̄(t, θ) −
β2

β1 +β2

1
Γ(η)

∫ 1

0
(1 − λ)η−1

[
B(λ)=(χ̄(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̄(s, θ))ds

+

∫ 1

0
ϑ1(λ, s)=(χ̄(s, θ))ds

]
dλ+

1
Γ(η)

∫t
0
(t− λ)η−1

×

[
B(λ)=(χ̄(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ̄(s, θ))ds+

∫ 1

0
ϑ1(λ, s)=(χ̄(s, θ))ds

]
dλ.

(5.1)

Let’s now build χ(t, θ) as

χ(t, θ) = h(t, θ) −
β2

β1 +β2

1
Γ(η)

∫ 1

0
(1 − λ)η−1

[
B(λ)=(χ(λ, θ))

. +
∫λ

0
ϑ(λ, s)=(χ(s, θ))ds+

∫ 1

0
ϑ1(λ, s)=(χ(s, θ))ds

]
dλ

+
1
Γ(η)

∫t
0
(t− λ)η−1

[
B(λ)=(χ(λ, θ)) +

∫λ
0
ϑ(λ, s)=(χ(s, θ))ds+

∫ 1

0
ϑ1(λ, s)=(χ(s, θ))ds

]
dλ,

where

h̃(t, θ) =
β̃3

β1 +β2
−

β2

β1 +β2

1
Γ(η)

∫ 1

0
(1 − λ)η−1ϕ̃(λ, θ)dλ+

1
Γ(η)

∫t
0
(t− λ)η−1ϕ̃(λ, θ)dλ,
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here β̃3 = (θ− 1, 1 − θ) is fuzzy value, β1 = 2, and β2 = 1,

h(t, θ) =
(θ− 1)

3
−

(θ− 1)
Γ(5/2)

+
3t3/2(θ− 1)
Γ(5/2)

, h̄(t, θ) =
(1 − θ)

3
−

(1 − θ)

Γ(5/2)
+

3t3/2(1 − θ)

Γ(5/2)
.

We are now using the ADT,

χ0(t, θ) = h(t, θ),

χ0(t, θ) = h(t, θ) =
(θ− 1)

3
−

(θ− 1)
Γ(5/2)

+
3t3/2(θ− 1)
Γ(5/2)

,

χ1(t, θ) = −
1

3Γ(1/2)

∫1

0
(1 − λ)1/2

[(
−t3

10

)(
(θ− 1)

3
−

(θ− 1)
Γ(5/2)

+
3t3/2(θ− 1)
Γ(5/2)

)

+

∫λ
0

(
−3λt

10

)(
(θ− 1)

3
−

(θ− 1)
Γ(5/2)

+
3t3/2(θ− 1)
Γ(5/2)

+
6t3/2(θ− 1)
Γ(5/2)

)
ds

]
dλ

+
1

Γ(1/2)

∫t
0
(t− λ)1/2

[(
−t3

10

)(
(θ− 1)

3
−

(θ− 1)
Γ(5/2)

+
3t3/2(θ− 1)
Γ(5/2)

+
6t3/2(θ− 1)
Γ(5/2)

)

+

∫λ
0

(
−3λt

10

)(
(θ− 1)

3
−

(θ− 1)
Γ(5/2)

+
3t3/2(θ− 1)
Γ(5/2)

+
6t3/2(θ− 1)
Γ(5/2)

)
ds

]
dλ,

χ̃k+1(t, θ) = −
β2

β1 +β2

1
Γ(η)

∫T
0
(T − λ)η−1

[
B(λ)= (χ̃k(λ, θ)) +

∫λ
0
ϑ(λ, s)= (χ̃k(s, θ))ds

+

∫1

0
ϑ1(λ, s)= (χ̃k(s, θ))ds

]
dλ+

1
Γ(η)

∫t
0
(t− λ)η−1

[
B(λ)= (χ̃k(λ, θ))

+

∫λ
0
ϑ(λ, s)= (χ̃k(s, θ))ds+

∫1

0
ϑ1(λ, s)= (χ̃k(s, θ))ds

]
dλ.

In a similar manner, we may locate consecutive words and obtain the solution

χ =

∞∑
n=0

χ
n
=

(θ− 1)
3

−
(θ− 1)
Γ(5/2)

+
3t3/2(θ− 1)
Γ(5/2)

+
6t3/2(θ− 1)
Γ(5/2)

+ · · · .

Similarly, we may locate

χ̄ =

∞∑
n=0

χ
n
=

(1 − θ)

3
−

(1 − θ)

Γ(5/2)
+

3t3/2(1 − θ)

Γ(5/2)
+

6t3/2(1 − θ)

Γ(5/2)
+ · · · .

Figure 1: Approximate solutions for uncertainty θ and space variable t.
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