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Abstract

This paper analyzes a nonlocal problem of a delay functional-differential equation with parameters. We confirm that there
is at least one solution x ∈ AC[0, T ] to the problem. Furthermore, we provide the hypotheses that must be fulfilled for the
solution’s uniqueness. The analysis also implements the Hyers-Ulam stability of the problem and the continuous dependence of
the unique solution on some parameters. We provide some exceptional cases and examples to illustrate our findings.
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1. Introduction

Functional equations have been extensively studied by numerous authors [7, 19, 41, 57], influencing
and benefiting many fields with their use and techniques. Their remarkable applications have driven
growth and development in various areas, including not only mathematics but also science, engineering,
economics, epidemiology, computer science, biology, social and behavioral sciences [6, 16] . Understand-
ing the future behavior of a particular phenomenon requires a thorough understanding of functional
differential equations [17, 33, 43, 51]. Particularly, a family of mathematical models including time delays
and parameters represented by parametric delay functional-differential equations finds wide use in simu-
lating real-world processes which has been discussed by numerous authors (see [29, 31, 42, 50, 63]). Delay
functions are widely employed to model the evolution of propagation and population dynamics [45, 48].
Economic systems, for instance, naturally involve delays due to decisions such as investment strategies
and the dynamics of commodity markets spread over time periods [44, 46]. In particular, Dvalishvili et
al. [23] construct a market relations model based on a controlled delay functional-differential equation.

Stability analysis is a highly representative field in mathematical sciences [10, 64]. In order to model a
physical process, an equation or problem can be used if a small alteration to it results in a corresponding
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small alteration in the outcome. When this occurs, the equation or problem is said to be stable. The
concept of stability in a functional equation emerges when the equation is replaced by an inequality,
serving as a perturbation. The key inquiry of stability is: how do the solutions to inequality differ from
those of the original functional equation ([35])? In a lecture delivered at the University of Wisconsin
in 1940, Ulam [61, 62] initially introduced the topic of stability in functional equations by asking the
following question: Given a group (G, .), a metric group (H, ∗) with metric ρ(., .), and a positive number
ε, the question asks whether there exists a positive number δ > 0 such that if a mapping ψ : G → H

satisfies the condition
ρ(ψ(x.y),ψ(x) ∗ψ(y)) 6 δ, ∀x,y ∈ G,

then there exists a homomorphism φ : G→ H such that

ρ(ψ(x),φ(x)) 6 ε, ∀x ∈ G?

In simpler terms, the question is whether a small deviation (controlled by δ) from the homomorphism
property of ψ implies the existence of a homomorphism φ that closely approximates ψ within ε. If so,
we classify the functional equation for homomorphisms as stable [36]. Hyers [34] then offered a partial
solution for the problem in the context of Banach space in 1941 under the assumption that G and H are
Banach spaces with δ = ε and φ(x) = limn→∞ 2−nψ(2nx). Subsequently, Rassias [53, 54] extended this
conceptual framework by including variables in 1978, leading to its designation as Hyers-Ulam-Rassias
stability.

The Hyers-Ulam stability of a differential equation was initially studied by Alsina and Ger [8] in 1998,
they dealt with the differential equation y

′
(t) = y(t). Furthermore, in 2004, Jung [37] has explored the

Hyers-Ulam stability of the first order differential equation φ(t)y
′
(t) = y(t), he has published multiple

papers concerning this type of equations (see [38, 39]). In the years from 2010 to 2015, several authors
investigated the Hyers-Ulam stability of second and third order differential equations (see [2–4, 32, 47]).
Recent research has implemented the Hyers-Ulam stability of various types of differential equations,
including hypergeometric and Laguerre differential equations examined by Abdollahpour et al. [1, 5], as
well as integro-differential equations investigated by Tunç et al. [59, 60].

Continuous dependence [49, 55], another important concept in stability theory, addresses the behavior
of solutions in mathematical problems under varying conditions. It ensures that small changes in the
initial conditions or parameters of a problem result in correspondingly small changes in the solution.

Nonlocal problems have been extensively studied by several authors in the last two decades (see
[11, 24, 26, 30, 52, 56]), which is essential in the representation of real-life scenarios through mathematical
models. Ensuring the trustworthiness of these models involves integrating the principles of Hyers-Ulam
stability and continuous dependence. Hyers-Ulam stability assesses the problem’s resilience to distur-
bances, while continuous dependence examines how small variations in parameters affect the unique
solution of the problem.

The solvability of problems involving functional-differential equations has been analyzed using a vari-
ety of techniques, such as operator theory and fixed-point theorems. One approach involves formulating
the problem as a fixed-point problem and applying the Schauder fixed-point theorem to demonstrate the
existence of solutions. This method has been extensively explored in numerous publications and mono-
graphs (see [14, 15, 20]). Notably, Boucherif and Precup [12] investigated the existence of solutions to the
nonlocal problem for the first-order differential equation

dx(t)

dt
= f

(
t, x(t)

)
, a.e. t ∈ [0, 1], x(0) +

m∑
k=1

akx(tk) = 0,

where tk are given points with 0 6 t1 6 t2 6 · · · 6 tm < 1 and 1 +
∑m
k=1 ak 6= 0. Furthermore, the

authors in [27] studied the existence of at least one solution x ∈ AC[0, 1] of the nonlocal problem of the
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functional-differential equation

dx(t)

dt
= f

(
t,
dx(t)

dt

)
, a.e. t ∈ (0, 1],

with the nonlocal integral condition

x(0) +
∫ 1

0
x(s)ds = x0.

Recently, El-Sayed et al. implemented the concepts of Hyers-Ulam stability and continuous dependence
to confirm the stability of a functional integro-differential equation with a quadratic functional integro-
differential constraint [25] and a delay tempered-fractal differential equation [28]. Additionally, András
[9] applied the Hyers-Ulam stability for first-order differential systems with nonlocal initial conditions.
Furthermore, Tunç and Biçer [58] applied the Hyers-Ulam-Rassias and the Hyers-Ulam stability for the
first order delay functional differential equation of the form x

′
(t) = f(t, x(t), x(t− τ)), τ > 0.

Motivated by the above results, we study the solvability of the nonlocal problem of the parametric
delay functional-differential equation

dx(t)

dt
=

k∑
i=1

fi

(
t, λi

d

dt
x
(
φi(t)

))
, a.e. t ∈ (0, T ], (1.1)

with the nonlocal integral condition

x(0) +
∫T

0
g

(
s, x(s),

dx(s)

ds

)
ds = x0, (1.2)

where λi > 0 are parameters, φi are delay functions, i = 1, 2, . . . , k, and x0 is the initial data.
Our aim in this paper is to analyze the existence of solutions to the nonlocal problem (1.1)-(1.2) under

suitable conditions, then we study the uniqueness of the solution. Additionally, we implement the Hyers-
Ulam stability of the problem, identifying its resistance to perturbations. Moreover, we investigate the
continuous dependence of the unique solution on the functions fi, parameters λi, the initial data x0, and
the function g. Finally, in order to demonstrate our insights, we provide a few instances and special cases.
The Schauder fixed-point theorem is applied in this work to determine the hypotheses for the solution’s
existence and uniqueness.

2. Main result

2.1. Formulation of the problem
Consider the nonlocal problem (1.1)-(1.2) under the following assumptions.

(i) fi : [0, T ]×R → R satisfies the Carathéodory condition [18], i.e., it is measurable in t ∈ [0, T ] for all
x ∈ R and continuous in x ∈ R for almost all t ∈ [0, T ].

(ii) There exist integrable functions ai ∈ L1[0, T ] and constants bi > 0 such that |fi(t, x)| 6 |ai(t)|+ bi|x|.
(iii) φi : [0, T ]→ [0, T ] is continuous and increasing function such that φi(t) 6 t.
(iv)

∑k
i=1 biλi < 1.

(v) g : [0, T ]×R×R → R satisfies the Carathéodory condition, i.e., it is measurable in t ∈ [0, T ] for all
x,y ∈ R and continuous in x,y ∈ R for almost all t ∈ [0, T ].

(vi) There exists a function h ∈ L1[0, T ] and a constant L > 0 such that |g(t, x,y)| 6 |h(t)|+ L
(
|x|+ |y|

)
.

(vii) LT < 1.

The following lemma shows the equivalence between the problem (1.1)-(1.2) with its corresponding
integral and functional equation.
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Lemma 2.1. Let x be a solution of (1.1)-(1.2), then it can be given by the integral equation

x(t) = x0 −

∫T
0
g
(
s, x(s),y(s)

)
ds+

∫t
0
y(s)ds, t ∈ [0, T ], (2.1)

where y(t) is the solution of the functional equation

y(t) =

k∑
i=1

fi
(
t, λiφ ′i(t)y(φi(t))

)
, t ∈ [0, T ]. (2.2)

Proof. Let x be a solution of (1.1)-(1.2) and dx(t)
dt = y ∈ L1[0, T ], then

x(t) = x(0) +
∫t

0
y(s)ds,

using (1.2), we obtain (2.1)

x(t) = x0 −

∫T
0
g
(
s, x(s),y(s)

)
ds+

∫t
0
y(s)ds ∈ AC[0, T ],

and

x(φi(t)) = x0 −

∫T
0
g
(
s, x(s),y(s)

)
ds+

∫φi(t)
0

y(s)ds,

hence
d

dt
x(φi(t)) = φ

′
i(t)y(φi(t)), (2.3)

using (2.3) in (1.1), we obtain (2.2)

y(t) =

k∑
i=1

fi
(
t, λiφ ′i(t)y(φi(t))

)
, t ∈ [0, T ].

Also, we can get back to (1.1)-(1.2) by differentiating (2.1) and using (2.2) and (2.3) as follows

dx(t)

dt
= y(t), a.e. t ∈ (0, T ] =

k∑
i=1

fi
(
t, λiφ ′i(t)y(φi(t))

)
=

k∑
i=1

fi

(
t, λi

d

dt
x
(
φi(t)

))
,

and the nonlocal integral condition (1.2) holds when substituting t = 0 and y(s) =
dx(s)
ds in (2.1). This

proves the equivalence between the problem (1.1)-(1.2) to (2.1)-(2.2).

2.2. Existence of solutions
In this part, we demonstrate the existence of at least one absolutely continuous solution x ∈ AC[0, T ]

of (1.1)-(1.2). For this objective, we provide the following theorems.

Theorem 2.2. Let the assumptions (i)-(iv) be satisfied, then (2.2) has at least one solution y ∈ L1[0, T ].

Proof. Define the closed ball Qr1 and the operator F1 associated with (2.2) by

Qr1 :=
{
y ∈ R : ||y||L1 6 r1

}
⊂ L1[0, T ], where r1 =

∑k
i=1 ||ai||L1

1 −
∑k
i=1 biλi

,

and

F1y(t) =

k∑
i=1

fi
(
t, λiφ ′i(t)y(φi(t))

)
, t ∈ [0, T ].
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It is clear that Qr1 is a nonempty, closed, bounded, and convex subset of L1[0, T ]. Let y ∈ Qr1 , then for
t ∈ [0, T ], we get

|F1y(t)| =

∣∣∣∣ k∑
i=1

fi
(
t, λiφ ′i(t)y(φi(t))

)∣∣∣∣
6

k∑
i=1

∣∣fi(t, λiφ ′i(t)y(φi(t)))∣∣
6

k∑
i=1

[
|ai(t)|+ bi|λiφ

′
i(t)y(φi(t))|

]

=

k∑
i=1

|ai(t)|+

k∑
i=1

biλiφ
′
i(t)|y(φi(t))|.

Thus

||F1y||L1 :=

∫T
0
|F1y(t)|dt

6
∫T

0

k∑
i=1

|ai(t)|dt+

∫T
0

k∑
i=1

biλiφ
′
i(t)|y(φi(t))|dt

=

k∑
i=1

∫T
0
|ai(t)|dt+

k∑
i=1

∫T
0
biλiφ

′
i(t)|y(φi(t))|dt

=

k∑
i=1

||ai||L1 +

k∑
i=1

{
biλi

∫T
0
φ ′i(t)|y(φi(t))|dt

}
.

Putting φi(t) = u =⇒ φ ′i(t)dt = du, then

||F1y||L1 6
k∑
i=1

||ai||L1 +

k∑
i=1

biλi

∫φi(T)
φi(0)

φ ′i(t)|y(u)|
du

φ ′i(t)

6
k∑
i=1

||ai||L1 +

k∑
i=1

biλi

∫T
0
|y(u)|du

=

k∑
i=1

||ai||L1 +

k∑
i=1

biλi||y||L1 6
k∑
i=1

||ai||L1 + r1

k∑
i=1

biλi = r1.

This proves that F1 : Qr1 → Qr1 and the class {F1y(t)} is uniformly bounded on Qr1 . Let y ∈ Ω ⊂ Qr1 ,
then

||(F1y)h − (F1y)||L1 =

∫T
0
|(F1y(t))h − (F1y(t))|dt

=

∫T
0

∣∣∣∣ 1
h

∫t+h
t

(F1y(θ))dθ− (F1y(t))

∣∣∣∣dt
6
∫T

0

1
h

∫t+h
t

∣∣(F1y(θ)) − (F1y(t))
∣∣dθdt

=

∫T
0

1
h

∫t+h
t

∣∣∣∣ k∑
i=1

fi
(
θ, λiφ ′i(θ)y(φi(θ))) −

k∑
i=1

fi
(
t, λiφ ′i(t)y(φi(t))

)∣∣∣∣dθdt
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6
∫T

0

1
h

∫t+h
t

k∑
i=1

∣∣fi(θ, λiφ ′i(θ)y(φi(θ))
)
− fi

(
t, λiφ ′i(t)y(φi(t))

)∣∣dθdt
=

k∑
i=1

∫T
0

1
h

∫t+h
t

∣∣fi(θ, λiφ ′i(θ)y(φi(θ))
)
− fi

(
t, λiφ ′i(t)y(φi(t))

)∣∣dθdt.
Using assumptions (i)-(ii), it follows that f ∈ L1[0, T ], then

1
h

∫t+h
t

∣∣fi(θ, λiφ ′i(θ)y(φi(θ))
)
− fi

(
t, λiφ ′i(t)y(φi(t))

)∣∣dθ→ 0 as h→ 0.

This yields that (F1y(t))h → (F1y(t)) uniformly in L1[0, T ]. Thus, by Kolmogorov compactness criterion
[21], F1(Ω) is relatively compact, hence F1 is compact operator. Let {yn} ⊂ Qr1 such that yn → y, then

F1yn(t) =

k∑
i=1

fi
(
t, λiφ ′i(t)yn(φi(t))

)
, n ∈N,

and

lim
n→∞ F1yn(t) = lim

n→∞
k∑
i=1

fi
(
t, λiφ ′i(t)yn(φi(t))

)
=

k∑
i=1

lim
n→∞ fi

(
t, λiφ ′i(t)yn(φi(t))

)
=

k∑
i=1

fi
(
t, λiφ ′i(t) lim

n→∞yn(φi(t))
)

=

k∑
i=1

fi
(
t, λiφ ′i(t)y(φi(t))

)
= F1y(t).

Thus, F1 is continuous operator. Now all conditions of the Schauder fixed point Theorem [20] are satisfied,
then F1 has at least one fixed point y ∈ Qr1 , hence (2.2) has at least one solution y ∈ L1[0, T ].

Theorem 2.3. Let the assumptions (i)-(vii) be satisfied, then (2.1) has at least one continuous solution x ∈ C[0, T ].
Consequently, (1.1)-(1.2) has at least one solution x ∈ AC[0, T ].

Proof. Define the closed ball Qr2 and the operator F2 associated with (2.1) by

Qr2 :=
{
x ∈ R : ||x||C 6 r2

}
⊂ C[0, T ], where r2 =

|x0|+ ||h||L1 + (L+ 1)r1

1 − LT
,

and

F2x(t) = x0 −

∫T
0
g
(
s, x(s),y(s)

)
ds+

∫t
0
y(s)ds, t ∈ [0, T ].

It is clear that Qr2 is a nonempty, closed, bounded, and convex subset of C[0, T ]. Let x ∈ Qr2 , then for
t ∈ [0, T ], we get

|F2x(t)| =

∣∣∣∣x0 −

∫T
0
g
(
s, x(s),y(s)

)
ds+

∫t
0
y(s)ds

∣∣∣∣
6 |x0|+

∫T
0

∣∣g(s, x(s),y(s))∣∣ds+ ∫t
0
|y(s)|ds
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6 |x0|+

∫T
0

[
|h(s)|+ L|x(s) + y(s)|

]
ds+

∫T
0
|y(s)|ds

6 |x0|+

∫T
0
|h(s)|ds+ L

∫T
0
|x(s)|ds+ L

∫T
0
|y(s)|ds+

∫T
0
|y(s)|ds

6 |x0|+ ||h||L1 + L

∫T
0

sup
s∈[0,T ]

|x(s)|ds+ L||y||L1 + ||y||L1

= |x0|+ ||h||L1 + LT ||x||C + (L+ 1)||y||L1 .

Then, we have
||F2x||C 6 |x0|+ ||h||L1 + LTr2 + (L+ 1)r1 = r2.

This proves that the class {F2x(t)} is uniformly bounded on Qr2 . Let x ∈ Qr2 and t1, t2 ∈ [0, T ], where
t2 > t1 and |t2 − t1| 6 δ, thus

|F2x(t2) − F2x(t1)| =

∣∣∣∣x0 −

∫T
0
g
(
s, x(s),y(s)

)
ds+

∫t2

0
y(s)ds− x0 +

∫T
0
g
(
s, x(s),y(s)

)
ds−

∫t1

0
y(s)ds

∣∣∣∣
6
∫t2

t1

|y(s)|ds 6 ε.

This indicates that F2 : Qr2 → Qr2 and the class {F2x(t)} is equi-continuous on Qr2 . Thus, by the Arzela-
Ascoli Theorem [13], {F2x(t)} is relatively compact, hence F2 is compact operator. Let {xn} ⊂ Qr2 such that
xn → x, then

F2xn(t) = x0 −

∫T
0
g
(
s, xn(s),y(s)

)
ds+

∫t
0
y(s)ds, n ∈N,

and

lim
n→∞ F2xn(t) = x0 − lim

n→∞
∫T

0
g
(
s, xn(s),y(s)

)
ds+

∫t
0
y(s)ds.

Using the Lebesgue dominated convergence Theorem [22] and assumptions (v)-(vi), we have

lim
n→∞ F2xn(t) = x0 −

∫T
0

lim
n→∞g

(
s, xn(s),y(s)

)
ds+

∫t
0
y(s)ds

= x0 −

∫T
0
g
(
s, lim
n→∞ xn(s),y(s)

)
ds+

∫t
0
y(s)ds

= x0 −

∫T
0
g
(
s, x(s),y(s)

)
ds+

∫t
0
y(s)ds = F2x(t).

Thus, F2 is a continuous operator. Then, by the Schauder fixed point Theorem, F2 has at least one fixed
point x ∈ Qr2 , hence (2.1) has at least one solution x ∈ C[0, T ]. Consequently, by Lemma 2.1, it follows
that (1.1)-(1.2) has at least one solution x ∈ AC[0, T ], which completes the proof.

3. Stability analysis of the problem

3.1. Uniqueness of solution
At this point, we confirm the existence of a unique solution of (1.1)-(1.2). To perform this, we require

the following additional hypotheses.

(i) ′ fi : [0, T ]×R→ R is measurable in t ∈ [0, T ] and satisfies the Lipschitz condition in x ∈ R such that

|fi(t, x) − fi(t,y)| 6 bi|x− y| with constant bi > 0.
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(ii) ′ fi(t, 0) ∈ L1[0, T ].
(iii) ′ g : [0, T ]×R×R → R is measurable in t ∈ [0, T ] and satisfies the Lipschitz condition in x,y ∈ R

such that
|g(t, x,y) − g(t, v,w)| 6 L

(
|x− v|+ |y−w|

)
with constant L > 0.

(iv) ′ g(t, 0, 0) ∈ L1[0, T ].

Theorem 3.1. Let the hypotheses (iii)-(iv) (of Theorem 2.2) and (i) ′-(ii) ′ be satisfied, then the solution of (2.2),
y ∈ L1[0, T ], is unique.

Proof. Hypotheses (i)-(ii) of Theorem 2.2 can be deduced from (i) ′ and (ii) ′ as follows, putting y = 0 in (i) ′,
we get |fi(t, x)| 6 bi|x|+ |fi(t, 0)|, where ai(t) = fi(t, 0) ∈ L1[0, T ]. Hence, we deduce that all assumptions
of Theorem 2.2 are satisfied and (2.2) has at least one solution y ∈ L1[0, T ]. Now let u, v be two solutions
of (2.2), then

|u(t) − v(t)| =

∣∣∣∣ k∑
i=1

fi
(
t, λiφ ′i(t)u(φi(t))

)
−

k∑
i=1

fi
(
t, λiφ ′i(t)v(φi(t))

)∣∣∣∣
6

k∑
i=1

∣∣fi(t, λiφ ′i(t)u(φi(t)))− fi(t, λiφ ′i(t)v(φi(t)))∣∣
6

k∑
i=1

bi
∣∣λiφ ′i(t)u(φi(t)) − λiφ ′i(t)v(φi(t))∣∣

=

k∑
i=1

biλiφ
′
i(t)

∣∣u(φi(t)) − v(φi(t))∣∣.
Thus

||u− v||L1 6
k∑
i=1

biλi||u− v||L1 .

Since
∑k
i=1 biλi < 1, hence u = v and the solution of (2.2), y ∈ L1[0, T ], is unique.

Theorem 3.2. Let the hypotheses (iii)-(iv) and (vii) (of Theorem 2.3) and (i) ′-(iv) ′ be satisfied, then the solution of
(1.1)-(1.2), x ∈ AC[0, T ], is unique.

Proof. Hypotheses (v)-(vi) of Theorem 2.3 can be deduced from (iii) ′ and (iv) ′ as follows, putting
v = w = 0 in (iii) ′, we get |g(t, x,y)| 6 |g(t, 0, 0)|+ L(|x|+ |y|), where h(t) = g(t, 0, 0) ∈ L1[0, T ]. Hence, we
deduce that all assumptions of Theorem 2.3 are satisfied and (2.1) has at least one solution x ∈ C[0, T ].
Now let x1, x2 be two solutions of (2.1), then

|x2(t) − x1(t)| =

∣∣∣∣x0 −

∫T
0
g
(
s, x2(s),y(s)

)
ds+

∫t
0
y(s)ds− x0 +

∫T
0
g
(
s, x1(s),y(s)

)
ds−

∫t
0
y(s)ds

∣∣∣∣
6
∫T

0

∣∣g(s, x2(s),y(s)
)
− g

(
s, x1(s),y(s)

)∣∣ds 6 L ∫T
0
|x2(s) − x1(s)|ds.

Thus
||x2 − x1||C 6 LT ||x2 − x1||C.

Since LT < 1, hence x1 = x2 and the solution of (2.1), x ∈ C[0, T ], is unique. Consequently, the solution of
(1.1)-(1.2), x ∈ AC[0, T ], is unique, which completes the proof.
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3.2. Hyers-Ulam stability
Here, we implement the theory of Hyers-Ulam stability for the problem (1.1)-(1.2) attached with (2.1)-

(2.2).

Definition 3.3 ([25, 28, 40]). Let the solution x ∈ AC[0, T ] of (1.1)-(1.2) exists uniquely. The nonlocal
problem (1.1)-(1.2) is Hyers-Ulam stable, if ∀ε > 0, ∃δ(ε) > 0 such that for any solution xs ∈ AC[0, T ] of
(1.1)-(1.2) satisfying the inequality∣∣∣∣dxs(t)dt

−

k∑
i=1

fi

(
t, λi

d

dt
xs
(
φi(t)

))∣∣∣∣ 6 δ,
then ||x− xs||C 6 ε.

Theorem 3.4. Let the hypotheses of Theorem 3.2 be satisfied, then the problem (1.1)-(1.2) is Hyers-Ulam stable.

Proof. Let
∣∣∣∣dxs(t)dt −

∑k
i=1 fi

(
t, λi ddtxs

(
φi(t)

))∣∣∣∣ 6 δ, then

−δ 6
dxs(t)

dt
−

k∑
i=1

fi

(
t, λiφ ′i(t)

dxs
(
φi(t)

)
d
(
φi(t)

) )
6 δ, −δ 6 ys(t) −

k∑
i=1

fi
(
t, λiφ ′i(t)ys(φi(t))

)
6 δ.

Now consider

|y(t) − ys(t)|

=

∣∣∣∣ k∑
i=1

fi
(
t, λiφ ′i(t)y(φi(t))

)
− ys(t)

∣∣∣∣
=

∣∣∣∣ k∑
i=1

fi
(
t, λiφ ′i(t)y(φi(t))

)
− ys(t) −

k∑
i=1

fi
(
t, λiφ ′i(t)ys(φi(t))

)
+

k∑
i=1

fi(t, λiφ ′i(t)ys(φi(t)))
∣∣∣∣

6
k∑
i=1

∣∣fi(t, λiφ ′i(t)y(φi(t)))− fi(t, λiφ ′i(t)ys(φi(t)))∣∣+ ∣∣∣∣ k∑
i=1

fi
(
t, λiφ ′i(t)ys(φi(t))

)
− ys(t)

∣∣∣∣
6

k∑
i=1

bi
∣∣λiφ ′i(t)y(φi(t)) − λiφ ′i(t)ys(φi(t))∣∣+ δ = k∑

i=1

biλiφ
′
i(t)

∣∣y(φi(t)) − ys(φi(t))∣∣+ δ.
Thus

||y− ys||L1 6
k∑
i=1

biλi||y− ys||L1 + δT ,

and
||y− ys||L1 6

δT

1 −
∑k
i=1 biλi

.

Since
∑k
i=1 biλi < 1, then ||y− ys||L1 6 ε∗. Now

|x(t) − xs(t)| =

∣∣∣∣x0 −

∫T
0
g
(
s, x(s),y(s)

)
ds+

∫t
0
y(s)ds

− x0 +

∫T
0
g
(
s, xs(s),ys(s)

)
ds−

∫t
0
ys(s)ds

∣∣∣∣
6
∫T

0

∣∣g(s, x(s),y(s))− g(s, xs(s),ys(s))∣∣ds+ ∫T
0

∣∣y(s) − ys(s)∣∣ds
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6 L
∫T

0

[
|x(s) − xs(s)|+ |y(s) − ys(s)|

]
ds+ ||y− ys||L1

6 LT ||x− xs||C + (L+ 1)||y− ys||L1 .

Then
||x− xs||C 6 LT ||x− xs||C + (L+ 1)ε∗,

and

||x− xs||C 6
(L+ 1)ε∗

1 − LT
.

Since LT < 1, then ||x− xs||C 6 ε. So, the problem (1.1)-(1.2) is Hyers-Ulam stable.

3.3. Continuous dependency results
This portion investigates the continuous dependence of the unique solution of (1.1)-(1.2) on the func-

tions fi, parameters λi, the initial data x0, and the function g.

Definition 3.5. The solution x ∈ AC[0, T ] of (1.1)-(1.2) depends continuously on the function y ∈ L1[0, T ],
if ∀ε > 0, ∃δ(ε) > 0 such that ||y− y∗||L1 6 δ ⇒ ||x− x∗||C 6 ε, where x∗ is the unique solution of the
integral equation

x∗(t) = x0 −

∫T
0
g
(
s, x∗(s),y∗(s)

)
ds+

∫t
0
y∗(s)ds, t ∈ [0, T ]. (3.1)

Theorem 3.6. Let the hypotheses of Theorem 3.2 be fulfilled, then the solution x ∈ AC[0, T ] of (1.1)-(1.2) depends
continuously on the function y.

Proof. Let x and x∗ be the two solutions of (2.1) and (3.1), respectively, then we have

|x(t) − x∗(t)| =

∣∣∣∣x0 −

∫T
0
g
(
s, x(s),y(s)

)
ds+

∫t
0
y(s)ds− x0 +

∫T
0
g
(
s, x∗(s),y∗(s)

)
ds−

∫t
0
y∗(s)ds

∣∣∣∣
6
∫T

0

∣∣g(s, x(s),y(s))− g(s, x∗(s),y∗(s))∣∣ds+ ∫t
0
|y(s) − y∗(s)|ds

6 L
∫T

0

[
|x(s) − x∗(s)|+ |y(s) − y∗(s)|

]
ds+ ||y− y∗||L1 6 LT ||x− x∗||C + (L+ 1)||y− y∗||L1 .

Thus
||x− x∗||C 6 LT ||x− x∗||C + (L+ 1)δ.

Hence

||x− x∗||C 6
(L+ 1)δ
1 − LT

= ε.

Since LT < 1, therefore, the solution of (1.1)-(1.2) depends continuously on y.

Definition 3.7. The solution y ∈ L1[0, T ] of the functional equation (2.2) depends continuously on the
functions fi and parameters λi, if ∀ε > 0, ∃δ(ε) > 0 such that

max
{
|fi(t, x) − f∗i (t, x)|, |λi − λ

∗
i |
}
6 δ⇒ ||y− y∗||L1 6 ε,

where y∗ is the unique solution of the functional equation

y∗(t) =

k∑
i=1

f∗i
(
t, λ∗iφ

′
i(t)y

∗(φi(t))
)
, t ∈ [0, T ]. (3.2)

Theorem 3.8. Let the hypotheses of Theorem 3.1 be fulfilled, then the solution y ∈ L1[0, T ] of (2.2) depends
continuously on the functions fi and parameters λi.
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Proof. Let y and y∗ be the two solutions of (2.2) and (3.2), respectively, then we have

|y(t) − y∗(t)| =

∣∣∣∣ k∑
i=1

fi
(
t, λiφ ′i(t)y(φi(t))

)
−

k∑
i=1

f∗i
(
t, λ∗iφ

′
i(t)y

∗(φi(t))
)∣∣∣∣

6
k∑
i=1

∣∣fi(t, λiφ ′i(t)y(φi(t)))− f∗i(t, λ∗iφ ′i(t)y∗(φi(t)))∣∣
6

k∑
i=1

∣∣fi(t, λiφ ′i(t)y(φi(t)))− f∗i(t, λiφ ′i(t)y(φi(t)))∣∣
+

k∑
i=1

∣∣f∗i(t, λiφ ′i(t)y(φi(t)))− f∗i(t, λ∗iφ ′i(t)y∗(φi(t)))∣∣
6

k∑
i=1

δ+

k∑
i=1

bi
∣∣λiφ ′i(t)y(φi(t)) − λ∗iφ ′i(t)y∗(φi(t))∣∣

= δk+

k∑
i=1

bi|φ
′
i(t)||λiy(φi(t)) − λiy

∗(φi(t)) + λiy
∗(φi(t)) − λ

∗
iy
∗(φi(t))|

6 δk+
k∑
i=1

biφ
′
i(t)λi|y(φi(t)) − y

∗(φi(t))|+

k∑
i=1

biφ
′
i(t)|λi − λ

∗
i ||y
∗(φi(t))|.

Thus

||y− y∗||L1 6 δkT +
k∑
i=1

biλi||y− y
∗||L1 +

k∑
i=1

biδ||y
∗||L1 .

Hence

||y− y∗||L1 6
δkT + δr1

∑k
i=1 bi

1 −
∑k
i=1 biλi

= ε.

Since
∑k
i=1 biλi < 1, then the solution of (2.2) depends continuously on fi and λi.

According to Theorem 3.6, we now obtain the following corollary.

Corollary 3.9. Let the hypotheses of Theorem 3.6 be fulfilled, then the solution x ∈ AC[0, T ] of (1.1)-(1.2) depends
continuously on the functions fi and parameters λi.

Definition 3.10. The solution x ∈ AC[0, T ] of (1.1)-(1.2) depends continuously on the initial data x0 and
the function g, if ∀ε > 0, ∃δ(ε) > 0 such that

max
{
|x0 − x

∗
0 |, |g(t, x,y) − g∗(t, x,y)|

}
6 δ⇒ ||x− x∗||C 6 ε,

where x∗ is the unique solution of the integral equation

x∗(t) = x∗0 −

∫T
0
g∗

(
s, x∗(s),y(s)

)
ds+

∫t
0
y(s)ds, t ∈ [0, T ]. (3.3)

Theorem 3.11. Let the hypotheses of Theorem 3.2 be fulfilled, then the solution x ∈ AC[0, T ] of (1.1)-(1.2) depends
continuously on the initial data x0 and the function g.

Proof. Let x and x∗ be the two solutions of (2.1) and (3.3), respectively, then we have

|x(t) − x∗(t)| =

∣∣∣∣x0 −

∫T
0
g
(
s, x(s),y(s)

)
ds+

∫t
0
y(s)ds− x∗0 +

∫T
0
g∗

(
s, x∗(s),y(s)

)
ds−

∫t
0
y(s)ds

∣∣∣∣
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6 |x0 − x
∗
0 |+

∫T
0

∣∣g(s, x(s),y(s))− g∗(s, x∗(s),y(s))∣∣ds
6 δ+

∫T
0

∣∣g(s, x(s),y(s))− g∗(s, x(s),y(s))∣∣ds+ ∫T
0

∣∣g∗(s, x(s),y(s))− g∗(s, x∗(s),y(s))∣∣ds
6 δ+ δT + L

∫T
0

∣∣x(s) − x∗(s)∣∣ds 6 (1 + T)δ+ LT ||x− x∗||C.

Thus

||x− x∗||C 6
(1 + T)δ

1 − LT
= ε.

Since LT < 1, then the solution of (1.1)-(1.2) depends continuously on x0 and g.

4. Special cases and examples

Corollary 4.1. Let the hypotheses of Theorem 2.3 be satisfied with φi(t) = γit, where γi ∈ (0, 1], then the
functional-differential equation

dx(t)

dt
=

k∑
i=1

fi

(
t, λi

d

dt
x
(
γit

))
, a.e. t ∈ (0, T ],

under the nonlocal condition (1.2), has at least one solution x ∈ AC[0, T ]. Consequently, under the hypotheses of
Theorem 3.2, it has a unique solution x ∈ AC[0, T ].

Corollary 4.2. Let the hypotheses of Theorem 2.3 be satisfied with φi(t) = tαi , where αi > 1, then the functional-
differential equation

dx(t)

dt
=

k∑
i=1

fi

(
t, λi

d

dt
x
(
tαi

))
, a.e. t ∈ (0, 1],

under the nonlocal condition (1.2), has at least one solution x ∈ AC[0, 1]. Consequently, under the hypotheses of
Theorem 3.2, it has a unique solution x ∈ AC[0, 1].

Corollary 4.3. Let the hypotheses (i)-(ii) and (iv) of Theorem 2.3 be satisfied, then the initial value problem of the
implicit differential equation

dx(t)

dt
= f1

(
t, λ1

d

dt
x(γt)

)
, a.e. t ∈ (0, T ], x(0) = x0,

where γ ∈ (0, 1], has at least one solution x ∈ AC[0, T ]. Consequently, under the hypotheses (iv) and (i) ′-(ii) ′ of
Theorem 3.2, it has a unique solution x ∈ AC[0, T ].

Example 4.4. Consider the following functional-differential equation

dx(t)

dt
=
e−t

t+ 4
+

1
4
d

dt
x

(
sin

(
π

2
t

))
+

t

5 − t
+

1
2
d

dt
x

(
1
2
(t+ 1)

)
, a.e. t ∈ (0, 1], (4.1)

with the nonlocal integral condition

x(0) +
∫ 1

0

((s
2
)3

+
1
3

(
x(s) +

dx(s)

ds

))
ds = 1. (4.2)

The functional equation is given by

y(t) =
e−t

t+ 4
+
π

8
cos

(
π

2
t

)
y

(
sin

(
π

2
t

))
+

t

5 − t
+

1
4
y

(
1
2
(t+ 1)

)
, t ∈ [0, 1].
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Set

f1
(
t, λ1φ

′
1(t)y(φ1(t))

)
=
e−t

t+ 4
+
π

8
cos

(
π

2
t

)
y

(
sin

(
π

2
t

))
,

f2
(
t, λ2φ

′
2(t)y(φ2(t))

)
=

t

5 − t
+

1
4
y

(
1
2
(t+ 1)

)
,

and

g
(
t, x(t),y(t)

)
=

( t
2
)3

+
1
3
(
x(t) + y(t)

)
.

We have φ1(t) = sin
(
π
2 t
)
6 1, φ ′1(t) =

π
2 cos

(
π
2 t
)
, φ2(t) =

1
2(t+ 1) 6 1, φ ′2(t) =

1
2 , λ1 = 1

4 , λ2 = 1
2 , x0 = 1,

and T = 1. Hence, f1(t, 0) = e−t

t+4 ∈ L
1[0, 1], f2(t, 0) = t

5−t ∈ L
1[0, 1], g(t, 0, 0) =

(
t
2

)3 ∈ L1[0, 1], and

∣∣f1(t, x) − f1(t,y)
∣∣ 6 π

8
|x− y|,

∣∣f2(t, x) − f2(t,y)
∣∣ = 1

4
|x− y|,

∣∣g(t, x,y) − g(t, v,w)
∣∣ 6 1

3
(
|x− v|+ |y−w|

)
,

then b1 = π
8 , b2 = 1

4 , L = 1
3 ,
∑2
i=1 biλi ≈ 0.223175 < 1, and LT ≈ 0.333333 < 1. Obviously, all hypotheses

of Theorem 3.2 are satisfied, then the solution of (4.1)-(4.2), x ∈ AC[0, 1], is unique.

Example 4.5. Consider the following functional-differential equation

dx(t)

dt
=

1
3
e−t

3
cos(t) +

1
5
d

dt
x

(
1
3
t

)
, a.e. t ∈ (0, 3], (4.3)

with the nonlocal integral condition

x(0) +
∫ 3

0

(
es sin(2s) +

1
6

(
x(s) +

dx(s)

ds

))
ds = 1. (4.4)

The functional equation is given by

y(t) =
1
3
e−t

3
cos(t) +

1
15
y
(1

3
t
)
, t ∈ [0, 3].

Set
f1
(
t, λ1φ

′
1(t)y(φ1(t))

)
=

1
3
e−t

3
cos(t) +

1
15
y
(1

3
t
)
,

and
g
(
t, x(t),y(t)

)
= et sin(2t) +

1
6
(
x(t) + y(t)

)
.

We have φ1(t) = 1
3t, γ1 = 1

3 , λ1 = 1
5 , x0 = 1, and T = 3. Hence, f1(t, 0) = 1

3e
−t3

cos(t) ∈ L1[0, 3],
g(t, 0, 0) = et sin(2t) ∈ L1[0, 3], and∣∣f1(t, x) − f1(t,y)

∣∣ = 1
15

|x− y|,
∣∣g(t, x,y) − g(t, v,w)

∣∣ 6 1
6
(
|x− v|+ |y−w|

)
,

then b1 = 1
15 , L = 1

6 , b1λ1 ≈ 0.013333 < 1, and LT = 0.5 < 1. Therefore, by applying to Corollary 4.1, the
solution of (4.3)-(4.4), x ∈ AC[0, 3], is unique.

Example 4.6. consider the next nonlocal problem

dx(t)

dt
=

t

t2 + 1
+

1
3
d

dt
x
(
t2)+ t

3 − t5 +
1
8
d

dt
x
(
t3), a.e. t ∈ (0, 1], (4.5)

x(0) +
∫ 1

0

(
5s3 + s2 + s+ 1 +

1
5

(
x(s) +

dx(s)

ds

))
ds = 2. (4.6)
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The functional equation is given by

y(t) =
t

t2 + 1
+

2
3
ty

(
t2)+ t

3 − t5 +
3
8
t2y

(
t3), t ∈ [0, 1]. (4.7)

Set

f1
(
t, λ1φ

′
1(t)y(φ1(t))

)
=

t

t2 + 1
+

2
3
ty

(
t2),

f2
(
t, λ2φ

′
2(t)y(φ2(t))

)
=

t

3 − t5 +
3
8
t2y

(
t3),

and

g
(
t, x(t),y(t)

)
= 5t3 + t2 + t+ 1 +

1
5
(
x(t) + y(t)

)
.

We have φ1(t) = t
2, α1 = 2, φ2(t) = t

3, α2 = 3, λ1 = 1
3 , λ2 = 1

8 , x0 = 2, and T = 1. Hence, f1(t, 0) = t
t2+1 ∈

L1[0, 1], f2(t, 0) = t
3−t5 ∈ L1[0, 1], g(t, 0, 0) = 5t3 + t2 + t+ 1 ∈ L1[0, 1], and

∣∣f1(t, x) − f1(t,y)
∣∣ 6 2

3
|x− y|,

∣∣f2(t, x) − f2(t,y)
∣∣ 6 3

8
|x− y|,

∣∣g(t, x,y) − g(t, v,w)
∣∣ 6 1

5
(
|x− v|+ |y−w|

)
,

then b1 = 2
3 , b2 = 3

8 , L = 1
5 ,
∑2
i=1 biλi ≈ 0.269097 < 1, and LT = 0.2 < 1. Obviously, all hypotheses of

Corollary 4.2 are satisfied, then the solution of (4.5)-(4.6), x ∈ AC[0, 1], is unique.

5. Conclusion

Understanding the stability of problems involving functional and differential equations is crucial for
ensuring the predictability and reliability of mathematical models that represent real-life phenomena. In
this study, we delve into the problem of the delay functional-differential equation with parameters (1.1)
under the nonlocal integral equation (1.2). We establish the existence of solutions to the problem (1.1)-
(1.2). We have outlined the necessary hypotheses that ensure the uniqueness of the solution. Furthermore,
our study involves a rigorous analysis of the problem through the implementation of the Hyers-Ulam sta-
bility to the problem and the continuous dependence of the unique solution on key variables, including
the functions fi, parameters λi, the initial data x0, and the function g. We presented various examples and
special cases to illustrate our work. The solvability study presented here could be applied to future in-
vestigations into the stability of various types of initial value, boundary value, and constrained problems.
Interested researchers could subsequently extend this concept to different kinds of functional-differential
equations of fractional order.
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