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Abstract

In this work, we introduce the concepts of refined soft 2-normed spaces and refined soft 2-inner product spaces, obtaining
important results such as Cauchy-Schwarz Inequality, that each refined soft 2-inner product induces a refined soft 2-normed
space and that a refined soft 2-normed space is induced by a soft 2-inner product if the refined soft 2-normed satisfies the
Parallelogram law. For this, we present the definition of refined linearly dependent soft vectors in a soft vector space which also
allows us to show that given a classical inner product space, then the standard 2-inner product induces a refined soft 2-inner
product space. The results presented here improve considerably the work of Kadhim [D. A. Kadhim, J. Al-Qadisiyah Comput.
Sci. Math., 6 (2014), 157–168] and open a line of research in the context of refined soft 2-normed space and refined soft 2-inner
product space.
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1. Introduction

Functional analysis is a branch of mathematical analysis that finds multiple applications in other
sciences such as engineering, medicine, and physics; the last one of particular importance, since the
transcendence of inner product spaces is well known, precisely the Hilbert spaces in quantum mechanics,
since quantum observables are nothing more than self-adjoint operators in a Hilbert space. So venturing
into territories related to functional analysis can bring important benefits within complex physical theories
that want to explain the universe. In this sense, the study of concepts of functional analysis and its
applications has always been of great interest to the most passionate researchers on different topics as
those presented in the classical books [14, 16].

The notion of 2-normed space was developed by Gähler in 1964 [23], and since then other concepts
have been developed in this context, such as the notion of 2-inner product spaces and 2-Hilbert space
[15, 36], which is a space with a complete 2-inner product. New notions involving these concepts and
some of their generalizations have recently been studied, for example, the theory of frames in the reference
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[13], atomic systems in 2-inner product spaces in the reference [21] and weak n-inner product spaces in
the reference [30]. As a continuation of these investigations, in 2019, Kundu et. al [27] studied 2-normed
spaces from the point of view of topological vector spaces, showing that a separating family of seminorms
is induced from a 2-norm and this fact can be used as a one-way bridge between 2-normed spaces and
topological vector spaces. Furthermore, they provided an alternative proof that every 2-normed space is a
locally convex topological vector space and found a necessary and sufficient condition for the normability
of a 2-normed space.

In everyday life, problems may arise where the information is ambiguous or uncertain, so these are
not solved with traditional mathematical methods. In view of this, several mathematical tools such as
fuzzy set theory and soft set theory have been proposed to deal with these types of problems. The
concept of soft sets was first proposed by Molodtsov [31] in 1999 as a new mathematical approach to deal
with fuzzy situations and imprecise data. As described by Molodtsov, soft set theory is a very useful
mathematical tool for approaching the study of problems related to other sciences such as engineering,
physics, economics, social science, and medical science, etc. Soft sets have been used by numerous
scholars and researchers interested in uncertainty in both theoretical and applied fields. To solve decision
making problems, Maji et al. [29] used soft sets in 2002, and they [28] defined a set of operations between
soft sets in 2003. Over time, some of these operations were found to have shortcomings that motivated
certain authors to change their definitions and adopt new classes of them for various reasons [2, 8, 33, 37].
The flexible theoretical framework provided by the aforementioned operations and the origin of new soft
properties has allowed soft set theory to be significantly extended and at the same time applied directly
or in hybrid form with other theories to address uncertainty in decision making processes, as can be seen
in recent references [1, 10, 22, 24, 26, 32, 34, 35]. For the above, soft set theory represents a field of research
in constant and rapid growth.

1.1. Research Gap

The 2-normed spaces and the 2-inner product spaces are mathematical structures that were introduced
as generalizations of the linear normed spaces and the inner product spaces, respectively. These spaces
have been studied in the context of soft set theory in reference [25], but in that study the mathematical
rigor required to establish results related to functional analysis was lacking, for example, a Cauchy-
Schwarz inequality was stated there without presenting a proof of it. Trying to provide new results
involving soft 2-normed spaces and soft 2-inner product spaces, we discovered that the notion of soft
linear independence considered in [25] is not appropriate to relate the 2-inner product spaces of classical
theory with the 2-inner product spaces of soft set theory, something that is natural in this area of research.
In fact, reviewing the definitions and results given in [25], we identify some fallacies, such as that Example
3.2, does not correspond to a classical 2-inner product, much less the induced application is a soft 2-inner
product; we also detect the inconvenience of performing a formal proof of the Cauchy-Schwarz inequality
on soft 2-inner product spaces. Our research work answers the following research questions:

(i) How to give a definition of linear independence that allows to successfully relate the classical theory
of 2-normed spaces to new concepts of soft 2-normed spaces and soft 2-inner product spaces?

(ii) How appropriate are these new concepts for formally proving the Cauchy-Schwarz inequality and
the Parallelogram law in this context?

1.2. Motivation

The range of applications of soft set theory has motivated the study of it and its use in the develop-
ment of new research in various fields has progressed rapidly because this theory is free of many of the
difficulties of concern in the usual theoretical approaches. Thus, research related to soft sets has been
carried out in several directions. In particular, as far as mathematics and its applications are concerned,
several topics have been explored, including the following: Supra soft topological ordered spaces [6], two
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new forms of ordered soft separation axioms [7], sum of soft topological ordered spaces [9], soft para-
metric somewhat-open sets and applications via soft topologies [11]. Although the development of the
previous investigations seems to be a repetition of classical results, this is not so, since it has been shown
that there are divergences between classical properties and soft properties, as can be seen in references
[3–5, 8, 12]. Motivated by all the above, it is that, in this manuscript, we intend to establish a theory of
2-normed spaces and 2-inner product spaces using soft sets, which opens a door for future research and
applications based on it.

1.3. Main Contributions

In this paper, we have reviewed the notions of soft 2-normed spaces and soft 2-inner product spaces
with the main objective of obtaining a formal proof of the Cauchy-Schwarz inequality in this theoretical
framework. For this purpose, we have given another definition of linearly dependent soft vectors that
allows us to prove the above inequality. In addition, we have studied the most important properties of
2-normed spaces and 2-inner product spaces in the context of soft set theory. In this sense, the results of
this work open the study of soft 2-Hilbert spaces and other topics of interest in soft functional analysis.
Finally, we have shown that a refined soft 2-normed space is induced by a refined soft 2-inner product if
the refined soft 2-normed space satisfies the Parallelogram law, which is one of the most important results
of this paper.

This manuscript was designed as follows. Section 2 corresponds to the preliminaries, where we study
all the theory of 2-normed spaces and 2-inner product spaces. In Section 3, we cover all the theory related
with soft sets which will be useful later to develop the theory of refined soft 2-normed spaces and refined
soft 2-inner product spaces. In Sections 4 and 5, we revisit the work done in [25], making important
observations such as that with the definition of linearly dependent soft vectors considered in [17] and
cited by [25], the standard 2-inner product does not induce a soft 2-inner product. Furthermore, in
Section 5, we present the proof of the Cauchy-Schwarz Inequality for refined soft 2-inner product spaces.

2. Preliminaries related to crisp set theory

Throughout this work, let X be vector space of dimension greater than 1 over the field K = R of real
numbers or the field K = C of complex numbers.

Definition 2.1 ([15]). A 2-norm on X is a mapping ‖·, ·‖ : X × X → R which satisfies the following
conditions:

1. ‖x,y‖ > 0 for all x,y ∈ X and ‖x,y‖ = 0 if and only if x and y are linearly dependent in X;
2. ‖x,y‖ = ‖y, x‖ for all x,y ∈ X;
3. ‖x,α · y‖ = |α|‖x,y‖ for all x,y ∈ X and for all scalar α;
4. ‖x,y+ z‖ 6 ‖x,y‖+ ‖x, z‖ for all x,y, z ∈ X.

A vector space X with a 2-norm ‖·, ·‖ on X is said to be a 2-normed space and is denoted by (X, ‖·, ·‖).

Definition 2.2 ([15]). A 2-inner product on X is a mapping 〈·, · | ·〉 : X× X× X → K which satisfies the
following conditions:

1. 〈x, x | y〉 > 0 for all x,y ∈ X and 〈x, x | y〉 = 0 if and only if x and y are linearly dependent on X;
2. 〈x, x | y〉 = 〈y,y | x〉 for all x,y ∈ X;
3. 〈x,y | z〉 = 〈y, x | z〉 for all x,y, z ∈ X, where λ means the conjugate complex of λ ∈ K whenever

K = C;
4. 〈α · x,y | z〉 = α · 〈x,y | z〉 for all x,y, z ∈ X and for all scalar α;
5. 〈x1 + x2,y | z〉 = 〈x1,y | z〉+ 〈x2,y | z〉 for all x1, x2,y, z ∈ X.
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A vector space X with a 2-inner product 〈·, · | ·〉 on X is said to be a 2-inner product space and is
denoted by (X, 〈·, · | ·〉).

Example 2.3 ([15]). Let (X, 〈·, ·〉) be an inner product space. Then, the mapping 〈·, · | ·〉 : X×X×X → K defined
as

〈x,y | z〉 = 〈x,y〉 〈x, z〉
〈z,y〉 〈z, z〉 = 〈x,y〉〈z, z〉− 〈x, z〉〈z,y〉,

for all x,y, z ∈ X, is a 2-inner product on X, which is called the standard 2-inner product. Consequently, the
concept of 2-inner product makes sense, because whenever we have a classical inner product on a vector space, we
can generate a 2-inner product on the same space.

In any given 2-inner product space (X, 〈·, · | ·〉) we can define a 2-norm on X by ‖x, z‖ = 〈x, x | z〉 1
2 , for

all x, z ∈ X.

3. Preliminaries related to soft set theory

Throughout this paper, X denotes any non-empty set (possibly without algebraic structure), P(X) the
power set of X and A a non-empty set of parameters.

Definition 3.1 ([31]). A soft set on X is a pair (F,A) where F is a mapping given by F : A→ P(X).

In this way, we can see a soft set as

(F,A) := GAF = {(λ, F(λ)) : λ ∈ A, F(λ) ∈ P(X)},

where GAF is the graph of F with respect to A.

Note that a soft set is determined by knowing F(λ) for all λ ∈ A. Therefore, it is common to find
ourselves in the literature that F : A → P(X) is called a soft set on X, but it should not be a cause for
confusion.

Example 3.2. Let X = {1, 2, 3, 4, 5, 6, 7, 8, 9} and A = {Z4 = λ1, Z6 = λ2, Z8 = λ3}. If F : A → P(X) describes
the generating elements of the cyclic group. Then, it is easy to see that F(λ1) = {1, 3}, F(λ2) = {1, 5}, F(λ3) =
{1, 3, 5, 7}. Hence (F,A) is a soft set on X seen as follows

(F,A) = {(Z4, {1, 3}), (Z6, {1, 5}), (Z8, {1, 3, 5, 7})}.

Definition 3.3 ([28]). A soft set (F,A) on X is said to be:

1. A null soft set on X if F(λ) = ∅ for all λ ∈ A, and in this case we write (F,A) := Φ.
2. A non-null soft set on X if F(λ) 6= ∅ for some λ ∈ A.
3. An absolute soft set on X if F(λ) = X for all λ ∈ A, and in this case we write (F,A) := X̌. This

convention of absolute soft set will be adopted throughout the present work.

Definition 3.4 ([18]). A soft element on X is a function ε : A → X. Now if ε(λ) ∈ F(λ) for all λ ∈ A, the
soft element ε is said to belong to the soft set (F,A) on X, which we will denote by ε ∈̃ F. In this sense,
given λ ∈ A, F(λ) can be expressed as F(λ) = {ε(λ) : ε ∈̃ F}.

We will denote the collection of all the soft elements of a soft set (F,A) by SE((F,A)); this is,

SE((F,A)) := {ε : ε ∈̃ F} = {ε : ε(λ) ∈ F(λ), ∀λ ∈ A}.

Definition 3.5 ([18, 19]). Let K = R or K = C, A be a non-empty set of parameters and consider the set

B(K) := {B ∈ P(K) : B 6= ∅, B is bounded},

then a mapping F : A → B(K) ⊂ P(K) is called a soft K-set. This is denoted by (F,A). Furthermore, if
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for all λ ∈ A it is satisfied that F(λ) is a singleton, then by identifying (F,A) with its corresponding soft
element, we will call this soft element, soft K-number.

We will denote the set of all the soft R-numbers (resp. soft C-numbers) or soft real numbers (resp.
soft complex numbers) by R(A) (resp. C(A)). In addition, we use the symbols α̂, β̂, etc, to denote soft
K-numbers such that behave as constants, this is, α̂(λ) = α for all λ ∈ A. In particular, 0̂ and 1̂ are,
respectively, the soft K-numbers where 0̂(λ) = 0 and 1̂(λ) = 1, for all λ ∈ A. Furthermore, we denote by
Z(A) and Q(A) the set of all the soft Z-numbers and Q-numbers, respectively.

Definition 3.6 ([18]). The set {α ∈ R(A) : α(λ) > 0, ∀λ ∈ A} is called the set of all non-negative soft real
numbers and is denoted by R(A)∗.

Definition 3.7 ([20]). For two soft real numbers α : A→ R and β : A→ R we define:

1. α 6̃ β, if α(λ) 6 β(λ), for all λ ∈ A;
2. α <̃ β, if α(λ) < β(λ), for all λ ∈ A.

Definition 3.8 ([19]). Let (F,A) be a soft complex set (number). The real and imaginary parts of (F,A),
denoted by Re F and Im F, respectively, are defined by

Re F(λ) = {Re(z) : z ∈ F(λ)},

and
Im F(λ) = {Im(z) : z ∈ F(λ)},

for every λ ∈ A.

It is clear that if (F,A) is a soft complex set (resp. number), then Re F and Im F are soft real sets (resp.
numbers) on A.

Definition 3.9 ([19]). Let F,G be two soft complex sets. For every λ ∈ A, the following operations are
defined:

1. The sum (F+G,A) is defined as (F+G)(λ) = {u+ v : u ∈ F(λ), v ∈ G(λ)};
2. The difference (F−G,A) is defined as (F−G)(λ) = {u− v : u ∈ F(λ), v ∈ G(λ)};
3. The product (F ·G,A is defined as (F ·G)(λ) = {u · v : u ∈ F(λ), v ∈ G(λ)};

4. The division
(
F

G
,A
)

is defined as
(
F

G

)
(λ) =

{u
v
: u ∈ F(λ), v ∈ G(λ)

}
, provided 0 /∈ G(λ);

5. The complex conjugate of (F,A), denoted by (F,A), is defined as F(λ) = {u : u ∈ F(λ)}, where u is
the conjugate of the ordinary complex number u;

6. The modulus of (F,A), denoted by (|F|,A), is defined as |F|(λ) = {|u| : u ∈ F(λ)}, where |u| is the
modulus of the ordinary complex number u;

7. For any scalar (real or complex) k, the scalar multiplication of k by (F,A), denoted by (k · F,A), is
defined as (k · F)(λ) = {k · u : u ∈ F(λ)}.

Remark 3.10. The operations given in Definition 3.9 are simply denoted by F+G, F−G, F ·G,
F

G
, F, |F| and

k · F, respectively. It is easy to check that “+” and “·” are commutative and associative; also 0̂ and 1̂ are
respectively additive and multiplicative identity on the set C(A) of all soft complex sets over the set of
parameters A.

Remark 3.11. If F,G ∈ C(A) (i.e. are soft complex numbers), then F+G, F−G, F ·G,
F

G
, F and k · F are soft

complex numbers, while |F| is a non-negative soft real number. In this case, F(λ) = {F(λ)} is a singleton,
with F(λ) ∈ C for all λ ∈ A. Thus, Re F = {Re F(λ)} and Im F = {Im F(λ)} for all λ ∈ A. Therefore,
F ∈ C(A) is defined by F(λ) = {Re F(λ) + i Im F(λ)} for all λ ∈ A. On the other hand, [Re F+ î Im F](λ) =
{Re F(λ) + i Im F(λ)} = F(λ) for all λ ∈ A. From this last discussion, we conclude that if F ∈ C(A), then F
can be written as F = Re F+ î Im F.
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Note that if we assign to X a structure of vector space, it is interesting to think of the possible structure
of F(λ) as subset of X for all λ ∈ A. This motivates the following important definition.

Definition 3.12 ([17]). Let X be a K-vector space (typically K = R or K = C), A be nonempty set of
parameters and (F,A) be a soft set on X. The soft set (F,A) is said to be a soft K-vector space on X if F(λ)
is a vector subspace of X for all λ ∈ A.

The importance of the above definition is that it allows us to relate the usual linear algebra to soft set
theory. Furthermore, it gives us the tools to define important concepts in the classical functional analysis,
such as norm, inner product, Banach space, Hilbert space, among others; but from this context.

Definition 3.13 ([17]). Let (F,A) be soft K-vector space.

1. A soft element of (F,A) is said to be a soft vector of (F,A). Similarly, a soft element ε : A → K is
said to be a soft scalar, where K is the scalar field.

2. A soft vector x of (F,A) is said to be a null soft vector if x(λ) = θ, ∀λ ∈ A, where θ is the zero
element of X. This will be denoted by Θ.

Definition 3.14 ([17]). Let (F,A) be a soft K-vector space on X and x,y be two soft vectors of (F,A) and k
be a soft scalar. Then the addition x+ y of x with y, and scalar multiplication k · x of k and x are defined
by (x+ y)(λ) = x(λ) + y(λ), (k · x)(λ) = k(λ) · x(λ). Evidently, x+ y, k · x are soft vectors of (F,A).

Theorem 3.15 ([17]). Let X be a K-vector space, A be a nonempty set of parameters and (F,A) be a soft K-vector
space on X. Then

1. 0̂ · x = Θ, for all x ∈̃ F;
2. k ·Θ = Θ, for all soft scalar k;
3. (−1̂) · x = −x, for all x ∈̃ F.

4. Refined soft 2-normed space

In this section we establish some properties that improve the results given in [25]. In 2014, Kadhim
[25] introduced the definition of soft 2-normed spaces based on the results from soft vector spaces given
in [17] where the definition of linearly dependent soft vectors in a soft vector space is as follows:

Let X be a K-vector space, A be a nonempty set of parameters and (F,A) be a soft K-vector space on X. A
finite set of soft vectors {x1, x2, . . . , xn} of (F,A) is said to be linearly dependent in F if there exist soft scalars
α1,α2, . . . ,αn not all 0̂, such that α1x1 +α2x2 + . . . +αnxn = Θ.

However, with this definition it is not possible to show that the mapping of Example 2.3 defines a soft
2-inner product in the sense of Definition 3.1 in [25], as shown in the following example:

Example 4.1. Consider X = R2 as a vector space over R and let A = {1, 2} be the set of parameters. Then with the
following soft vectors

y(λ) =


(1, 0) , λ = 1,

(1, 2) , λ = 2.
; z(λ) =


(2, 0) , λ = 1,

(2, 1) , λ = 2.

and knowing that

〈y,y | z〉 =
∣∣∣∣ 〈y,y〉 〈y, z〉
〈z,y〉 〈z, z〉

∣∣∣∣ = 〈y,y〉〈z, z〉− 〈y, z〉〈z,y〉 = ‖y‖2‖z‖2 − |〈y, z〉|2,

we have

〈y,y | z〉(λ) = ‖y(λ)‖2‖z(λ)‖2 − |〈y(λ), z(λ)〉|2,
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and therefore,

〈y,y | z〉(2) = ‖y(2)‖2‖z(2)‖2 − |〈y(2), z(2)〉|2 = ‖(1, 2)‖2‖(2, 1)‖2 − |〈(1, 2), (2, 1)〉|2 = 9,

but the set of soft vectors {y, z} is linearly dependent in the soft vector space X̂ on the set of parameters A, which
contradicts the first condition of the definition of soft 2-inner product given in [25]. Note that in particular we want
that the standard 2-inner product induces a soft 2-inner product, see Example 5.2.

In view of the previous example, we give the definition of refined linearly dependent soft vectors
which is more suitable to show results in the 2-normed spaces and 2-inner spaces in the context of soft
set theory such as Cauchy-Schwarz inequality.

Definition 4.2. Let X be a K-vector space, A be a nonempty set of parameters and (F,A) be a soft K-vector
space on X. A finite set of soft vectors {x1, x2, . . . , xn} of (F,A) is said to be refined linearly dependent in
F if there exist soft scalars α1,α2, . . . ,αn with αi(λ) 6= 0 for some i ∈ {1, . . . ,n} and each λ ∈ A, such that
α1x1 +α2x2 + . . . +αnxn = Θ.

An arbitrary set H of soft vectors of F is said to be refined linearly dependent in F if there exists a finite
subset of H which is refined linearly dependent in F.

Remark 4.3. It is clear that the notion of refined linearly dependent given in Definition 4.2 is distinct from
the notion of linearly dependent given in [17]. Moreover, every set of refined linearly dependent soft
vectors is linearly dependent in the sense of [17], but the converse, in general, is not true.

Lemma 4.4. A set of soft vectors {x1, x2, . . . , xn} is refined linearly dependent in a soft vector space (F,A) on X if
and only if {x1(λ), x2(λ), . . . , xn(λ)} is linearly dependent in X for all λ ∈ A.

Proof. Let is suppose that {x1, x2, . . . , xn} is refined linearly dependent in (F,A) on X. Then in view of the
definition 4.2, there exist soft scalars α1,α2, . . . ,αn with αi(λ) 6= 0 for some i ∈ {1, . . . ,n} and each λ ∈ A,
such that α1x1 + α2x2 + . . . + αnxn = Θ. So for all λ ∈ A we have that α1(λ)x1(λ) + α2(λ)x2(λ) + . . . +
αn(λ)xn(λ) = θ and obviously the first part of the Lemma is true.

Conversely, suppose that {x1(λ), x2(λ), . . . , xn(λ)} is linearly dependent in X for all λ ∈ A. Then there
exist scalars α1,λ,α2,λ, . . . ,αn,λ such that α1,λx1(λ) + α2,λx2(λ) + . . . + αn,λxn(λ) = θ. So we can define
the soft scalars αi(λ) := αi,λ for all i ∈ {1, . . . ,n} and for all λ ∈ A. Therefore we trivially obtain that
α1x1 +α2x2 + . . . +αnxn = Θ.

Definition 4.5. Let X be a K-vector space, A be a nonempty set of parameters and (F,A) be a soft K-
vector space on X. A finite set of soft vectors {x1, x2, . . . , xn} of (F,A) such that xi(λ) 6= θ for any λ ∈ A
and any i ∈ {1, 2 . . . ,n}, is said to be refined linearly independent in F if {x1(ν), x2(ν), . . . , xn(ν)} is linearly
independent in X for some ν ∈ A.

Definition 4.6. Let X̌ be an absolute soft K-vector space. A refined soft 2-norm on X̌ is a mapping
‖·, ·‖ : SE(X̌)× SE(X̌)→ R(A) which satisfies the following conditions:

(2N1) ‖x,y‖ >̃ 0̂ for all x,y ∈̃ X̌ and ‖x,y‖ = 0̂ if and only if x and y are refined linearly dependent in X̌;
(2N2) ‖x,y‖ = ‖y, x‖ for all x,y ∈̃ X̌;
(2N3) ‖x,α · y‖ = |α|‖x,y‖ for all x,y ∈̃ X̌ and for all soft scalar α;
(2N4) ‖x,y+ z‖ 6̃ ‖x,y‖+ ‖x, z‖ for all x,y, z ∈̃ X̌.

The absolute soft K-vector space X̌ with a refined soft 2-norm ‖·, ·‖ on X̌ is said to be a refined soft
2-normed space and it is denoted by (X̌, ‖·, ·‖,A) or (X̌, ‖·, ·‖).
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Remark 4.7. If ‖·, ·‖ is a soft 2-norm on X, then from (2N3), we have ‖x,Θ‖ = ‖x, 0̂ ·Θ‖ = |0̂| · ‖x,Θ‖ = 0̂.
Now, by (2N4), we obtain that 0̂ = ‖x,Θ‖ = ‖x,y− y‖ 6̃ ‖x,y‖+ ‖x,−y‖ = ‖x,y‖+ ‖x,y‖, which implies
that ‖x,y‖ >̃ 0̂ for all x,y ∈̃ X̌. Also, we have

‖x,y+αx‖ 6̃ ‖x,y‖+ ‖x,αx‖ = ‖x,y‖+ |α|‖x, x‖ = ‖x,y‖+ |α| · 0̂ = ‖x,y‖

and
‖x,y‖ = ‖x,y+Θ‖ = ‖x,y+αx−αx‖ 6̃ ‖x,y+αx‖+ |α|‖x, x‖ = ‖x,y+αx‖,

which tells us that ‖x,y+αx‖ = ‖x,y‖ for all x,y ∈̃ X̌ and for all soft scalar α.

Theorem 4.8. In Definition 4.6, condition (2N4) can be replaced by the following condition:
(2N4’) ‖x+ z,y+ z‖6̃‖x,y‖+ ‖y, z‖+ ‖z, x‖.

Proof. By (2N1), (2N2) and (2N4), we have

‖x+ z,y+ z‖6̃‖x+ z,y‖+ ‖x+ z, z‖ = ‖y, x+ z‖+ ‖z, x+ z‖
6̃‖y, x‖+ ‖y, z‖+ ‖z, x‖+ ‖z, z‖ = ‖x,y‖+ ‖y, z‖+ ‖z, x‖,

that is, in a refined soft 2-normed space, condition (2N4’) is satisfied.

Conversely, suppose that a mapping ‖·, ·‖ : SE(X̌)× SE(X̌) → R(A) with the conditions (2N1), (2N2),
(2N3) and (2N4’) is given. Then, for arbitrary soft points x, y, z of X̌ and each soft scalar α, we obtain the
inequalities

‖x+ y, z‖ =‖(x+ y− z−αy) + (z+αy), (−αy) + (z+αy)‖
6̃‖x+ y− z−αy,−αy‖+ ‖−αy, z+αy‖+ ‖z+αy, x+ y− z−αy‖
6̃‖x+ y− z,αy‖+ ‖z,αy‖+ ‖x+ y, z+αy‖
6̃|α|{‖x+ y− z,y‖+ ‖z,y‖}+ ‖x+ y, z+αy‖.

Also, since
‖z+αy,αx+αy‖6̃‖z,αx‖+ ‖αx,αy‖+ ‖αy, z‖

for any soft scalar α with α(λ) 6= 0 for all λ ∈ A, we have the inequality

‖x+ y, z+αy‖6̃‖x, z‖+ ‖z,y‖+ |α|‖x,y‖.

According to this, for each α with α(λ) 6= 0 for all λ ∈ A, we deduce the relation

‖x+ y, z‖6̃|α|{‖x+ y− z,y‖+ ‖z,y‖+ ‖x,y‖}+ ‖x, z‖+ ‖z,y‖.

Taking limit as α→ 0̂ (i.e. α(λ)→ 0, ∀λ ∈ A), we obtain the inequality

‖x+ y, z‖6̃‖x, z‖+ ‖z,y‖.

Example 4.9. Consider the set of soft real numbers R(A) and let X̌ = R(A)2 = R(A)×R(A). The mapping
‖·, ·‖ : X̌× X̌ → R(A) defined by the formula ‖x,y‖ = |x1y2 − x2y1|, where x = (x1, x2), y = (y1,y2), and | · |
denotes the modulus of soft real numbers, is a refined soft 2-norm on X̌ and hence (X̌, ‖·, ·‖,A) or (X̌, ‖·, ·‖) is a
refined soft 2-normed space.

Lemma 4.10. Let (X̌, ‖·, ·‖,A) be a refined soft 2-normed space. Then, for all x,y ∈̃ X̌ and λ ∈ A, we have
‖x,y‖(λ) = 0 if and only if x(λ) and y(λ) are linearly dependent in X for each λ ∈ A.
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Proof. Let α be the soft scalar defined by

α(µ) =

{
0, if µ 6= λ,
1, if µ = λ.

Note that:

(i) If µ 6= λ, then (α · y)(µ) = α(µ) · y(µ) = 0 · y(µ) = θ ∈ X;

(ii) If µ = λ, then (α · y)(µ) = α(µ) · y(µ) = 1 · y(µ) = y(µ).

Now, by (2N3) we have ‖x,α · y‖ = |α| · ‖x,y‖, which implies that ‖x,y‖(λ) = 0 ⇐⇒ |α|‖x,y‖ = 0̂ ⇐⇒
‖x,α · y‖ = 0̂⇐⇒ x and α · y are refined linearly dependent on X̌; but by Lemma 4.4, this is equivalent to
x(λ) and (α · y)(λ) are linearly dependent in X for each λ ∈ A ⇐⇒ x(λ) and y(λ) are linearly dependent
in X for each λ ∈ A.

Proposition 4.11. Any parametrized family of crisp 2-norms {‖·, ·‖λ : λ ∈ A} on a crisp vector space X can be
considered as a refined soft 2-norm on the soft vector space X̌.

Proof. Suppose that X̌ is an absolute soft K-vector space over a field K, A is a non-empty set of parameters
and {‖·, ·‖λ : λ ∈ A} is a family of crisp 2-norms on the vector space X. We affirm that the mapping
‖·, ·‖ : X̌× X̌→ R(A) defined by ‖x,y‖(λ) = ‖x(λ),y(λ)‖λ, ∀λ ∈ A, ∀x,y∈̃X̌ is a soft 2-norm on X̌. Indeed,
let us verify that conditions (2N1), (2N2), (2N3) and (2N4) of a refined soft 2-norm are satisfied.

(2N1). By Lemma 4.10 and Lemma 4.4, we have

‖x,y‖ = 0̂⇐⇒ ‖x,y‖(λ) = 0, ∀λ ∈ A
⇐⇒ x(λ) and y(λ) are linearly dependent in X, for each λ ∈ A
⇐⇒ x and y are refined linearly dependent in X̌.

(2N2). For all x,y ∈̃ X̌, we have ‖x,y‖(λ) = ‖x(λ),y(λ)‖λ = ‖y(λ), x(λ)‖λ = ‖y, x‖(λ), ∀λ ∈ A. Therefore,
‖x,y‖ = ‖y, x‖.
(2N3). For all x,y ∈̃ X̌ and for each soft scalar α, we have

‖x,α · y‖(λ) = ‖x(λ),α(λ) · y(λ)‖λ = |α(λ)|‖x(λ),y(λ)‖λ = (|α|‖x,y‖)(λ), ∀λ ∈ A.

Hence, ‖x(λ),α · y‖ = |α|‖x,y‖.
(2N4). For all x,y, z ∈̃ X̌,

(‖x,y‖+ ‖x, z‖)(λ) = ‖x,y‖(λ) + ‖x, z‖(λ) = ‖x(λ),y(λ)‖λ + ‖x(λ), z(λ)‖λ
>̃ ‖x(λ),y(λ) + z(λ)‖λ = ‖x,y+ z‖(λ), ∀λ ∈ A.

Thus, ‖x,y+ z‖ 6̃ ‖x,y‖+ ‖x, z‖.
This shows that ‖·, ·‖ is a refined soft 2-norm on X̌ and so (X̌, ‖·, ·‖)) is a refined soft 2-normed space.

Proposition 4.12. Any crisp 2-norm ‖·, ·‖X on a crisp vector space X can be extended to a refined soft 2-norm on
the soft vector space X̌.

Proof. First, we will construct the absolute soft K-vector space X̌ through a non-empty set of parameters
A. Let us define a mapping ‖·, ·‖ : SE(X̌)× SE(X̌) → R(A) by ‖x,y‖(λ) = ‖x(λ),y(λ)‖X, ∀λ ∈ A, ∀x,y∈̃X̌.
Applying a procedure similar to that of the proof of Proposition 4.11, we get that ‖·, ·‖ is a refined soft
2-norm on X̌.

This refined soft 2-norm is generated using the crisp 2-norm ‖·, ·‖X and it is called the refined soft
2-norm generated by ‖ · ‖X.
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Lemma 4.13. Let (X̌, ‖·, ·‖,A) be a refined soft 2-normed space. Then, the following condition is hold:

(2N5) For each pair of vectors ξ,η ∈ X and λ ∈ A, {‖x,y‖(λ) : x(λ) = ξ, y(λ) = η} is a singleton.

Proof. Suppose that (ξ,η) ∈ X× X and λ ∈ A. Let x, x′,y,y′ ∈ X̌ be such that x(λ) = ξ = x′(λ) and
y(λ) = η = y′(λ). Then, (x− x′)(λ) = θ = (x′ − x)(λ) and (y− y′)(λ) = θ = (y′ − y)(λ). Furthermore,

‖x,y‖− ‖x′,y′‖6̃‖x,y− y′‖+ ‖y′, x− x′‖

and

‖x′,y′‖− ‖x,y‖6̃‖x′,y′ − y‖+ ‖y, x′ − x‖,

which implies that

‖x,y‖(λ) − ‖x′,y′‖(λ) 6 ‖x,y− y′‖(λ) + ‖y′, x− x′‖(λ)
= 0 + 0 = 0 (by Lemma 4.10)

and

‖x′,y′‖(λ) − ‖x,y‖(λ) 6 ‖x′,y′ − y‖(λ) + ‖y, x′ − x‖(λ)
= 0 + 0 = 0 (again by Lemma 4.10).

Thus,

‖x,y‖(λ) − ‖x′,y′‖(λ) 6 0

and

‖x′,y′‖(λ) − ‖x,y‖(λ) 6 0.

Therefore, | ‖x,y‖(λ) − ‖x′,y′‖(λ) | 6 0 and hence, ‖x,y‖(λ) = ‖x′,y′‖(λ). This completes the proof.

The lemma above allow us to prove the following important theorem about refined soft 2-normed
spaces.

Theorem 4.14. (Decomposition theorem) Let (X̌, ‖·, ·‖,A) be a refined soft 2-normed space. Then, for each
λ ∈ A, the mapping ‖·, ·‖λ : X× X → R+ defined by ‖ξ,η‖λ := ‖x,y‖(λ) where x,y∈̃X̌ are such that x(λ) = ξ

and y(λ) = η, is a 2-norm on X.

Proof. By Lemma 4.13, we have for λ ∈ A, {‖x,y‖(λ) : x(λ) = ξ, y(λ) = η} is a singleton, which implies
that the mapping ‖·, ·‖λ : X× X → R+ is well defined. Thus, from (2N1)-(2N4), it follows that ‖·, ·‖λ is a
2-norm on X for all λ ∈ A.

Definition 4.15 ([36]). A sequence {xn} of soft elements in a soft normed space (X̌, ‖ · ‖,A) is said to be
soft convergent and soft converges to a soft element x∈̃X̌, if for every soft real number ε>̃0̂ there exists
a soft natural number N such that ‖xn − x‖ (λ) < ε(λ) whenever n > N(λ), for all λ ∈ A. In such a case,
we write lim

n→∞ xn = x or xn → x, where x is called the soft limit of the sequence {xn} in the soft normed

space (X̌, ‖ · ‖,A).

Definition 4.16. A sequence {xn} of soft elements in a refined soft 2-normed space (X̌, ‖·, ·‖,A) is said to
be soft convergent to x∈̃X̌, if ‖xn − x,y‖ → 0̂ for every y∈̃X̌. In this case, we say that x is the soft limit of
the sequence and that {xn} is soft convergent in the refined soft 2-normed space (X̌, ‖·, ·‖,A).
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Theorem 4.17. If a sequence of soft elements in a refined soft 2-normed space is soft convergent, then its soft limit
is unique.

Proof. Suppose that {xn} is a sequence of soft elements in a refined soft 2-normed space (X̌, ‖·, ·‖,A) such
that x and y are two distinct soft limits of {xn}. We select z∈̃X̌ such that ‖x− y, z‖ 6= 0̂. Then, there
exists at least one λ0 ∈ A such that ‖x− y, z‖ (λ0) > 0. We choose a positive real number ελ0 satisfying
0 < ελ0 <

1
2 ‖x− y, z‖ (λ0). Let ε be a soft real number defined by ε(λ) = ελ0 for each λ ∈ A, so ε>̃0̂.

Since ‖xn − x, z‖ → 0̂ and ‖xn − y, z‖ → 0̂, there exists two soft natural numbers N1 and N2 such that
‖xn − x, z‖ (λ) < ε(λ) = ελ0 whenever n > N1(λ), for all λ ∈ A, and ‖xn − y, z‖ (λ) < ε(λ) = ελ0 whenever
n > N2(λ), for all λ ∈ A. If N = max{N1,N2}, where the maximum of these soft natural numbers is taken
as component wise, then ‖xn − x, z‖ (λ) < ελ0 and ‖xn − y, z‖ (λ) < ελ0 for all n > N(λ), λ ∈ A. Then, by
the triangle inequality, we get that

‖x− y, z‖ (λ) 6 ‖x− xn, z‖ (λ) + ‖xn − y, z‖ (λ) < ελ0 + ελ0

<
1
2
‖x− y, z‖ (λ0) +

1
2
‖x− y, z‖ (λ0) = ‖x− y, z‖ (λ0), ∀λ ∈ A,

which is a contradiction.

5. Refined soft 2-inner product space

Definition 5.1. Let X̌ be an absolute soft K-vector space. A refined soft 2-inner product on X̌ is a mapping
〈·, · | ·〉 : SE(X̌)× SE(X̌)× SE(X̌)→ C(A) which satisfies the following conditions:

(2I1) 〈x, x | y〉 >̃ 0̂ for all x,y ∈̃ X̌ and 〈x, x | y〉 = 0̂ if and only if x and y are refined linearly dependent in
X̌;

(2I2) 〈x, x | y〉 = 〈y,y | x〉 for all x,y ∈̃ X̌;
(2I3) 〈x,y | z〉 = 〈y, x | z〉 for all x,y, z ∈̃ X̌;
(2I4) 〈α · x,y | z〉 = α · 〈x,y | z〉 for all x,y, z ∈̃ X̌ and for all soft scalar α;
(2I5) 〈x̃1 + x̃2,y | z〉 = 〈x̃1,y | z〉+ 〈x̃2,y | z〉 for all x̃1, x̃2,y, z ∈̃ X̌.

The absolute soft K-vector space X̌ with a refined soft 2-inner product 〈·, · | ·〉 on X̌ is said to be a
refined soft 2-inner product space and is denoted by (X̌, 〈·, · | ·〉,A) or (X̌, 〈·, · | ·〉). Observe that, from
Remark 3.11, it follows that 〈x,y | z〉 can be expressed as 〈x,y | z〉 = Re〈x,y | z〉+ i Im〈x,y | z〉.

Example 5.2. Let (X, 〈·, ·〉) be an inner product space. We know that by Example 2.3, the standard 2-inner product
〈·, · | ·〉 is defined on X by

〈x,y | z〉 =
∣∣∣∣ 〈x,y〉 〈x, z〉
〈z,y〉 〈z, z〉

∣∣∣∣ = 〈x,y〉〈z, z〉− 〈x, z〉〈z,y〉.

In this way, the mapping 〈·, · | ·〉 : SE(X̌)× SE(X̌)× SE(X̌)→ C(A) defined by

〈x,y | z〉(λ) = 〈x(λ),y(λ) | z(λ)〉 = 〈x(λ),y(λ)〉〈z(λ), z(λ)〉− 〈x(λ), z(λ)〉〈z(λ),y(λ)〉, for all λ ∈ A,

is a refined soft 2-inner product on the soft vector space X̌.

Now, we can consider X = `2 with the classical inner product 〈x,y〉 =
∞∑
i=1

ξiηi, where x = {ξi}, y = {ηi}

belong to `2. Then `2 is a 2-inner product space with respect to the standard 2-inner product

〈x,y | z〉 = 〈x,y〉〈z, z〉− 〈x, z〉〈z,y〉,

where x = {ξi}, y = {ηi}, z = {ζi} ∈ `2. If x, y and z are soft elements of the absolute soft vector space X̌, then
x(λ) = {ξλi }, y(λ) = {ηλi } and z(λ) = {ζλi } are elements of `2 and the refined soft 2-inner product is given by
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〈x,y | z〉(λ) =

( ∞∑
i=1

ξλi η
λ
i

)( ∞∑
i=1

|ζλi |
2

)
−

( ∞∑
i=1

ξλi ζ
λ
i

)( ∞∑
i=1

ζλi η
λ
i

)
Remark 5.3. From conditions (2-I3) and (2-I4), we have:

i. 〈x,Θ | z〉 = 0̂ and 〈Θ,y | z〉 = 0̂.

ii. 〈x,α · y | z〉 = α · 〈x,y | z〉.

Proposition 5.4. Let (X̌, 〈·, · | ·〉,A) be a refined soft 2-inner product space. Then, for all x,y, z ∈̃ X̌ and all λ ∈ A,
the following statements hold:

1. 〈z, z | x± y〉 = 〈x, x | z〉+ 〈y,y | z〉 ±
[
〈x,y | z〉+ 〈x,y | z〉

]
.

2. Re〈x,y | z〉 = ( 1̂
4) [〈z, z | x+ y〉− 〈z, z | x− y〉].

3. Im〈x,y | z〉 = ( 1̂
4)
[
〈z, z | x+ îy〉− 〈z, z | x− îy〉

]
, where î is the soft complex number î(λ) = i for all λ ∈ A.

4. 〈x,y | z〉 = ( 1̂
4) [〈x+ y, x+ y | z〉− 〈x− y, x− y | z〉] + ( î4)

[
〈x+ îy, x+ îy | z〉− 〈x− îy, x− îy | z〉

]
.

5. 〈x,y |Θ〉 = 0̂.

Proof. (1). Let x,y, z ∈̃ X̌. Using conditions (2-I2)-(2-I5), we have

〈z, z | x± y〉 = 〈x± y, x± y | z〉 = 〈x, x± y | z〉 ± 〈y, x± y | z〉
= 〈x± y, x | z〉 ± 〈x± y,y | z〉
= 〈x, x | z〉 ± 〈y, x | z〉 ± 〈x,y | z〉 ± 〈y,y | z〉
= 〈x, x | z〉 ± 〈y, x | z〉 ± 〈x,y | z〉+ 〈y,y | z〉

= 〈x, x | z〉+ 〈y,y | z〉 ±
[
〈x,y | z〉+ 〈x,y | z〉

]
.

(2) From part (1), it follows that

〈x,y | z〉(λ) + 〈x,y | z〉(λ) = 〈z, z | x+ y〉(λ) − [〈x, x | z〉+ 〈y,y | z〉] (λ) (5.1)

and

〈x,y | z〉(λ) + 〈x,y | z〉(λ) = 〈x, x | z〉(λ) + 〈y,y | z〉(λ) − 〈z, z | x− y〉(λ), (5.2)

for all λ ∈ A and all x,y, z ∈̃ X̌. Adding equations (5.1) and (5.2), we get that

2
[
〈x,y | z〉(λ) + 〈x,y | z〉(λ)

]
= 〈z, z | x+ y〉(λ) − 〈z, z | x− y〉(λ),

which implies that

〈x,y | z〉(λ) + 〈x,y | z〉(λ) = 1
2
[〈z, z | x+ y〉(λ) − 〈z, z | x− y〉(λ)] ,

for all λ ∈ A and all x,y, z ∈̃ X̌. Thus,

2 Re〈x,y | z〉(λ) = 1
2
[〈z, z | x+ y〉− 〈z, z | x− y〉] (λ)

and hence, Re〈x,y | z〉(λ) = 1
4 [〈z, z | x+ y〉− 〈z, z | x− y〉] (λ), for all λ ∈ A and all x,y, z ∈̃ X̌. This shows

that Re〈x,y | z〉 = ( 1̂
4) [〈z, z | x+ y〉− 〈z, z | x− y〉].
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(3) Since Imu = Re(−iu) for each ordinary complex number u, we have

Im〈x,y | z〉(λ) = Re[−i〈x,y | z〉(λ)] for all λ ∈ A and all x,y, z ∈̃ X̌.

Thus,

Im〈x,y | z〉 = Re[−î〈x,y | z〉] = Re[î〈x,y | z〉] = Re[î 〈y, x | z〉] = Re[〈x, îy | z〉],

for all x,y, z ∈̃ X̌. Therefore, by (ii), we get that Im〈x,y | z〉 = ( 1̂
4)
[
〈z, z | x+ îy〉− 〈z, z | x− îy〉

]
for all

x,y, z ∈̃ X̌.
(4) The proof follows from Remark 3.11 and parts (2) and (3).
(5) From part (4), for any soft scalar α, we have

〈x,y |αz〉 =
(̂

1
4

)
[〈αz,αz | x+ y〉− 〈αz,αz | x− y〉] +

(̂
i

4

)[
〈αz,αz | x+ îy〉− 〈αz,αz | x− îy〉

]
=

(̂
1
4

)
αα [〈x+ y, x+ y | z〉− 〈x− y, x− y | z〉]

+

(̂
i

4

)
αα
[
〈x+ îy, x+ îy | z〉− 〈x− îy, x− îy | z〉

]
=αα

[(̂
1
4

)
[〈x+ y, x+ y | z〉− 〈x− y, x− y | z〉]

+

(̂
i

4

)[
〈x+ îy, x+ îy | z〉− 〈x− îy, x− îy | z〉

]]
= |α|2〈x,y |αz〉,

for all x,y, z ∈̃ X̌. In particular, for α = 0̂, we conclude that

〈x,y |Θ〉 = 0̂.

Lemma 5.5. Let (X̌, 〈·, · | ·〉,A) be a refined soft 2-inner product space. Then, for all x,y ∈̃ X̌ and for λ ∈ A, we
have 〈x, x | y〉(λ) = 0 if and only if x(λ) and y(λ) are linearly dependent on X for each λ ∈ A.

Proof. Considering the soft scalar α as in Lemma 4.13 and conditions (2-I2)-(2-I4), we obtain that 〈α · y,α ·
y | x〉 = |α|2 · 〈x, x | y〉, which implies that 〈x, x | y〉(λ) = 0 ⇐⇒ |α|2 · 〈x, x | y〉 = 0̂ ⇐⇒ 〈α · y,α · y | x〉 = 0̂
⇐⇒ x and α · y are refined linearly dependent in X̌ ⇐⇒ x(λ) and (α · y)(λ) are linearly dependent in X
for each λ ∈ A ⇐⇒ x(λ) and y(λ) are linearly dependent in X for each λ ∈ A. Note that we have used
Lemma 4.4 here.

The following example shows that 〈x,y | z〉 can be equal to 0̂, but this does not imply that the soft
vectors x, y, z are refined linearly dependent.

Example 5.6. Consider the refined soft 2-inner product space defined in Example 5.2. Let x, y and z be three
soft elements of X̌ such that for each λ ∈ A, x(λ) = {1, 2, 1, 0, . . .} ∈ `2, y(λ) = {1, 1

2 ,−2, 0, . . .} ∈ `2 and
z(λ) = {0, 1,−2, 0, . . .} ∈ `2. Then,

〈x,y | z〉 = 〈x,y〉〈z, z〉− 〈x, z〉〈z,y〉 = 0̂.

On the other hand, suppose that α1, α2 and α3 are soft scalars such that α1x+ α2y+ α3z = Θ. Then, we get the
equations α1(ν) + α2(ν) = 0, 2α1(ν) +

1
2α2(ν) + α3(ν) = 0 and α1(ν) − 2α2(ν) − 2α3(ν) = 0 for all ν ∈ A,

which implies that α1 = α2 = α3 = 0̂. Therefore, x, y, z are refined linearly independent in X̌
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Proposition 5.7. Let {〈·, · | ·〉λ : λ ∈ A} be any family of crisp 2-inner products on a crisp vector space X. Then the
mapping 〈·, · | ·〉 : SE(X̌)× SE(X̌)× SE(X̌) → C(A) defined by 〈x,y | z〉(λ) = 〈x(λ),y(λ) | z(λ)〉λ, for all λ ∈ A
and all x,y, z ∈ X̌ is a refined soft 2-inner product on the soft vector space X̌.

Proof. Let us verify that conditions (2I1), (2I2), (2I3), (2I4) and (2I5) of a refined soft 2-inner product are
satisfied.

(2I1). For all x,y ∈̃ X̌, we have 〈x, x | y〉(λ) = 〈x(λ), x(λ) | y(λ)〉λ > 0, ∀λ ∈ A. Thus, 〈x, x | y〉 >̃ 0̂. By Lemma
5.5, we have

〈x, x | y〉 = 0̂⇐⇒ 〈x, x | y〉(λ) = 0, ∀λ ∈ A
⇐⇒ x(λ) and y(λ) are linearly dependent in X, for each λ ∈ A
⇐⇒ x and y are refined linearly dependent in X̌.

(2I2). For all x,y ∈̃ X̌, we have 〈x, x | y〉(λ) = 〈x(λ), x(λ) | y(λ)〉λ = 〈y(λ),y(λ) | x(λ)〉λ = 〈y,y | x〉(λ), ∀λ ∈ A.
Therefore, 〈x, x | y〉 = 〈y,y | x〉.

(2I3). For all x,y, z ∈̃ X̌, we have

〈x,y | z〉(λ) = 〈x(λ),y(λ) | z(λ)〉λ = 〈y(λ), x(λ) | z(λ)〉λ
= 〈y, x | z〉(λ) = 〈y, x | z〉(λ), ∀λ ∈ A.

Hence, 〈x,y | z〉 = 〈y, x | z〉.

(2I4). For all x,y, z ∈̃ X̌ and for each soft scalar α, we have

〈α · x,y | z〉(λ) = 〈α(λ) · x(λ),y(λ) | z(λ)〉λ = α(λ) · 〈x(λ),y(λ) | z(λ)〉λ
= α(λ) · 〈x,y | z〉(λ) = (α · 〈x,y | z〉)(λ), ∀λ ∈ A.

Thus, 〈α · x,y | z〉 = α · 〈x,y | z〉.

(2I5). For all x1, x2,y, z ∈̃ X̌,

〈x1 + x2,y | z〉(λ) = 〈x1(λ) + x2(λ),y(λ) | z(λ)〉λ
= 〈x1(λ),y(λ) | z(λ)〉λ + 〈x2(λ),y(λ) | z(λ)〉λ
= 〈x1,y | z〉(λ) + 〈x2,y | z〉(λ) = (〈x1,y | z〉+ 〈x2,y | z〉)(λ), ∀λ ∈ A.

Therefore, 〈x1 + x2,y | z〉 = 〈x1,y | z〉+ 〈x2,y | z〉.
This shows that 〈·, · | ·〉 is a refined soft 2-inner product on X̌.

Proposition 5.8. Any crisp 2-inner product 〈·, · | ·〉X on a crisp vector space X can be extended to a refined soft
2-inner product on the soft vector space X̌.

Proof. First, we will construct the absolute soft K-vector space X̌ through a non-empty set of parameters
A. Let us define a mapping 〈·, · | ·〉 : SE(X̌)× SE(X̌)× SE(X̌) → C(A) by 〈x,y | z〉(λ) = 〈x(λ),y(λ) | z(λ)〉X,
∀λ ∈ A, ∀x,y, z∈̃X̌. Applying a procedure similar to that of the proof of Proposition 5.7, we conclude that
〈·, · | ·〉 is a refined soft 2-inner product on X̌.

This refined soft 2-inner product is generated using the crisp 2-inner product 〈·, · | ·〉X and it is called
the refined soft 2-inner product generated by 〈·, · | ·〉X.

Lemma 5.9. Let (X̌, 〈·, · | ·〉,A) be a refined soft 2-inner product space. Then, the following condition is hold:
(2-I6) For each pair of vectors ξ,η ∈ X and λ ∈ A, {〈x, x | y〉(λ) : x(λ) = ξ, y(λ) = η} is a singleton.
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Proof. Assume that (ξ,η) ∈ X × X and λ ∈ A. Let x, x′,y,y′ ∈ X̌ be such that x(λ) = ξ = x′(λ) and
y(λ) = η = y′(λ). Since (x− x′)(λ) = θ = (y′ − y)(λ) and λ ∈ A is arbitrary, we have x− x′ = Θ = y′ − y,
which implies that

〈x− x′, x | y〉 = 〈Θ, x | y〉 = 0̂ = 〈x′,Θ | y〉 = 〈x′, x− x′ | y〉 and
〈y′,y′ − y | x′〉 = 〈y′,Θ | x′〉 = 0̂ = 〈y,Θ | x′〉 = 〈y,y′ − y | x′〉.

Therefore, the result follows from the facts that

〈x, x | y〉 = 〈x− x′, x | y〉+ 〈x′, x− x′ | y〉+ 〈x′, x′ | y〉

and

〈x′, x′ | y′〉 = 〈x′, x′ | y〉+ 〈y′,y′ − y | x′〉+ 〈y,y′ − y | x′〉.

Proposition 5.10. (Cauchy-Schwarz Inequality) If (X̌, 〈·, · | ·〉,A) is a refined soft 2-inner product space, then

|〈x,y | z〉|2 6̃ 〈x, x | z〉 〈y,y | z〉,

for all x,y, z ∈ X̌.

Proof. Suppose that x,y, z∈̃X̌ are not the soft vector Θ, because if either of them is Θ, then by Remark
5.3(i) and Proposition 5.4(5), it follows that 〈x,y | z〉 = 0̂ and 〈x, x | z〉 〈y,y | z〉 = 0̂, so we obtain the equality
trivially. Then, for each soft scalar α, we have

0̂6̃〈x−αy, x−αy | z〉 =〈x, x−αy | z〉− 〈αy, x−αy | z〉
=〈x−αy, x | z〉− 〈x−αy,αy | z〉
=〈x, x | z〉− 〈αy, x | z〉− 〈x,αy | z〉− 〈αy,αy | z〉
=〈x, x | z〉−α〈x,y | z〉−α〈y, x | z〉−αα〈y,y | z〉
=〈x, x | z〉−α[〈y, x | z〉−α〈y,y | z〉] −α〈x,y | z〉.

Now, we consider the following two possible cases:
Case 1: y and z are not refined linearly dependent.
Case 2: y and z are refined linearly dependent.

In Case 1, 〈y,y | z〉>̃0̂ and putting α =
〈x,y | z〉
〈y,y | z〉

, we get that

0̂ 6̃〈x, x | z〉−α[〈y, x | z〉− 〈y, x | z〉
〈y,y | z〉

〈y,y | z〉] − 〈y, x | z〉
〈y,y | z〉

〈x,y | z〉

= 〈x, x | z〉− 〈x,y | z〉
〈y,y | z〉

〈x,y | z〉.

Thus,
〈x,y | z〉
〈y,y | z〉

〈x,y | z〉6̃〈x, x | z〉 and hence, |〈x,y | z〉|2 = 〈x,y | z〉〈x,y | z〉6̃〈x, x | z〉〈y,y | z〉.

In Case 2, 〈y,y | z〉 = 0̂ and there exist soft scalars α1 and α2 with αi(λ) 6= 0 for some i ∈ {1, 2} and each
λ ∈ A, such that α1y+ α2z = Θ. If α1(λ) 6= 0 for each λ ∈ A, then we can write y = αz where α is the

soft scalar defined by α(λ) = −
α2(λ)

α1(λ)
, so 〈x,y | z〉 = 〈x,αz | z〉 = ᾱ〈x, z | z〉 = ᾱ〈z, x | z〉 = ᾱ0̂ = ᾱ0̂ = 0̂. If

α2(λ) 6= 0 for each λ ∈ A, then we can write z = αywhere α is the soft scalar defined by α(λ) = −
α1(λ)

α2(λ)
, so

〈x,y | z〉 = 〈x,y | αy〉 = |α|2〈x,y | y〉 = |α|2 0̂ = 0̂. Therefore, |〈x,y | z〉|2 = 〈x,y | z〉〈x,y | z〉 = 0̂ = 〈x, x | z〉 0̂ =
〈x, x | z〉〈y,y | z〉.
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Proposition 5.11. Let (X̌, 〈·, · | ·〉,A) be a refined soft 2-inner product space. Then in view of Cauchy-Schwarz
Inequality we can define the mapping ‖·, ·‖ : SE(X̌)× SE(X̌)→ R(A), ‖x,y‖ :=

√
〈x, x | y〉, for all x,y ∈̃ X̌, which

is a refined soft 2-norm on X̌.

Proof. Suppose that h,k, ξ ∈̃ X̌ and let α be a soft scalar. Then ‖h, ξ‖ =
√
〈h,h | ξ〉 >̃ 0̂ by definition. Now

‖h, ξ‖2 = 0̂ if and only if 〈h,h | ξ〉 = 0̂, and by (2I1) we have h and ξ are refined linearly dependent, so
that (2N1) is satisfied. Also, by (2I2), we have (2N2) is satisfied, this is,

‖h, ξ‖ =
√
〈h,h | ξ〉 =

√
〈ξ, ξ | h〉 = ‖ξ,h‖.

On the other hand,

‖αh, ξ‖ =
√
〈αh,αh | ξ〉 =

√
αᾱ〈h,h | ξ〉 =

√
|α|2〈h,h | ξ〉 = |α|

√
〈h,h | ξ〉 = |α|‖h, ξ‖,

which implies that (2N3) is satisfaced. Finally, we have

‖h+ k, ξ‖2 = 〈h+ k,h+ k | ξ〉 = 〈h,h | ξ〉+ 2 Re(〈h,k | ξ〉) + 〈k,k | ξ〉
6̃ 〈h,h | ξ〉+ 2|〈h,k | ξ〉|+ 〈k,k | ξ〉

6̃ 〈h,h | ξ〉+ 2
(
〈h,h | ξ〉1/2〈k,k | ξ〉1/2

)
+ 〈k,k | ξ〉

=
(
〈h,h | ξ〉1/2 + 〈k,k | ξ〉1/2

)2
= (‖h, ξ‖+ ‖k, ξ‖)2,

where we have used Cauchy-Schwarz Inequality. Thus, we conclude that the refined soft 2-inner product
induces a refined soft 2-norm on X̌.

Corollary 5.12. Let (X̌, 〈·, · | ·〉,A) be a refined soft 2-inner product space. Then for each λ ∈ A the mapping
‖·, ·‖λ : X×X→ R+ defined by ‖ξ,η‖λ := ‖x,y‖(λ) =

√
〈x, x | y〉(λ) where x,y ∈ X̌ are such that x(λ) = ξ and

y(λ) = η is a refined soft 2-norm on X.

Proof. It is clear by Theorem 4.14.

Proposition 5.13. Let (X̌, 〈·, · | ·〉,A) be a refined soft 2-inner product space and x, z ∈̃ X̌. Then,

‖x, z‖ = sup{|〈x,y | z〉| : y ∈̃ X̌, ‖y, z‖ = 1̂}.

Proof. Let x, z ∈̃ X̌ and L = {|〈x,y | z〉| : y ∈̃ X̌, ‖y, z‖ = 1̂}. We will show that ‖x, z‖ = supL. First, we will
prove that supL 6̃ ‖x, z‖. Indeed, if |〈x,y | z〉| ∈ L, then ‖y, z‖ = 1̂. Now, by Cauchy-Schwarz inequality,
we have

|〈x,y | z〉| 6̃ ‖x, z‖‖y, z‖ = ‖x, z‖,

which implies that |〈x,y | z〉| 6̃ ‖x, z‖, so ‖x, z‖ is an upper bound for L. Therefore, supL 6̃ ‖x, z‖.
On the other hand, we will verify that ‖x, z‖ 6̃ supL, it is clear for the case ‖x, z‖ = 0̂, in other case,

we put y = 1
‖x,z‖x and let us note that ‖y, z‖ = 1̂ and ‖x, z‖ = |〈x,y | z〉|; this is,

‖y, z‖ = 〈y,y | z〉 =
〈

1
‖x, z‖

x,
1
‖x, z‖

x | z

〉
=

1
‖x, z‖

(
1
‖x, z‖

)
〈x, x | z〉

=
1

‖x, z‖2 〈x, x | z〉 = 1
‖x, z‖2 ‖x, z‖2 = 1.

and

|〈x,y | z〉| =
∣∣∣∣〈x,

x

‖x, z‖
| z

〉∣∣∣∣ = 1
‖x, z‖

|〈x, x | z〉| = 1
‖x, z‖

‖x, z‖2 = ‖x, z‖.
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Thus ‖x, z‖ ∈ L and hence ‖x, z‖ 6̃ supL. This shows that ‖x, z‖ = supL.

Proposition 5.14. Let (X̌, 〈·, · | ·〉,A) be a refined soft 2-inner product space. Then, for all x,y, z ∈ X̌ we have

1. ‖x+ y, z‖2 + ‖x− y, z‖2 = 2‖x, z‖2 + 2‖y, z‖2 (Parallelogram law);

2. 〈x,y | z〉 = (̂ 1
4)
{
‖x+ y, z‖2 − ‖x+ y, z‖2 + î‖x+ îy, z‖2 − î‖x− îy, z‖2

}
(Polarization identity).

Proof. The proof of (1) is similar to the one given in [25]. Furthermore, (2) is an immediate consequence
of Proposition 5.4.

Remark 5.15. Given two soft R-numbers x and y with x <̃ y, in the sense of Definition 3.7, we can define
the following set:

(x,y) := {z ∈ R(A) : x <̃ z <̃ y} = {z ∈ R(A) : (∀α ∈ A)(x(α) < z(α) < y(α))}.

Then it is easy to check that the collection of sets of the form (x,y) is a basis for a topology on R(A).
Moreover, Q(A) is a dense subspace of R(A).

Theorem 5.16. Let (X̌, ‖·, ·‖,A) be a refined soft 2-normed space. Then, the refined soft 2-norm ‖·, ·‖ is induced by
a refined 2-inner product if it satisfies the Parallelogram law.

Proof. Let us first consider the real case, that is, X̌ is an absolute soft R-vector space. For this case, we
define the mapping

ϕ : SE(X̌)× SE(X̌)× SE(X̌)→ R(A), ϕ(x,y, z) = (̂
1
4
)(‖x+ y, z‖2 − ‖x− y, z‖2) for all x,y, z ∈ SE(X̌).

It is clear that ‖x,y‖2 = ϕ(x, x,y) for all x,y ∈ SE(X̌). Now, we will prove that ϕ verifies the properties of
a refined soft 2-inner product. Indeed, if x,y, z ∈ SE(X̌), then:
(2I1) ϕ(x, x,y) = ‖x,y‖2 >̃ 0̂. Furthermore, note that

ϕ(x, x,y) = 0̂⇐⇒ ‖x,y‖ = 0̂⇐⇒ x and y are refined linearly dependent in X̌.

(2I2)
ϕ(x, x,y) = ‖x,y‖2 = ‖y, x‖2 = ϕ(y,y, x).

(2I3) This is clear.
(2I5) We need to prove that ϕ(x1 + x2,y, z) = ϕ(x1,y, z) +ϕ(x2,y, z) for all x1, x2,y, z ∈ SE(X̌). Indeed,

ϕ(x1 + x2,y, z) = (̂
1
4
)(‖x1 + x2 + y, z‖2 − ‖x1 + x2 − y, z‖2),

and by Parallelogram law, we have

‖x1 + x2 + y, z‖2 = 2̂‖x1 + y, z‖2 + 2̂‖x2, z‖2 − ‖x1 − x2 + y, z‖2;

‖x1 + x2 − y, z‖2 = 2̂‖x1, z‖2 + 2̂‖x2 − y, z‖2 − ‖x1 − x2 + y, z‖2.

Then,

4̂ϕ(x1 + x2,y, z) = ‖x1 + x2 + y, z‖2 − ‖x1 + x2 − y, z‖2

= 2̂‖x1 + y, z‖2 + 2̂‖x2, z‖2 − 2̂‖x1, z‖2 − 2̂‖x2 − y, z‖2.

Similarly,

4̂ϕ(x1 + x2,y, z) = 4̂ϕ(x2 + x1,y, z) = 2̂‖x2 + y, z‖2 + 2̂‖x1, z‖2 − 2̂‖x2, z‖2 − 2̂‖x1 − y, z‖2.
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So,
8̂ϕ(x1 + x2,y, z) = 2̂‖x1 + y, z‖2 + 2̂‖x2 + y, z‖2 − 2̂‖x2 − y, z‖2 − 2̂‖x1 − y, z‖2.

Therefore,

8̂ϕ(x1 + x2,y, z) = 8̂ϕ(x1,y, z) + 8̂ϕ(x2,y, z); this is, ϕ(x1 + x2,y, z) = ϕ(x1,y, z) +ϕ(x2,y, z).

(2I4) We consider the set

L = {α ∈ R(A) : αϕ(x,y, z) = ϕ(αx,y, z), ∀x,y, z ∈ SE(X̌)}.

We want to prove that L = R(A). In view of (2I5) is clear that (α±β) ∈ L for all α,β ∈ L. Indeed,

(α±β)ϕ(x,y, z) = αϕ(x,y, z)±βϕ(x,y, z) = ϕ(αx,y, z)±ϕ(βx,y, z)
= ϕ((α±β)x,y, z).

Furthermore, for all α,β ∈ Z(A) with β(λ) 6= 0 for all λ ∈ A, we have

α

β
ϕ(x,y, z) =

1
β
ϕ(αx,y, z) =

1
β
ϕ

(
β

(
α

β

)
x,y, z

)
= ϕ

(
α

β
x,y, z

)
.

Hence
α

β
∈ L. Thus Q(A) ⊆ L. Now, given x,y, z ∈ SE(X̌) we consider the mapping lxyz : R(A) → R(A)

defined by lxyz(α) = ϕ(αx,y, z) − αϕ(x,y, z). Furthermore, note that the mapping α 7→ ‖αr, s‖, r, s ∈̃ X̌,
is a continuous mapping in R(A). Indeed,

|‖αr, s‖− ‖βr, s‖| = |(|α|− |β|)‖x,y‖| = ||α|− |β||‖x,y‖ 6̃ |α−β|‖x,y‖

which shows that lxyz is also a continuous mapping in R(A) for every x,y, z ∈ SE(X̌). Then, L =⋂
x,y,z∈SE(X̌)

l−1
xyz({0̂}) is a closed subset of R(A) respect to the topology give in Remark 5.15. Therefore,

L = R(A) and ϕ is a refined soft real 2-inner product.
On the other hand, if X̌ is an absolute soft C-vector space. Note that the mapping

γ(x,y, z) := (̂
1
4
)
{
‖x+ y, z‖2 − ‖x+ y, z‖2 + î‖x+ îy, z‖2 − î‖x− îy, z‖2} = ϕ(x,y, z) + îϕ(x, îy, z),

define a refined soft complex 2-inner product and it satisfies that ‖x,y‖2 = γ(x, x,y) for all x,y ∈ SE(X̌).
The proof of this fact is easy to verify.

6. Conclusions

In this research, we have revisited the notions of soft 2-normed spaces and soft 2-inner spaces with the
main goal of obtaining a formal prove of the Cauchy-Schwarz inequality. In view of this, we have given
another definition of linearly dependent soft vectors which allows us to show this inequality. Furthermore,
we have studied the most important properties of the 2-normed spaces and 2-inner product spaces in the
context of the soft set theory. In this sense, the results that we have obtained in this paper open the study
about soft 2-Hilbert spaces and other topics interesting in the soft functional analysis. Finally, we have
showed that a refined soft 2-normed space is induced by a refined 2-inner product if the refined soft
2-normed space satisfies the Parallelogram law, which is one of the most important results of this work.
From the results presented, one can go deeper into the properties of soft 2-Hilbert spaces. The structure
of soft frames is another important and interesting issue that can be addressed.
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